US3779991A - Silicon-hydantoin-ester resins - Google Patents
Silicon-hydantoin-ester resins Download PDFInfo
- Publication number
- US3779991A US3779991A US00275922A US3779991DA US3779991A US 3779991 A US3779991 A US 3779991A US 00275922 A US00275922 A US 00275922A US 3779991D A US3779991D A US 3779991DA US 3779991 A US3779991 A US 3779991A
- Authority
- US
- United States
- Prior art keywords
- acid
- hydantoin
- groups
- reaction
- reactive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920005989 resin Polymers 0.000 title description 14
- 239000011347 resin Substances 0.000 title description 14
- 239000002253 acid Substances 0.000 abstract description 27
- 229940091173 hydantoin Drugs 0.000 abstract description 24
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 abstract description 23
- 210000003298 dental enamel Anatomy 0.000 abstract description 16
- 239000011342 resin composition Substances 0.000 abstract description 12
- 150000001875 compounds Chemical class 0.000 abstract description 11
- 239000007795 chemical reaction product Substances 0.000 abstract description 7
- 239000004020 conductor Substances 0.000 abstract description 6
- 239000002210 silicon-based material Substances 0.000 abstract description 6
- BPXVHIRIPLPOPT-UHFFFAOYSA-N 1,3,5-tris(2-hydroxyethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound OCCN1C(=O)N(CCO)C(=O)N(CCO)C1=O BPXVHIRIPLPOPT-UHFFFAOYSA-N 0.000 abstract description 4
- -1 hydantoin radicals Chemical class 0.000 description 52
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 24
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 22
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 20
- 238000000034 method Methods 0.000 description 17
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 15
- 150000002148 esters Chemical class 0.000 description 15
- 150000002332 glycine derivatives Chemical class 0.000 description 15
- 229920000642 polymer Polymers 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 125000003545 alkoxy group Chemical group 0.000 description 14
- 235000019441 ethanol Nutrition 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 13
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 13
- 229920000768 polyamine Polymers 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000000576 coating method Methods 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 10
- 150000003254 radicals Chemical class 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 150000007513 acids Chemical class 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 238000009833 condensation Methods 0.000 description 9
- 230000005494 condensation Effects 0.000 description 9
- OLLFKUHHDPMQFR-UHFFFAOYSA-N dihydroxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](O)(O)C1=CC=CC=C1 OLLFKUHHDPMQFR-UHFFFAOYSA-N 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 150000004756 silanes Chemical class 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 150000005846 sugar alcohols Polymers 0.000 description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 7
- 150000008064 anhydrides Chemical class 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 6
- 229920001228 polyisocyanate Polymers 0.000 description 6
- 239000005056 polyisocyanate Substances 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 5
- 239000012948 isocyanate Substances 0.000 description 5
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- YIROYDNZEPTFOL-UHFFFAOYSA-N 5,5-Dimethylhydantoin Chemical compound CC1(C)NC(=O)NC1=O YIROYDNZEPTFOL-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 150000001805 chlorine compounds Chemical class 0.000 description 4
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 4
- 125000004663 dialkyl amino group Chemical group 0.000 description 4
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 4
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 4
- 150000002513 isocyanates Chemical class 0.000 description 4
- KSCKTBJJRVPGKM-UHFFFAOYSA-N octan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-] KSCKTBJJRVPGKM-UHFFFAOYSA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 239000002966 varnish Substances 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 150000001896 cresols Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000001469 hydantoins Chemical class 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical compound ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 238000007098 aminolysis reaction Methods 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical compound C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 description 2
- UJMDYLWCYJJYMO-UHFFFAOYSA-N benzene-1,2,3-tricarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1C(O)=O UJMDYLWCYJJYMO-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- AOGYCOYQMAVAFD-UHFFFAOYSA-N chlorocarbonic acid Chemical class OC(Cl)=O AOGYCOYQMAVAFD-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 2
- 239000002320 enamel (paints) Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 125000002560 nitrile group Chemical group 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 235000011118 potassium hydroxide Nutrition 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229920006009 resin backbone Polymers 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 2
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical class O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- SIQZJFKTROUNPI-UHFFFAOYSA-N 1-(hydroxymethyl)-5,5-dimethylhydantoin Chemical compound CC1(C)N(CO)C(=O)NC1=O SIQZJFKTROUNPI-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- GBGORBREQNJWLW-UHFFFAOYSA-N 2-chloro-1,4-diisocyanatobenzene Chemical class ClC1=CC(N=C=O)=CC=C1N=C=O GBGORBREQNJWLW-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- UGWULZWUXSCWPX-UHFFFAOYSA-N 2-sulfanylideneimidazolidin-4-one Chemical group O=C1CNC(=S)N1 UGWULZWUXSCWPX-UHFFFAOYSA-N 0.000 description 1
- RXXCIBALSKQCAE-UHFFFAOYSA-N 3-methylbutoxymethylbenzene Chemical compound CC(C)CCOCC1=CC=CC=C1 RXXCIBALSKQCAE-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- NKFIBMOQAPEKNZ-UHFFFAOYSA-N 5-amino-1h-indole-2-carboxylic acid Chemical compound NC1=CC=C2NC(C(O)=O)=CC2=C1 NKFIBMOQAPEKNZ-UHFFFAOYSA-N 0.000 description 1
- HOSGXJWQVBHGLT-UHFFFAOYSA-N 6-hydroxy-3,4-dihydro-1h-quinolin-2-one Chemical group N1C(=O)CCC2=CC(O)=CC=C21 HOSGXJWQVBHGLT-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-M 9-cis,12-cis-Octadecadienoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC([O-])=O OYHQOLUKZRVURQ-HZJYTTRNSA-M 0.000 description 1
- 101710125089 Bindin Proteins 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ROZZMLUWBPPEMU-GRVYQHKQSA-L Calcium linoleate Chemical compound [Ca+2].CCCCC\C=C/C\C=C/CCCCCCCC([O-])=O.CCCCC\C=C/C\C=C/CCCCCCCC([O-])=O ROZZMLUWBPPEMU-GRVYQHKQSA-L 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- NPKSPKHJBVJUKB-UHFFFAOYSA-N N-phenylglycine Chemical class OC(=O)CNC1=CC=CC=C1 NPKSPKHJBVJUKB-UHFFFAOYSA-N 0.000 description 1
- WWEXBGFSEVKZNE-UHFFFAOYSA-N N=C=O.N=C=O.C1=CC=CC2=CC=CC=C21 Chemical class N=C=O.N=C=O.C1=CC=CC2=CC=CC=C21 WWEXBGFSEVKZNE-UHFFFAOYSA-N 0.000 description 1
- DNNXXFFLRWCPBC-UHFFFAOYSA-N N=C=O.N=C=O.C1=CC=CC=C1 Chemical class N=C=O.N=C=O.C1=CC=CC=C1 DNNXXFFLRWCPBC-UHFFFAOYSA-N 0.000 description 1
- RYVAWKRLRYJIIB-UHFFFAOYSA-N N=C=O.N=C=O.CC(C)C1=CC=CC(C(C)C)=C1C(C)C Chemical class N=C=O.N=C=O.CC(C)C1=CC=CC(C(C)C)=C1C(C)C RYVAWKRLRYJIIB-UHFFFAOYSA-N 0.000 description 1
- DKBWKERAUSECPF-UHFFFAOYSA-N N=C=O.N=C=O.CCC1=CC=CC=C1 Chemical class N=C=O.N=C=O.CCC1=CC=CC=C1 DKBWKERAUSECPF-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- CXOFVDLJLONNDW-UHFFFAOYSA-N Phenytoin Chemical compound N1C(=O)NC(=O)C1(C=1C=CC=CC=1)C1=CC=CC=C1 CXOFVDLJLONNDW-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 238000003436 Schotten-Baumann reaction Methods 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- XMUZQOKACOLCSS-UHFFFAOYSA-N [2-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=CC=C1CO XMUZQOKACOLCSS-UHFFFAOYSA-N 0.000 description 1
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 238000006136 alcoholysis reaction Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- HIFVAOIJYDXIJG-UHFFFAOYSA-N benzylbenzene;isocyanic acid Chemical class N=C=O.N=C=O.C=1C=CC=CC=1CC1=CC=CC=C1 HIFVAOIJYDXIJG-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- IFVTZJHWGZSXFD-UHFFFAOYSA-N biphenylene Chemical group C1=CC=C2C3=CC=CC=C3C2=C1 IFVTZJHWGZSXFD-UHFFFAOYSA-N 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- NDWWLJQHOLSEHX-UHFFFAOYSA-L calcium;octanoate Chemical compound [Ca+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O NDWWLJQHOLSEHX-UHFFFAOYSA-L 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229940112021 centrally acting muscle relaxants carbamic acid ester Drugs 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- VXIVSQZSERGHQP-UHFFFAOYSA-N chloroacetamide Chemical compound NC(=O)CCl VXIVSQZSERGHQP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical class Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- MGQFVQQCNPBJKC-UHFFFAOYSA-N dibutoxy(diethyl)silane Chemical compound CCCCO[Si](CC)(CC)OCCCC MGQFVQQCNPBJKC-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- MNFGEHQPOWJJBH-UHFFFAOYSA-N diethoxy-methyl-phenylsilane Chemical compound CCO[Si](C)(OCC)C1=CC=CC=C1 MNFGEHQPOWJJBH-UHFFFAOYSA-N 0.000 description 1
- DAKRXZUXJUPCOF-UHFFFAOYSA-N diethyl(dihydroxy)silane Chemical compound CC[Si](O)(O)CC DAKRXZUXJUPCOF-UHFFFAOYSA-N 0.000 description 1
- RBSBUSKLSKHTBA-UHFFFAOYSA-N dihydroxy-methyl-phenylsilane Chemical compound C[Si](O)(O)C1=CC=CC=C1 RBSBUSKLSKHTBA-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- BPXCAJONOPIXJI-UHFFFAOYSA-N dimethyl-di(propan-2-yloxy)silane Chemical compound CC(C)O[Si](C)(C)OC(C)C BPXCAJONOPIXJI-UHFFFAOYSA-N 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- GWZCCUDJHOGOSO-UHFFFAOYSA-N diphenic acid Chemical compound OC(=O)C1=CC=CC=C1C1=CC=CC=C1C(O)=O GWZCCUDJHOGOSO-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- MHJXEYSPZFQPFG-UHFFFAOYSA-N dodecane-1,5,10-triol Chemical compound CCC(O)CCCCC(O)CCCCO MHJXEYSPZFQPFG-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- HQPMKSGTIOYHJT-UHFFFAOYSA-N ethane-1,2-diol;propane-1,2-diol Chemical compound OCCO.CC(O)CO HQPMKSGTIOYHJT-UHFFFAOYSA-N 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- DYDNPESBYVVLBO-UHFFFAOYSA-N formanilide Chemical compound O=CNC1=CC=CC=C1 DYDNPESBYVVLBO-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- WJSATVJYSKVUGV-UHFFFAOYSA-N hexane-1,3,5-triol Chemical compound CC(O)CC(O)CCO WJSATVJYSKVUGV-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- ZBKFYXZXZJPWNQ-UHFFFAOYSA-N isothiocyanate group Chemical group [N-]=C=S ZBKFYXZXZJPWNQ-UHFFFAOYSA-N 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- GIWKOZXJDKMGQC-UHFFFAOYSA-L lead(2+);naphthalene-2-carboxylate Chemical compound [Pb+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 GIWKOZXJDKMGQC-UHFFFAOYSA-L 0.000 description 1
- 229940049918 linoleate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- ITNVWQNWHXEMNS-UHFFFAOYSA-N methanolate;titanium(4+) Chemical compound [Ti+4].[O-]C.[O-]C.[O-]C.[O-]C ITNVWQNWHXEMNS-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- HLXDKGBELJJMHR-UHFFFAOYSA-N methyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](C)(OC(C)C)OC(C)C HLXDKGBELJJMHR-UHFFFAOYSA-N 0.000 description 1
- ZETYUTMSJWMKNQ-UHFFFAOYSA-N n,n',n'-trimethylhexane-1,6-diamine Chemical compound CNCCCCCCN(C)C ZETYUTMSJWMKNQ-UHFFFAOYSA-N 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- SHDJPKGVCIPPSC-UHFFFAOYSA-N octane-1,4,6-triol Chemical compound CCC(O)CC(O)CCCO SHDJPKGVCIPPSC-UHFFFAOYSA-N 0.000 description 1
- 125000005474 octanoate group Chemical group 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- DGTNSSLYPYDJGL-UHFFFAOYSA-N phenyl isocyanate Chemical compound O=C=NC1=CC=CC=C1 DGTNSSLYPYDJGL-UHFFFAOYSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 229960002036 phenytoin Drugs 0.000 description 1
- 150000003022 phthalic acids Chemical class 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- RLJWTAURUFQFJP-UHFFFAOYSA-N propan-2-ol;titanium Chemical compound [Ti].CC(C)O.CC(C)O.CC(C)O.CC(C)O RLJWTAURUFQFJP-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- KCIKCCHXZMLVDE-UHFFFAOYSA-N silanediol Chemical compound O[SiH2]O KCIKCCHXZMLVDE-UHFFFAOYSA-N 0.000 description 1
- 150000004819 silanols Chemical class 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- MNWBNISUBARLIT-UHFFFAOYSA-N sodium cyanide Chemical compound [Na+].N#[C-] MNWBNISUBARLIT-UHFFFAOYSA-N 0.000 description 1
- NESLWCLHZZISNB-UHFFFAOYSA-M sodium phenolate Chemical compound [Na+].[O-]C1=CC=CC=C1 NESLWCLHZZISNB-UHFFFAOYSA-M 0.000 description 1
- WSFQLUVWDKCYSW-UHFFFAOYSA-M sodium;2-hydroxy-3-morpholin-4-ylpropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN1CCOCC1 WSFQLUVWDKCYSW-UHFFFAOYSA-M 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N tetraisopropyl titanate Substances CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N trans-stilbene Chemical group C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- UHUUYVZLXJHWDV-UHFFFAOYSA-N trimethyl(methylsilyloxy)silane Chemical compound C[SiH2]O[Si](C)(C)C UHUUYVZLXJHWDV-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000005050 vinyl trichlorosilane Substances 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- MXODCLTZTIFYDV-UHFFFAOYSA-L zinc;1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,10,10a-octahydrophenanthrene-1-carboxylate Chemical compound [Zn+2].C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C([O-])=O.C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C([O-])=O MXODCLTZTIFYDV-UHFFFAOYSA-L 0.000 description 1
- CHJMFFKHPHCQIJ-UHFFFAOYSA-L zinc;octanoate Chemical compound [Zn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O CHJMFFKHPHCQIJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/38—Low-molecular-weight compounds having heteroatoms other than oxygen
- C08G18/3819—Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
- C08G18/3821—Carboxylic acids; Esters thereof with monohydroxyl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/38—Low-molecular-weight compounds having heteroatoms other than oxygen
- C08G18/3819—Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/68—Polyesters containing atoms other than carbon, hydrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/44—Polyester-amides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/0605—Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
- C08G73/0616—Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/42—Block-or graft-polymers containing polysiloxane sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/42—Block-or graft-polymers containing polysiloxane sequences
- C08G77/445—Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/307—Other macromolecular compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/42—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S260/00—Chemistry of carbon compounds
- Y10S260/34—Hydantoin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S525/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S525/908—Polymer containing a hydantoin group
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/2962—Silane, silicone or siloxane in coating
Definitions
- This invention relates to novel polymeric materials containing hydantoin radicals and silicon radicals in the polymeric backbone.
- Magnet wires having such insulating enamel coatings are used in winding electrical coils for use in relays, solenoids and the like. Such magnet wires are coated by passing the wire through a solution of the polymer, and the resultant coating is dried and/or hardened by passing through a drying oven. The dried and coated wire is then wound at high speeds into coils. During the high speed winding process, it has been customary heretofore to apply a lubricating oil to the coated wire in order to reduce friction and, after the coil has been wound, varnish the entire assembly by dipping in varnish. However, the varnish will not adhere well to the wire which has been previously oiled, and it has been necessary to degrease the wound bobbins before varnishing.
- These low friction coatings do not require the use of oil in their winding, and are compatible with varnish in which wound coils 'are dipped to improve the insulation thereof. They also possess excellent electrical properties and exceptionally good resistance to heat aging.
- a new magnet wire coating which comprises a polymer containing both hydantoin rings and silicon groups in the backbone. Silicon groups can be eliminated from the polymer where a low coefficient of friction is not needed.
- the preferred novel polymers of the present invention have hydantoin and organo-silicon radicals in the resin backbone and are the reaction product of hydantoin based compound having reactive OH, H, -COOH, alkoxy, and NH groups and equivalents thereof; a carboxylic acid having at least two carboxy groups or an anhydride, ester, chloride of said acid: THEIC, and, when dry lubricity is desired, a linear reactive organo silicon material having reactive OH, H, COOH, alkoxy, amino, aryloxy or vinyl groups.
- a preferred silicon material is a silane diol such as diphenyl silane diol.
- up to 50 equivalent percent of the THEIC is replaced by another polyhydric alcohol such as ethylene glycol.
- novel polymers of the invention may be prepared by reacting THEIC, the carboxylic acid, and the reactive-hydantoin based compound.
- the reaction includes the reactive silicon-containing material.
- reaction temperatures of about C. to about 250 C. and reaction time of about 4 hours to 24 hours.
- the novel polymers of the present invention are obtained by reacting a hydantoin-containing compound, a carboxylic acid and THEIC and, when dry lubricity is required, a reactive silicon-containing compound.
- a silane or a siloxane may be used preferably in an amount of about 0.01 to about 10% by weight of the total composition.
- a monomeric silane such as dichlorodimethyl silane, will react with moisture to form polymeric siloxanes with repeating units therein.
- the silanes and siloxanes suitable for the purposes of the present invention are disclosed in my Pat. No. 3,583,885, filed Aug. 29, 1969, for Sil-Alkyd Coatings for Wire, the disclosure of which is hereby incorporated by reference. It will be appreciated that the silanes and siloxanes which are suitable for use in the present invention are.
- organo-siloxanes having two or three reactive --OH, --H, -COOH, vinyl or alkoxy groups are prefer to use.
- the -OH, alkoxy and H react with an acid component
- the -COOH groups react with a polyol component of the polyester.
- the preferred siloxanes have the following formula l. Ll. ll.
- R is CH or phenyl
- a siloxane of the general formula RmSiXnO m R is an alkyl radical of less than 5 carbon atoms or a phenyl radical, X is an alkoxy, arylcxy or H radical, m has an average value from 1 to 2, n has an average value of from .01 to 3, and the sum of (m+n) is not greater than 4.
- the above organosilicon compounds include both monomeric alkoxy-silanes and silanols of the formula R SiX and partial condensates thereof.
- partial condensates are polymeric siloxanes having hydrocarbon groups, alkoxy groups and/or OH radicals attached to the silicon.
- the number of functional (i.e. X) groups per silicon may vary from 1 functional group per 100 silicons to 3 functional groups per silicon. Both the above silanes and the partial condensates are known materials.
- the hydrocarbon groups may be alkyl radicals such as methyl, ethyl, propyl, butyl, or phenyl radicals. Any alkoxy groups may be present in the silanes although it is preferred that the alkoxy radicals contain less than 5 carbon atoms, since the corresponding alcohols are more easily removed from reaction mixtures.
- silanes which may be employed in this invention are, for example, phenylmethyldiethoxysilane, phenyltrimethoxysilane, dimethyldiisopropoxysilane, diethyldibutoxysilane, monomethyltriisopropoxysilane, diphenylsilanediol, phenylmethylsilanediol and diethylsilanediol. It is understood that either individual silanes or mixtures of one or more silanes may be employed together with partial condensates of individual silanes or mixed silanes.
- siloxanes include 1,3 bis(4-arninobutyl) 1,l,3,3', tetramethyl disiloxane, carbethoxymethyl tetramethyl disiloxane, hexamethyldisilazane, dimethyl polysiloxane, gamma aminopropyltriethoxy silane, vinyltrichlorosilane and hexamethyldisilazane.
- the preferred hydantoin compounds are monomeric reactive hydantoin compounds represented by the formula:
- A is H, OH, ROH, COOH, -NH or (OR) OH wherein R is (CH and y is 1 5, x is an integer in the range of 1 to and B is H or a C C alkyl group.
- Typical hydantoin monomers are diphenyl hydantoin, dimethyl hydantoin, diethyl hydantoin, mono methylol dimethyl hydantoin, (dimethyl hydantoin methyl) amine, methylene bis dimethyl hydantoin, and dihydroxydiethyl 5,5 dimethyl hydantoin.
- the reactive hydantoin compound can be prepared, in an alternative embodiment, by reacting HCN and a diisocyanate, reacting N-phenyl glycine esters with phenylisocyanate or by reacting a glycine with a polyisocyanate, a polyisothiocyanate or a polyamine.
- the hydantoin comprises about 5% to about 50% by weight of the composition and afl'ects a partial substitution for THEIC without adversely affecting the properties of the resin.
- the THEIC comprises about 5% to about 50% by weight of the composition.
- Preferred glycine derivatives for this process are compounds of the general formula:
- Ar represents an aromatic radical
- Z represents hydrogen or COR
- R represents hydrogen or alkyl
- R represents the hydroxyl group or an amino group
- x is an integer between 2 and 4.
- R represents a dialkylamino group, an alkoxy group or an aroxy group.
- the glycine derivatives used according to the invention should contain the radical tri at least twice in the molecule.
- the aromatic radical Ar is preferably a radical derived from benzene, azobenzene, naphthalene, anthracene, diphenyl, triphenylmethane, a diphenylalkane, a diphenylalkene, diphenylether, diphenylthioether or a polyphenylether.
- These radicals may also be substituted once or several times, for example, by alkyl- (methyl-) halogen (chloro-), nitro-, alkoxy- (methoxy-), dialkylamino- (dimethylamino-), acyl- (acetyl-), carbalkoxy- (carbomethoxy or -ethoxy) and cyano groups.
- Benzene-, naphtha1ene-, diphenylmethaneand diphenylether derivatives which may be substitued once or twice by methyl groups and/ or chlorine atoms are preferred.
- the preparation of the glycine derivatives used as starting materials according to the invention is known and may, for example, be carried out by direct reaction of aromatic polyamines with haloacetic acids or derivatives thereof or by condensation with hydrocyanic acid and aldehydes or ketones, followed by conversion of the nitrile group into, for example, carboxylic acid, ester or amide.
- reaction of aromatic polyamines with haloacetic acid or its derivatives is carried out in an organic solvent, e.g. in ethanol, methanol, acetone, benzene or in an aqueous medium with the use of acid bindin agents such as tertiary amines (e.g. pyridine, triethylamine), excess starting amine, soda, potash, sodium bicarbonate, potassium bicarbonate, sodium hydroxide, potassium hydroxide, calcium oxide or calcium carbonate.
- organic solvent e.g. in ethanol, methanol, acetone, benzene or in an aqueous medium
- acid bindin agents such as tertiary amines (e.g. pyridine, triethylamine), excess starting amine, soda, potash, sodium bicarbonate, potassium bicarbonate, sodium hydroxide, potassium hydroxide, calcium oxide or calcium carbonate.
- Suitable haloacetic acids or derivatives thereof are, for example, chloroacetic acid, chloroacetamide, N,N-dialkylchloroacetamide (alkyl being preferably methyl, ethyl, butyl), chloroacetic acid esters (e.g. methyl, ethyl, phenyl esters), a-chloropropionic acid esters and a-chloropropicnic acid.
- Another method consists in condensing aryl polyamines with cyanides (e.g. NaCN, KCN) and x0 compounds (e.g. formaldehyde, acetone, acetophenone) with addition of acids; the nitriles obtained can then be saponified in known manner to form carboxylic acids or converted directly into esters by means of alcoholic hydrochloric acid.
- Other processes consist in modifying glycine derivatives already prepared, e.g. by esterification of the free acids or aminolysis of the esters.
- Suitable aromatic polyamines for use in the invention are compounds having at least two amino groups bound to aromatic nuclei although these must not be arranged in the oor peri-position. Furthermore, the amines may be substituted in any way desired. Examples of such aromatie polyamines are the following:
- High molecular weight compounds containing several aromatically bound amino groups e.g. aniline formaldehyde resins, may also be used.
- Suitable polyisocyanates and polyisothiocyanates to be heated with the glycine derivatives are, for example, aliphatic, cyclophatic or aromatic compounds having at least two NCO- or NCS groups in the molecule.
- the polyisocyanates may also be used in the form of their derivatives, e.g. the reaction products with phenols,
- alcohols e.g., phenol, cresols, xylenol, ethanol, methanol, propanol, isopropanol, ammonia, methylamine, ethanolamine, dimethylamine, aniline and diphenylamine.
- Relatively high molecular weight addition products e.g. of polyisocyanates with poly-alcohols such as ethylene glycol propylene glycol, trimethylolalkanes or glycerol may also be used.
- the process is generally carried out by heating the two starting components for some time in an organic solvent, the polymer produced remaining in solution.
- the polymer can be isolated by distilling olf the solvent.
- the quantities of starting compounds may be so chosen that 0.5 to 10 mols of isocyanate or isothiocyanate groups are available per mol of NH group, and it is preferable to use 1 to 3 mols of isocyanate or isothiocyanate.
- Suitable solvents for the process are compounds which are inert to NCO groups, e.g. aromatic hydrocarbons, chlorinated aromatic hydrocarbons, aliphatic hydrocarbons, esters and kctones.
- N-alkylpyrrolidones dimethylsulphoxide, phenol, cresol and dimethylformamide.
- iso (thio) cyanate derivatives are used, other solvents, such as alcohols or phenols, may also be used.
- solvents such as alcohols or phenols, may also be used.
- reaction times vary between 30 minutes and several days and may in special cases lie above or below these limits.
- the reaction temperatures are chosen to be between 0 and 500 C., depending on the starting material.
- condensation reactions may be accelerated by the use of catalysts, e.g. metal alcoholates or tertiary amines.
- catalysts e.g. metal alcoholates or tertiary amines.
- the preferred hydantoin polymers used in this invention contain the recurring unit wherein Ar corresponds to the definition already given, R represents hydrogen and alkyl having 1 to 6 carbon atoms and y is Ar and additionally alkyl having 4 to 10 carbon atoms (one or more of which may be replaced wherein Ar stands for an aromatic radical, R is hydrogen or alkyl, R is H, an amino group, an alkylamino group, a dialkylamino group, an alkoxy group or an aroxy group, R represents a dialkylamino group, an alkoxy group or an aroxy group and x is an integer between 2 and 4.
- the glycine derivatives to be used according to the invention should contain the radical at least twice in the molecule.
- the aromatic radicals Ar are preferably the radicals derived from benzene, azobenzene, naphthalene, anthracene, triphenylmethane, diphenylmethane or diphenylether. These radicals may carry one or several substituents for example alkyl- (methyl-), halogen- (chloro-), nitro-, alkoxy- (meth'oxy-), dialkylamino- (dimethylamino-), acyl- (acetyl-), carbalkoxy (carbomethoxyor carboethoxy-) and cyano groups.
- benzene, naphthalene, diphenylmethane or diphenylether derivatives which may be substituted, once or twice, by methyl and/or chloro functions.
- the glycine derivatives to be used according to the invention as starting materials prepared according to known methods.
- the reaction with the halogen acetic acid or derivatives thereof as well as the chlorocarbonic acid derivatives proceeds in the sense of a Schotten-Baumann reaction, for example in an organic solvent such as ethanol, methanol, acetone or benzene, or in an aqueous medium with the simultaneous use of an acid acceptor, for example a tertiary amine (pyridine, triethylamine), excess starting amine, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide or calcium carbonate.
- an acid acceptor for example a tertiary amine (pyridine, triethylamine), excess starting amine, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide or calcium carbonate.
- chlorocarbonic acid alkylesters or chlorocarbonic acid arylesters for example chlorocarbonic acid methyl-, -ethyl-, -propyl-, -phenylor tolylester, is carried out under substantially equal conditions. It is possible to successively combine several processing steps in one reaction step, for example, condensation reactions with chloroacetic acid derivatives and chlorocarbonic acid derivatives.
- Another method for the prep aration of the glycine derivatives to be used according to the invention comprises condensing the corresponding carbamic acid esters having a free NH-- group with a chloroacetic acid derivative, in general via the salt of are reacted at elevated temperature with a primary polyamine, i.e., a compound having at least two primary amino groups, yielding the polyhydantoins.
- a primary polyamine i.e., a compound having at least two primary amino groups
- these polyamines there are mentioned a,w-diaminoalkanes having two to eighteen carbon atoms in the molecule, such as ethylene diamine, propylene diamine-1,2, and -1,3, 1,4-diamino-butane, hexamethylene diamine, and octamethylene diamine, besides their alkyl substitution products and polymers, such as trimethyl-hexamethylene diamine, diethylene triamine, triethylene tetramine or dipropylene triamine, aminomethyl group-containing aromatics such as 1,3- or l,4-xylylene diamine as well as the aromatic polyamines mentioned with reference to the preparation of the glycine derivatives.
- the process of the invention is generally conducted by heating the two components, preferably, in stoichiometric quantities to elevated temperature in order to effect the aminolysis represented by the above equation.
- This reaction is preferably carried out, at least towards the end of the reaction, in the presence of an aromatic solvent.
- Suitable solvents for this purpose are inert organic solvents such as aliphatics, aromatics, halogen hydrocarbons, in particular N-alkylpyrrolidones, dimethylformamide, dimethylacetamide, dimethylsulfoxide, phenol and cresols.
- the condensation of the components is in general effected within the range between and 350 C., preferably between and 200 C., by preparing, first in the absence of a solvent, pre-condensation product the molecular weight of which is increased as the reaction progresses at elevated temperature.
- the condensation reaction can be activated by the use of an acidic, an alkaline or a metal catalyst (sodium carbonate, sodium hydroxide solution, endoethylene piperazine, triethylamine, phosphoric acid, p-toluene sulfonic acid, sodium phenolate, lead oxide or titanium tetrabutylate).
- the condensation degree of the resulting polymers containing sevceral hydantoin groups in the molecule is determined by the choice of the quantitative ratio of the glycine derivative and the amino compound as well as by the reaction conditions. Polymers of high molecular weight i.e. about above several thousand can immediately be taken up in a solvent at the end of the condensation or after desired condensation degree has been achieved.
- polycondensates containing hydantoin or thiohydantoin rings which are linked through their nitrogen atoms by bivalent organic groups, such as alkylene groups containing 4 to 10 carbon atoms, phenylene groups, toluylene groups, diphenylene groups and diphenylether groups.
- Suitable polyhydric alcohols include both glycols and polyols.
- the glycol employed can vary widely. In general, they are the glycols conventionally employed in preparing polyesters. Suitable examples include alkylene glycols of the formula H(OA) OH where n is, for example, l-10 or higher and A is alkylene, such as ethylene, propylene, butylene, etc., for example, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, triethylene glycol, butylene glycol, tetrameth- 9 ylene glycol, neopentyl glycol, Z-methyl-1,3-pentanediol, 1,5-pentanediol, hexamethylene glycol, xylylene glycol, etc.
- the preferred glycol is ethylene 1 col.
- g Ihe polyols used in the preparation of the polyesters of this invention can be widely varied and are those containing at least three esterifiable hydroxy groups.
- these are the polyhydric alcohol conventionally employed in preparing polyesters.
- Illustrative examples of such alcohols are glycerol, polyglycerol, pentaerythritol, mannitol, trimethylolpropane, trimethylolethane, 1,2,6- hexanetriol, polypentaerythritol, polyallyl alcohol, polymethallyl alcohol, polyols formed by the condensation of bisphenols with epichlorohydrin, and the like.
- Preferred polyhydric alcohols to be used in the preparation of these polyesters are the aliphatic alcohols possessing from 3 to 6 hydroxyl groups and containing from 3 to 14 carbon atoms, such as glycerol, pentaerythritol, mannitol, 1,4,6-octanetriol, 1,3,5-hexanetriol and 1,5,10- dodecanetriol.
- a variety of monocyclic aromatic polycarboxylic acids may be used in the copolymer of the present invention.
- anhydrides, chlorides and esters of these acids are suitable.
- the acid, anhydride or ester is preferably utilized in I the amount of about 5% to about 50% by weight of the final copolymer.
- Illustrative aromatic acids include phthalic acid, isophthalic acid, terephthalic acid, diphenic acid, hemimellitic acid, trimellitic acid, dchlorophthalic acid, etc.
- Particularly preferred polycarboxylic acids are the aromatic dicarboxylic acids, containing from 6 to 10 carbon atoms wherein the two carboxyl groups are attached directly to the aromatic nucleus such as the phthalic acids, and preferably isophthalic acid, terephthalic acid mixtures of isophthalic acid and terephthalic acid and anhydrides, chlorides, and esters thereof.
- acids such as the acid anhydrides or acid chlorides, such as phthalic anhydride or trimellitic anhydride.
- the esters of the polybasic acids may be produced by an ester-exchange reaction.
- Preferred derivatives to be used for this purpose comprise the esters of the abovedescribed acids and the lower saturated monohydric alcohols, preferably those alcohols containing from 1 to 5 carbon atoms, such as methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol and amyl alcohol.
- trimellitic anhydride examples include trimellitic anhydride; pyromellitic acid dianhydride; 3,3',4,4'-benzophenone tetracarboxylic dianhydride; dimethylterephthalate; dimethylisophthalate, terephthaloyl chloride; isophthaloyl chloride, and 1,1,3-trimethyl-5-carboxy-3-(pcarboxyphenyl) indan.
- polycarboxylic aliphatic acids such as adipic acid, maleic acid, glutaric acid, succinic acid, etc. may be used.
- metal dried in an amount of 0.2 to 1.0% metal based on total solids is used.
- Typical metal driers include the zinc, lead, calcium or cadmium lineoleates, octoates and resinates of each of the metals.
- zinc resinate, cadmium resinate, lead linoleate, calcium linoleate, zinc naphthenate, lead naphthenate, calcium naphthenate, cadmium naphthenate, zinc octoate and cadmium octoate may be used.
- Polyvalent metal driers such as manganese and cobalt naphthenate can also be employed.
- a tetraalkyl titanate can be used in small amounts, i.e. 0.001 to 4.0% by weight titanium metal of the total solids, in place of the metal dried.
- Typical titanates are tetraisopropyl titanate, tetrabutyl titanate,
- the resin When used as a wire enamel, the resin is to be diluted with a suitable solvent such as cresylic acid.
- a suitable solvent such as cresylic acid.
- the individual cresols present in the acid can also be used but itis preferred to use a commercial available cresylic acid mixture. It is also frequently desirable to dilute the cresylic acid with an aromatic hydrocarbon such as coal tar, petroleum naphtha, xylene, etc.
- the present invention is further described by the following examples wherein there is illustrated wire coatings having a coeflicient of friction of less than 0.20 and good heat aging properties which are less expensive than the traditional THEIC based resins.
- the temperature was raised rapidly to C., whereupon 3.3 parts of litharge were added with 100 parts of xylene. The temperature was held at C. for 2-6 hours. Nitrogen was used as a purge to remove xylene and other small fractions. The temperature was then allowed to rise to 220-240 C. and when the viscosity reached a clear hard pill stage the mass was quenched with cresylic acid.
- the above polymer was diluted using a solvent ratio of 60 parts cresylic acid and 40 parts of aromatic hydrocarbon solvent.
- the enamel was placed on 18 gauge copper magnet wire.
- the coated wire had good Class 180 C. NEMA properties and a coefficient of friction of .147.
- the resulting polymer was applied to wire as a base coat and topcoated with an amide-irnide resin.
- the resultant wire passed all tests for NEMA Class 180 C.
- Example 4 The temperature of the reaction was allowed to rise to 220 C. over a period of 9 to 18 hours.
- the polymer was then diluted using a solvent ratio of 70 parts cresylic acid and 30 parts of aromatic hydrocarbon solvent to form a wire enamel.
- the enamel was then cured on AWG 18 copper wire.
- the properties of the enamel are tabulated in Table I.
- an improvement in heat shock (450 C.), dielectric strength (500 volts/mil) and burnout resistance (50 seconds) were observed when compared to Example 4. Accordingly, a comparison of Examples 3 and 5 with Example 4 clearly shows the beneficial properties produced by a reactive hydantoin in a THEIC based resin.
- a resin composition having hydantoin and organosilicon radicals in the resin backbone which comprises the reaction product of:
- reaction elfected at a temperature of about C. to about 250 C.
- a resin composition according to claim 2 wherein said alcohol is ethylene glycol.
- a resin composition according to claim 1 wherein said carboxylic acid is terephthalic acid, isophthalic acid, a mixture of terephthalic acid and isophthalic acid, or an anhydride, ester or chloride of said acid.
- a resin composition according to claim 1 wherein said hydantoin is 1,3dihydroxyethyl-S,5'-dimethyl hydantoin.
- a resin composition according to claim 1 wherein said silicon material is diphenyl silane diol.
- a resin composition according to claim 1 wherein said reaction product comprises 5-50% by weight of said hydantoin 550% by weight of terephthalic acid, isophthalic acid, a mixture of terephthalic acid or isophthalic acid, or an anhydride ester or chloride of said acid, 5- 50% by weight tris (2-hydroxyethyl) isocyanurate, and 0.0110% by weight diphenyl silane diol.
- a resin composition according to claim 7 wherein said hydantoin is 1,3 dihydroxyethyl-5,5-dimethyl hydantoin.
- An electrical conductor having a coating of the composition of claim 1.
- An electrical conductor having a coating of the composition of claim 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Paints Or Removers (AREA)
Abstract
RESIN COMPOSITION COMPRISING THE REACTION PRODUCT OF A REACTIVE HYDANTOIN BASED COMPOUND, A POLYCARBOXYLIC ACID, AND TRIS (2-HYDROXYETHYL) ISOCYANURATE. THE RESIN PROVIDES A LOW COST, CURED ENAMEL FOR ELECTRICAL CONDUCTORS CHARACTERIZED BY HIGH THERMAL STABILITY AND A LOW COEFFICIENT OF FRACTION WHEN IT CONTAINS LINEAR, REACTIVE ORGANO SILICON MATERIAL.
Description
United States Patent O US. Cl. 260-465 E 13 Claims ABSTRACT OF THE DISCLOSURE Resin composition comprising the reaction product of a reactive hydantoin based compound, a polycarboxylic acid, and tris (2-hydroxyethyl) isocyanurate. The resin provides a low cost, cured enamel for electrical conductors characterized by high thermal stability and a low coefficient of friction when it contains linear, reactive organo silicon material.
CROSS REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of my co-pending application, Ser. No. 58,173, filed July 24, 1970, issued as US. Pat. 3,681,282 the teachings of which are incorporated by reference herein.
BACKGROUND OF THE INVENTION This invention relates to novel polymeric materials containing hydantoin radicals and silicon radicals in the polymeric backbone.
There has been a continuing demand for improved magnet wire enamel coating which possesses good electrical insulating properties, resistance to heat and solvent attacks, and other desirable properties. U.S. Pats. 3,211,585 and 3,342,780 disclose examples of such an enamel for magnet conductors when these properties are obtained by utilizing the reaction product of a polycarboxylic acid and tris (Z-hydroxyethyl) isocyanurate (THEIC).
Magnet wires having such insulating enamel coatings are used in winding electrical coils for use in relays, solenoids and the like. Such magnet wires are coated by passing the wire through a solution of the polymer, and the resultant coating is dried and/or hardened by passing through a drying oven. The dried and coated wire is then wound at high speeds into coils. During the high speed winding process, it has been customary heretofore to apply a lubricating oil to the coated wire in order to reduce friction and, after the coil has been wound, varnish the entire assembly by dipping in varnish. However, the varnish will not adhere well to the wire which has been previously oiled, and it has been necessary to degrease the wound bobbins before varnishing.
Aside from the necessary steps of applying oil to the wire and then degreasing the wound bobbins, the use of oil in winding the wire into bobbins has other disadvantages. Dust and dirt tend to collect on winding equipment and wires coated with oil. Further, the oil is a fire hazard since it may be heated by friction developed during winding or from the machinery and ignite.
There is, therefore, a demand for enamel coated magnet wire which has a low coefficient of friction so that the use of lubricating oil in the winding process is rendered unnecessary. However, such a low friction enamel wire must also possess good electrical insulating properties, resistance to the relatively high temperature encountered by electrical equipment, and other properties demanded of the nonself-lubricating enamel. One such magnet wire coating is disclosed in my application, Ser. No. 854,285, filed Aug. 29, 1969, for Sil-Alkyd Coatings for Wire, now Pat. No. 3,583,885.
3,779,991 Patented Dec. 18, 1973 "ice Further, the THEIC based resins used for high temperature applications have a high cost and are often prohibitively expensive. Thus, less expensive substitutes and partial substitutes for THEIC are desirable.
Accordingly, it is an object of the present invention to provide a novel enamel coating for magnet Wires less expensive than the THEIC based resins but having equivalent, if not better, properties in comparison to THEIC resins.
It is a further object of this invention to provide a resin characterized by a low coefficient of friction. These low friction coatings do not require the use of oil in their winding, and are compatible with varnish in which wound coils 'are dipped to improve the insulation thereof. They also possess excellent electrical properties and exceptionally good resistance to heat aging.
Further objects of the invention will become apparent to those skilled in the art from a reading of the following description.
SUMMARY OF THE INVENTION In accordance with the present invention, there is provided a new magnet wire coating which comprises a polymer containing both hydantoin rings and silicon groups in the backbone. Silicon groups can be eliminated from the polymer where a low coefficient of friction is not needed.
The preferred novel polymers of the present invention have hydantoin and organo-silicon radicals in the resin backbone and are the reaction product of hydantoin based compound having reactive OH, H, -COOH, alkoxy, and NH groups and equivalents thereof; a carboxylic acid having at least two carboxy groups or an anhydride, ester, chloride of said acid: THEIC, and, when dry lubricity is desired, a linear reactive organo silicon material having reactive OH, H, COOH, alkoxy, amino, aryloxy or vinyl groups. A preferred silicon material is a silane diol such as diphenyl silane diol. In a more limited embodiment, up to 50 equivalent percent of the THEIC is replaced by another polyhydric alcohol such as ethylene glycol.
Thus, the novel polymers of the invention may be prepared by reacting THEIC, the carboxylic acid, and the reactive-hydantoin based compound. When dry lubricity is desired, the reaction includes the reactive silicon-containing material. These reactions are affected by means known to the art. Preferred are reaction temperatures of about C. to about 250 C. and reaction time of about 4 hours to 24 hours.
DESCRIPTION OF THE PREFERRED EMBODIMENTS As indicated, the novel polymers of the present invention are obtained by reacting a hydantoin-containing compound, a carboxylic acid and THEIC and, when dry lubricity is required, a reactive silicon-containing compound. As the reactive silicon-containing material, a silane or a siloxane may be used preferably in an amount of about 0.01 to about 10% by weight of the total composition. As is known in the art, a monomeric silane, such as dichlorodimethyl silane, will react with moisture to form polymeric siloxanes with repeating units therein. The silanes and siloxanes suitable for the purposes of the present invention are disclosed in my Pat. No. 3,583,885, filed Aug. 29, 1969, for Sil-Alkyd Coatings for Wire, the disclosure of which is hereby incorporated by reference. It will be appreciated that the silanes and siloxanes which are suitable for use in the present invention are.
generally those having hydrogen, alkyl or aryl radicals attached to the silicon atom and that, if the siloxane is a polymeric material, it is a linear chain (two dimensional) rather than one in three dimensional configuration. Resinous polysiloxanes, having three dimensional structural formulas, are not satisfactory for the purpose of the invention because they do not possess the proper lubricity.
Chlorosilanes, alkylated siloxanes, oxygenated siloxanes, hydroxy siloxanes and amine siloxanes and the like having reactive radicals, react directly with the hydantoin to form hydantoins with pendant groups along the hydantoin chain. I prefer to use organo-siloxanes having two or three reactive --OH, --H, -COOH, vinyl or alkoxy groups. For example, the -OH, alkoxy and H react with an acid component, while the -COOH groups react with a polyol component of the polyester.
The preferred siloxanes have the following formula l. Ll. ll.
wherein R is CH or phenyl, R is CH phenyl, OH, H, amino carboxy, alkyl, or methyl alkyl, and n=2 to 20 or more; or a siloxane of the general formula RmSiXnO (m R is an alkyl radical of less than 5 carbon atoms or a phenyl radical, X is an alkoxy, arylcxy or H radical, m has an average value from 1 to 2, n has an average value of from .01 to 3, and the sum of (m+n) is not greater than 4. The above organosilicon compounds include both monomeric alkoxy-silanes and silanols of the formula R SiX and partial condensates thereof.
These partial condensates are polymeric siloxanes having hydrocarbon groups, alkoxy groups and/or OH radicals attached to the silicon. The number of functional (i.e. X) groups per silicon may vary from 1 functional group per 100 silicons to 3 functional groups per silicon. Both the above silanes and the partial condensates are known materials.
The hydrocarbon groups may be alkyl radicals such as methyl, ethyl, propyl, butyl, or phenyl radicals. Any alkoxy groups may be present in the silanes although it is preferred that the alkoxy radicals contain less than 5 carbon atoms, since the corresponding alcohols are more easily removed from reaction mixtures.
Specific silanes which may be employed in this invention are, for example, phenylmethyldiethoxysilane, phenyltrimethoxysilane, dimethyldiisopropoxysilane, diethyldibutoxysilane, monomethyltriisopropoxysilane, diphenylsilanediol, phenylmethylsilanediol and diethylsilanediol. It is understood that either individual silanes or mixtures of one or more silanes may be employed together with partial condensates of individual silanes or mixed silanes.
Other suitable siloxanes include 1,3 bis(4-arninobutyl) 1,l,3,3', tetramethyl disiloxane, carbethoxymethyl tetramethyl disiloxane, hexamethyldisilazane, dimethyl polysiloxane, gamma aminopropyltriethoxy silane, vinyltrichlorosilane and hexamethyldisilazane.
The preferred hydantoin compounds are monomeric reactive hydantoin compounds represented by the formula:
wherein A is H, OH, ROH, COOH, -NH or (OR) OH wherein R is (CH and y is 1 5, x is an integer in the range of 1 to and B is H or a C C alkyl group.
Typical hydantoin monomers are diphenyl hydantoin, dimethyl hydantoin, diethyl hydantoin, mono methylol dimethyl hydantoin, (dimethyl hydantoin methyl) amine, methylene bis dimethyl hydantoin, and dihydroxydiethyl 5,5 dimethyl hydantoin. The reactive hydantoin compound can be prepared, in an alternative embodiment, by reacting HCN and a diisocyanate, reacting N-phenyl glycine esters with phenylisocyanate or by reacting a glycine with a polyisocyanate, a polyisothiocyanate or a polyamine.
While monomers are preferred, it is within the scope of this invention to utilize dimers and trimers of these monomers. Preferably the hydantoin comprises about 5% to about 50% by weight of the composition and afl'ects a partial substitution for THEIC without adversely affecting the properties of the resin. Preferably, the THEIC comprises about 5% to about 50% by weight of the composition.
The last method indicated for making a reactive hydantoin-containing component herein and the glycine derivatives which are suitable are disclosedin the Merten et al. US. 3,397,253. It may be stated generally such glycine derivatives are prepared by the reaction of an aromatic polyamine with a haloacetic acid. Representative examples of such glycine derivatives are: N,N'-bis-carbethoxymethyl-4-4' diamino diphenyl methane; N,N-biscarbethoxymethyl-4-4' diamino diphenyl ether.
Preferred glycine derivatives for this process are compounds of the general formula:
wherein Ar represents an aromatic radical, Z represents hydrogen or COR R represents hydrogen or alkyl, R represents the hydroxyl group or an amino group, an alkylamino-, dialkylamino-, alkoxy-, or aroxy group and x is an integer between 2 and 4. R represents a dialkylamino group, an alkoxy group or an aroxy group. The glycine derivatives used according to the invention should contain the radical tri at least twice in the molecule.
The aromatic radical Ar is preferably a radical derived from benzene, azobenzene, naphthalene, anthracene, diphenyl, triphenylmethane, a diphenylalkane, a diphenylalkene, diphenylether, diphenylthioether or a polyphenylether. These radicals may also be substituted once or several times, for example, by alkyl- (methyl-) halogen (chloro-), nitro-, alkoxy- (methoxy-), dialkylamino- (dimethylamino-), acyl- (acetyl-), carbalkoxy- (carbomethoxy or -ethoxy) and cyano groups. Benzene-, naphtha1ene-, diphenylmethaneand diphenylether derivatives which may be substitued once or twice by methyl groups and/ or chlorine atoms are preferred.
The preparation of the glycine derivatives used as starting materials according to the invention is known and may, for example, be carried out by direct reaction of aromatic polyamines with haloacetic acids or derivatives thereof or by condensation with hydrocyanic acid and aldehydes or ketones, followed by conversion of the nitrile group into, for example, carboxylic acid, ester or amide.
The reaction of aromatic polyamines with haloacetic acid or its derivatives is carried out in an organic solvent, e.g. in ethanol, methanol, acetone, benzene or in an aqueous medium with the use of acid bindin agents such as tertiary amines (e.g. pyridine, triethylamine), excess starting amine, soda, potash, sodium bicarbonate, potassium bicarbonate, sodium hydroxide, potassium hydroxide, calcium oxide or calcium carbonate.
Suitable haloacetic acids or derivatives thereof are, for example, chloroacetic acid, chloroacetamide, N,N-dialkylchloroacetamide (alkyl being preferably methyl, ethyl, butyl), chloroacetic acid esters (e.g. methyl, ethyl, phenyl esters), a-chloropropionic acid esters and a-chloropropicnic acid.
Another method consists in condensing aryl polyamines with cyanides (e.g. NaCN, KCN) and x0 compounds (e.g. formaldehyde, acetone, acetophenone) with addition of acids; the nitriles obtained can then be saponified in known manner to form carboxylic acids or converted directly into esters by means of alcoholic hydrochloric acid. Other processes consist in modifying glycine derivatives already prepared, e.g. by esterification of the free acids or aminolysis of the esters.
Suitable aromatic polyamines for use in the invention are compounds having at least two amino groups bound to aromatic nuclei although these must not be arranged in the oor peri-position. Furthermore, the amines may be substituted in any way desired. Examples of such aromatie polyamines are the following:
mand p-phenylene diamine, 2,4-, 2,5- and 2,6-toluylene diamine, diisopropylbenzene diamines, 1,3,5-triaminobenzene, 2,4,6-triaminotoluene, 4,4-diaminoazobenzene, 2,4,6-triaminoethylbenzene, 1,3,S-triisopropylbenzene-diamines, 2-chloro-l,4-phcnylene diamine, 2,5-dichloro-1,4-phenylene diamine, 2,6-dichloro-1,4-phenylene diamine, 2,6-diaminoand 4,6-diamino-5-methyl-1,3-diethylbenzene, 1,3-, 1,4-, 1,5-, 1,6-, 1,7-, 2,4-, 2,5-, 2,7- and 2,8-diaminonaphthalene, 14-diaminoanthraquinone 1,S-diaminoanthraquinone, 4,4'- and 2,4-diamino-diphenyl ether, 4,4'- and 2,4'-diamino-diphenylthioether, 4,4-diamino-diphenyldisulfide, 4,4-diamino-diphenyl, 4,4'-diamino-3,3'- or -2,2'-dichlorophenyl, 4,4'-diamino3,3'-dialkoxy-diphenyl, 4,4'-diamino-3,3'-dimethyl-diphenyl, 4,4-diamino-diphenylmethane, 2,2-bis-p-aminophenyl-propane, 1,2-bis-p-aminophenyl-ethane, 4,4-diamino-stilbene, 4,4-diamino-azobenzene, 4,4-diamino-diphenylsulfon, 4,4',4"-triamino-triphenylmethane, diamino-carbazole, 2,2"-dichloro-4,4"-diaminotriphenylether, and 2,4-diamino-6-phenyl- 1,3,5 )-triazine.
High molecular weight compounds containing several aromatically bound amino groups e.g. aniline formaldehyde resins, may also be used.
Suitable polyisocyanates and polyisothiocyanates to be heated with the glycine derivatives are, for example, aliphatic, cyclophatic or aromatic compounds having at least two NCO- or NCS groups in the molecule. The following are examples of such polyisocyanates: Polymethylene diisocyanates of the formula wherein n1s a number from 4 to 8, benzene diisocyanates which may be substituted with alkyl groups, for example mand p-phenylene diisocyanates, toluylene-2,4- and -2,6- diisocyanate, ethylbenzene-diisocyanates, diand tri-isopropyl benzene diisocyanates, chloro-p-phenylene diisocyanates, diphenylmethane diisocyanates, naphthalene diisocyanates, ester isocyanates such as triisocyanato-arylphosphoric ester and -thioester, glycol-di-p-isocyanatophenyl ester, 4,4 diisocyanato-diphenylether, 1,2-bis-pisocyanato-phenylethane and 4,4 diisocyanato-stilbene. Partially polymerised isocyanates having isocyanurate rings and free NCO groups may also be used.
The polyisocyanates may also be used in the form of their derivatives, e.g. the reaction products with phenols,
alcohols, amines, ammonia, bisulphite, HCl etc. Individual examples of these are phenol, cresols, xylenol, ethanol, methanol, propanol, isopropanol, ammonia, methylamine, ethanolamine, dimethylamine, aniline and diphenylamine. Relatively high molecular weight addition products, e.g. of polyisocyanates with poly-alcohols such as ethylene glycol propylene glycol, trimethylolalkanes or glycerol may also be used.
Instead of the polyisocyanates mentioned, the corresponding thio compounds may be used as Well.
The process is generally carried out by heating the two starting components for some time in an organic solvent, the polymer produced remaining in solution. The polymer can be isolated by distilling olf the solvent. The quantities of starting compounds may be so chosen that 0.5 to 10 mols of isocyanate or isothiocyanate groups are available per mol of NH group, and it is preferable to use 1 to 3 mols of isocyanate or isothiocyanate. Suitable solvents for the process are compounds which are inert to NCO groups, e.g. aromatic hydrocarbons, chlorinated aromatic hydrocarbons, aliphatic hydrocarbons, esters and kctones.
Especially suitable are N-alkylpyrrolidones, dimethylsulphoxide, phenol, cresol and dimethylformamide. Where iso (thio) cyanate derivatives are used, other solvents, such as alcohols or phenols, may also be used. On the other hand, it is also possible to react the components together directly without the use of solvent.
The reaction times vary between 30 minutes and several days and may in special cases lie above or below these limits. The reaction temperatures are chosen to be between 0 and 500 C., depending on the starting material.
It is preferred to work at 20 to 350 C., the best results being obtained in the region of 20 to 230 C.
The condensation reactions may be accelerated by the use of catalysts, e.g. metal alcoholates or tertiary amines.
In the polymerisation according to the invention there takes place, in addition to the condensation of the two reactants, a ring closure reaction to form the hydantoin ring, as can be represented by the following reaction equation:
The preferred hydantoin polymers used in this invention contain the recurring unit wherein Ar corresponds to the definition already given, R represents hydrogen and alkyl having 1 to 6 carbon atoms and y is Ar and additionally alkyl having 4 to 10 carbon atoms (one or more of which may be replaced wherein Ar stands for an aromatic radical, R is hydrogen or alkyl, R is H, an amino group, an alkylamino group, a dialkylamino group, an alkoxy group or an aroxy group, R represents a dialkylamino group, an alkoxy group or an aroxy group and x is an integer between 2 and 4.
Thus, the glycine derivatives to be used according to the invention should contain the radical at least twice in the molecule.
The aromatic radicals Ar are preferably the radicals derived from benzene, azobenzene, naphthalene, anthracene, triphenylmethane, diphenylmethane or diphenylether. These radicals may carry one or several substituents for example alkyl- (methyl-), halogen- (chloro-), nitro-, alkoxy- (meth'oxy-), dialkylamino- (dimethylamino-), acyl- (acetyl-), carbalkoxy (carbomethoxyor carboethoxy-) and cyano groups. It is advantageous to use the benzene, naphthalene, diphenylmethane or diphenylether derivatives which may be substituted, once or twice, by methyl and/or chloro functions. The glycine derivatives to be used according to the invention as starting materials prepared according to known methods. By the direct reaction of the corresponding aromatic polyamines with hydrocyanic acid and aldehydes or ketones and subsequent conversion of the nitrile group into the desired carboxyl .function, for example carboxylic acid ester or amide or by condensation of the aromatic polyamines with haloacetic acid or derivatives thereof, there are obtained glycine derivatives having a free NH- function which can subsequently be converted into the desired starting materials by means of chlorocarbonic acid alkylester or chlorocarbonic acid arylester. The reaction with the halogen acetic acid or derivatives thereof as well as the chlorocarbonic acid derivatives proceeds in the sense of a Schotten-Baumann reaction, for example in an organic solvent such as ethanol, methanol, acetone or benzene, or in an aqueous medium with the simultaneous use of an acid acceptor, for example a tertiary amine (pyridine, triethylamine), excess starting amine, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide or calcium carbonate.
This procedure is essentially the same as already described.
The following condensation with chlorocarbonic acid alkylesters or chlorocarbonic acid arylesters, for example chlorocarbonic acid methyl-, -ethyl-, -propyl-, -phenylor tolylester, is carried out under substantially equal conditions. It is possible to successively combine several processing steps in one reaction step, for example, condensation reactions with chloroacetic acid derivatives and chlorocarbonic acid derivatives. Another method for the prep aration of the glycine derivatives to be used according to the invention comprises condensing the corresponding carbamic acid esters having a free NH-- group with a chloroacetic acid derivative, in general via the salt of are reacted at elevated temperature with a primary polyamine, i.e., a compound having at least two primary amino groups, yielding the polyhydantoins. The reaction can be represented for example by the following formula Suitable polyamines for the reaction with the above described glycine derivatives are for example aliphatic, cycloaliphatic and in particular aromatic compounds containing at least two primary amino groups in the molecule. As examples for these polyamines there are mentioned a,w-diaminoalkanes having two to eighteen carbon atoms in the molecule, such as ethylene diamine, propylene diamine-1,2, and -1,3, 1,4-diamino-butane, hexamethylene diamine, and octamethylene diamine, besides their alkyl substitution products and polymers, such as trimethyl-hexamethylene diamine, diethylene triamine, triethylene tetramine or dipropylene triamine, aminomethyl group-containing aromatics such as 1,3- or l,4-xylylene diamine as well as the aromatic polyamines mentioned with reference to the preparation of the glycine derivatives.
The process of the invention is generally conducted by heating the two components, preferably, in stoichiometric quantities to elevated temperature in order to effect the aminolysis represented by the above equation. This reaction is preferably carried out, at least towards the end of the reaction, in the presence of an aromatic solvent. Suitable solvents for this purpose are inert organic solvents such as aliphatics, aromatics, halogen hydrocarbons, in particular N-alkylpyrrolidones, dimethylformamide, dimethylacetamide, dimethylsulfoxide, phenol and cresols.
The condensation of the components is in general effected within the range between and 350 C., preferably between and 200 C., by preparing, first in the absence of a solvent, pre-condensation product the molecular weight of which is increased as the reaction progresses at elevated temperature. The condensation reaction can be activated by the use of an acidic, an alkaline or a metal catalyst (sodium carbonate, sodium hydroxide solution, endoethylene piperazine, triethylamine, phosphoric acid, p-toluene sulfonic acid, sodium phenolate, lead oxide or titanium tetrabutylate).
The condensation degree of the resulting polymers containing sevceral hydantoin groups in the molecule is determined by the choice of the quantitative ratio of the glycine derivative and the amino compound as well as by the reaction conditions. Polymers of high molecular weight i.e. about above several thousand can immediately be taken up in a solvent at the end of the condensation or after desired condensation degree has been achieved.
Particularly suitable are polycondensates containing hydantoin or thiohydantoin rings, which are linked through their nitrogen atoms by bivalent organic groups, such as alkylene groups containing 4 to 10 carbon atoms, phenylene groups, toluylene groups, diphenylene groups and diphenylether groups.
Although not essential, additional flexibility can be imparted to the final resin reaction product by the addition of a polyhydric alcohol in an amount up to 50 equivalent weight percent of the THEIC, and preferably in the amount of about 1% to about 10% by weight of the final product. Suitable polyhydric alcohols include both glycols and polyols.
The glycol employed can vary widely. In general, they are the glycols conventionally employed in preparing polyesters. Suitable examples include alkylene glycols of the formula H(OA) OH where n is, for example, l-10 or higher and A is alkylene, such as ethylene, propylene, butylene, etc., for example, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, triethylene glycol, butylene glycol, tetrameth- 9 ylene glycol, neopentyl glycol, Z-methyl-1,3-pentanediol, 1,5-pentanediol, hexamethylene glycol, xylylene glycol, etc. Preferably, one employs an alkanediol of the general formula HO(CH ),,OH where n=25 or isomers thereof wherein the alkane group is branched and/or the hydroxy groups are not terminal. The preferred glycol is ethylene 1 col.
g Ihe polyols used in the preparation of the polyesters of this invention can be widely varied and are those containing at least three esterifiable hydroxy groups. In general, these are the polyhydric alcohol conventionally employed in preparing polyesters. Illustrative examples of such alcohols are glycerol, polyglycerol, pentaerythritol, mannitol, trimethylolpropane, trimethylolethane, 1,2,6- hexanetriol, polypentaerythritol, polyallyl alcohol, polymethallyl alcohol, polyols formed by the condensation of bisphenols with epichlorohydrin, and the like.
Preferred polyhydric alcohols to be used in the preparation of these polyesters are the aliphatic alcohols possessing from 3 to 6 hydroxyl groups and containing from 3 to 14 carbon atoms, such as glycerol, pentaerythritol, mannitol, 1,4,6-octanetriol, 1,3,5-hexanetriol and 1,5,10- dodecanetriol.
A variety of monocyclic aromatic polycarboxylic acids (i.e. having at least two carboxy groups) may be used in the copolymer of the present invention. Similarly, anhydrides, chlorides and esters of these acids are suitable. Preferred are the dicarboxylic acids and anhydrides, chlorides and esters thereof having the reactive groups in either the para or meta positions.
The acid, anhydride or ester is preferably utilized in I the amount of about 5% to about 50% by weight of the final copolymer. Illustrative aromatic acids include phthalic acid, isophthalic acid, terephthalic acid, diphenic acid, hemimellitic acid, trimellitic acid, dchlorophthalic acid, etc.
Particularly preferred polycarboxylic acids are the aromatic dicarboxylic acids, containing from 6 to 10 carbon atoms wherein the two carboxyl groups are attached directly to the aromatic nucleus such as the phthalic acids, and preferably isophthalic acid, terephthalic acid mixtures of isophthalic acid and terephthalic acid and anhydrides, chlorides, and esters thereof.
In some cases it may be desirable to utilize other forms of the acids such as the acid anhydrides or acid chlorides, such as phthalic anhydride or trimellitic anhydride.
The esters of the polybasic acids may be produced by an ester-exchange reaction. Preferred derivatives to be used for this purpose comprise the esters of the abovedescribed acids and the lower saturated monohydric alcohols, preferably those alcohols containing from 1 to 5 carbon atoms, such as methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol and amyl alcohol.
Examples of other suitable materials include trimellitic anhydride; pyromellitic acid dianhydride; 3,3',4,4'-benzophenone tetracarboxylic dianhydride; dimethylterephthalate; dimethylisophthalate, terephthaloyl chloride; isophthaloyl chloride, and 1,1,3-trimethyl-5-carboxy-3-(pcarboxyphenyl) indan. In addition, polycarboxylic aliphatic acids such as adipic acid, maleic acid, glutaric acid, succinic acid, etc. may be used.
Preferably, when the resin composition is used as an enamel for wire, metal dried in an amount of 0.2 to 1.0% metal based on total solids is used. Typical metal driers include the zinc, lead, calcium or cadmium lineoleates, octoates and resinates of each of the metals. For example, zinc resinate, cadmium resinate, lead linoleate, calcium linoleate, zinc naphthenate, lead naphthenate, calcium naphthenate, cadmium naphthenate, zinc octoate and cadmium octoate may be used. Polyvalent metal driers such as manganese and cobalt naphthenate can also be employed. A tetraalkyl titanate can be used in small amounts, i.e. 0.001 to 4.0% by weight titanium metal of the total solids, in place of the metal dried. Typical titanates are tetraisopropyl titanate, tetrabutyl titanate,
tetrahexyl titanate, tetraoctyl titanate, tetramethyl titanate,
etc.
When used as a wire enamel, the resin is to be diluted with a suitable solvent such as cresylic acid. The individual cresols present in the acid can also be used but itis preferred to use a commercial available cresylic acid mixture. It is also frequently desirable to dilute the cresylic acid with an aromatic hydrocarbon such as coal tar, petroleum naphtha, xylene, etc.
The present invention is further described by the following examples wherein there is illustrated wire coatings having a coeflicient of friction of less than 0.20 and good heat aging properties which are less expensive than the traditional THEIC based resins.
EXAMPLE 1 To a reaction vessel equipped with a condenser, stirring rod, and gas inlet tube, the following materials were added in the proportions indicated:
Parts by weight Dimethyl terephthalate 250.0 Tris(2-hydroxy ethyl) isocyanate (THEIC) 250.0 Dihydroxydiethyl 5,5 dimethyl hydantoin 25.0 Diphenyl silanediol 3.3
The temperature was raised rapidly to C., whereupon 3.3 parts of litharge were added with 100 parts of xylene. The temperature was held at C. for 2-6 hours. Nitrogen was used as a purge to remove xylene and other small fractions. The temperature was then allowed to rise to 220-240 C. and when the viscosity reached a clear hard pill stage the mass was quenched with cresylic acid.
The above polymer was diluted using a solvent ratio of 60 parts cresylic acid and 40 parts of aromatic hydrocarbon solvent. The enamel was placed on 18 gauge copper magnet wire. The coated wire had good Class 180 C. NEMA properties and a coefficient of friction of .147.
EXAMPLE 2 Following the procedure set forth in Example 1, the following formula was prepared:
Parts by weight Dimethylterephthalate 350.0 Tris (Z-hydroxyethyl) isocyanurate (THEIC) 250.0 Dihydroxydiethyl-5,5-dimethyl hydantoin 108.0 Trimethylolpropane 16.0 Diphenylsilanediol 3.9 Litharge (as alcoholysis catalyst) 0.9 Xylene (as azeotrope) 100.0
The resulting polymer was applied to wire as a base coat and topcoated with an amide-irnide resin. The resultant wire passed all tests for NEMA Class 180 C.
EXAMPLE 3 Following the general procedure set forth in Example 1, the following formulation was prepared:
Parts by weight Ethylene glycol 8.26 1,3-dihydroxyethyl-5,5'-dimethylhydantoin 16.52 Terephthalic acid 32.57 Isophthalic acid 6.88
Tris (2-hydroxyethyl) isocyanurate (THEIC) 26.61
Diphenylsilanediol 0.60 Tetraoctyl titanate 0.20 Cresylic acid 8.26
sistance were also observed. A tabulation of the properties of the enamel is presented in Table I.
EXAMPLE 4 Following the general procedure set forth in Example 1, the following formula was prepared: I
Parts by weight Isophthalic acid 113 Terephthalic acid 529 Tris (Z-hydroxyethyl) isocyanurate (THEIC) 216 Glycerin 76 Ethylene glycol 237 Diphenyl silanediol l Tetraoctyl titanate 3 EXAMPLE 5 Following the general procedure set forth in Example 1, the following formula was prepared: v Parts by weight Isophthalic acid 113 Terephthalic acid 529 Trishydroxyethylisocyanurate 216 Glycerine 76 Ethylene glycol 159 1,3dihydroxyethyl-S,5'-dimethyl hydantoin 270 Diphenyl silanediol 9.9
Tetraoctyl titanate 1.5
The temperature of the reaction was allowed to rise to 220 C. over a period of 9 to 18 hours. The polymer was then diluted using a solvent ratio of 70 parts cresylic acid and 30 parts of aromatic hydrocarbon solvent to form a wire enamel. The enamel was then cured on AWG 18 copper wire. The properties of the enamel are tabulated in Table I. In comparison to the enamel of Example 4, an improvement in heat shock (450 C.), dielectric strength (500 volts/mil) and burnout resistance (50 seconds) were observed when compared to Example 4. Accordingly, a comparison of Examples 3 and 5 with Example 4 clearly shows the beneficial properties produced by a reactive hydantoin in a THEIC based resin. Similar results are obtained with other hydantoin based compounds having, for example, reactive-H, COOH, alkoxy, --NH groups and the like. With the exception of a higher coeflicient of friction, similar resins are produced by the elimination of the silicon compound.
EXAMPLE 6 Following the general procedure of Example 1 part of the terephthalic acid was replaced with a hydantoin acid as follows:
Parts by weight The reaction was allowed to proceed in a manner similar to previous enamels. The resultant enamel showed improvements in unilateral and emersion scrape abrasion and heat shock properties. The properties of the enamel are tabulated in Table I.
TABLE I Example 3 4 5 6 S118 1115 X; 1X 1X 1X 1X Unila tzeral abrasion" 1, 870 2, 000 1, 800 2, 000 Dielectric (volts/mil) 3, 250 2, 800 3, 306 2, 900 Heat shock C. 200 a 175 210 250 Out through 275 260 275 260 Emersion scrape (lbs.).. 32 22 23 30 Coeflicient of friction 12 14 12 14 Burnout resistance (sec.) 500 417 467 450 l Fail.
What is claimed is:
1. A resin composition having hydantoin and organosilicon radicals in the resin backbone which comprises the reaction product of:
(a) a reactive, monomeric hydantoin or polymeric hydantoin compound having reactive OH, H, COOH, alkoxy and NH groups;
(b) an aromatic carboxylic acid having at least two carboxy groups or an anhydride, ester, or chloride of said acid;
(0) tris (Z-hydroxyethyl) isocyanurate, as a polyhydric alcohol component; and
(d) a linear reactive organo-silicon silane or siloxane having reactive OH, H, COOH, alkoxy, amino, aryloxy or vinyl groups,
(c) said reaction elfected at a temperature of about C. to about 250 C.
2. A resin composition according to claim 1 wherein up to 50 equivalent percent of the isocyanurate is replaced by another polyhydric alcohol.
3. A resin composition according to claim 2 wherein said alcohol is ethylene glycol.
4. A resin composition according to claim 1 wherein said carboxylic acid is terephthalic acid, isophthalic acid, a mixture of terephthalic acid and isophthalic acid, or an anhydride, ester or chloride of said acid.
5. A resin composition according to claim 1 wherein said hydantoin is 1,3dihydroxyethyl-S,5'-dimethyl hydantoin.
6. A resin composition according to claim 1 wherein said silicon material is diphenyl silane diol.
7. A resin composition according to claim 1 wherein said reaction product comprises 5-50% by weight of said hydantoin 550% by weight of terephthalic acid, isophthalic acid, a mixture of terephthalic acid or isophthalic acid, or an anhydride ester or chloride of said acid, 5- 50% by weight tris (2-hydroxyethyl) isocyanurate, and 0.0110% by weight diphenyl silane diol.
8. A resin composition according to claim 7 wherein said hydantoin is 1,3 dihydroxyethyl-5,5-dimethyl hydantoin.
9. A resin composition according to claim 1 wherein said composition includes a tetraalkyl titanate.
10. An electrical conductor having a coating of the composition of claim 1.
11. An electrical conductor having a coating of the composition of claim 3.
12. An electrical conductor having a coating of the composition of claim 7.
13. An electrical conductor having a coating of the composition of claim 8.
References Cited UNITED STATES PATENTS 3,681,282 8/1972 Preston 26046.5 E
3,342,780 9/1967 Meyer et a1. 26077.5 NC
DONALD E. CZAJA, Primary Examiner M. I. MARQUIS, Assistant Examiner US. Cl. X.R.
117135.1; 2602 S, 18 S, 30.8 DS, 32.6 R, 32.8 SB, 33.4 SB, 33.6 SB, 33.8 SB, 77.5 R, 77.5 NC, 77.5 AM, 824, Dig. 34
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US5817370A | 1970-07-24 | 1970-07-24 | |
| US27592272A | 1972-07-18 | 1972-07-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3779991A true US3779991A (en) | 1973-12-18 |
Family
ID=26737328
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00275922A Expired - Lifetime US3779991A (en) | 1970-07-24 | 1972-07-28 | Silicon-hydantoin-ester resins |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3779991A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3835121A (en) * | 1972-07-18 | 1974-09-10 | Essex International Inc | Theic-hydantoin-ester resins for wire coatings |
| US4180612A (en) * | 1974-03-04 | 1979-12-25 | General Electric Company | Hydantoin-polyester coating compositions |
| US4218550A (en) * | 1975-01-02 | 1980-08-19 | General Electric Company | Coating compositions |
| US4240941A (en) * | 1978-07-11 | 1980-12-23 | General Electric Company | Coating compositions |
| US4356233A (en) * | 1981-05-20 | 1982-10-26 | Minnesota Mining And Manufacturing Company | Primed inorganic substrates overcoated with curable protective compositions |
| US4396650A (en) * | 1981-05-20 | 1983-08-02 | Minnesota Mining And Manufacturing Company | Primed inorganic substrates overcoated with curable protective compositions |
| US4693936A (en) * | 1984-05-02 | 1987-09-15 | Essex Group, Inc. | Low coefficient of friction magnet wire enamels |
| US20040127667A1 (en) * | 2002-06-14 | 2004-07-01 | Worley Shelby D. | N-halamine siloxanes for use in biocidal coatings and materials |
| WO2012020067A1 (en) * | 2010-08-10 | 2012-02-16 | Schwering & Hasse Elektrodraht Gmbh | Electrical insulation enamels composed of modified polymers and electrical conductors produced therefrom and having improved sliding capacity |
-
1972
- 1972-07-28 US US00275922A patent/US3779991A/en not_active Expired - Lifetime
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3835121A (en) * | 1972-07-18 | 1974-09-10 | Essex International Inc | Theic-hydantoin-ester resins for wire coatings |
| US4180612A (en) * | 1974-03-04 | 1979-12-25 | General Electric Company | Hydantoin-polyester coating compositions |
| US4218550A (en) * | 1975-01-02 | 1980-08-19 | General Electric Company | Coating compositions |
| US4240941A (en) * | 1978-07-11 | 1980-12-23 | General Electric Company | Coating compositions |
| US4356233A (en) * | 1981-05-20 | 1982-10-26 | Minnesota Mining And Manufacturing Company | Primed inorganic substrates overcoated with curable protective compositions |
| US4396650A (en) * | 1981-05-20 | 1983-08-02 | Minnesota Mining And Manufacturing Company | Primed inorganic substrates overcoated with curable protective compositions |
| US4693936A (en) * | 1984-05-02 | 1987-09-15 | Essex Group, Inc. | Low coefficient of friction magnet wire enamels |
| US20040127667A1 (en) * | 2002-06-14 | 2004-07-01 | Worley Shelby D. | N-halamine siloxanes for use in biocidal coatings and materials |
| US6969769B2 (en) | 2002-06-14 | 2005-11-29 | Vanson Halosource, Inc. | N-halamine siloxanes for use in biocidal coatings and materials |
| US20080003438A1 (en) * | 2002-06-14 | 2008-01-03 | Auburn University | Heterocyclic siloxanes for use in biocidal coatings and materials |
| WO2012020067A1 (en) * | 2010-08-10 | 2012-02-16 | Schwering & Hasse Elektrodraht Gmbh | Electrical insulation enamels composed of modified polymers and electrical conductors produced therefrom and having improved sliding capacity |
| US9944823B2 (en) | 2010-08-10 | 2018-04-17 | Schwering & Hasse Elektrodraht Gmbh | Electrical insulation enamels composed of modified polymers and electrical conductors produced therefrom and having improved sliding capacity |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3260691A (en) | Coating compositions prepared from condensation products of aromatic primary diamines and aromatic tricarboxylic compounds | |
| US3397253A (en) | Polyhydantoin polymer prepared by the reaction of glycine derivatives and polyisocyanates | |
| US3115479A (en) | R oconr | |
| US3211585A (en) | Electric conductor coated with the reaction product of a dibasic polycarboxylic acid and tris(2-hydroxyethyl) isocyanurate together with an organic polyisocyanate or an alkyl titanate | |
| US3428486A (en) | Polyamide-imide electrical insulation | |
| US3554984A (en) | Polyamide-imide resins | |
| US3652471A (en) | Polyester amide-imide wire enamels | |
| US3779991A (en) | Silicon-hydantoin-ester resins | |
| US4008195A (en) | Aqueous insulating varnishes | |
| US3480588A (en) | Stable coating composition of a tricarboxylic acid or its partial or full ester and a diamine | |
| US3681282A (en) | Siliated polyhydantoin,polyester hydantoin siloxanes and polyhydantoin amide siloxanes for use as wire coatings | |
| US3660327A (en) | Lactone or lactam pre-esterified isocyanurate-containing resins | |
| US3737432A (en) | Bridged isocyanurates | |
| US3425866A (en) | Electrical conductor coated with polyesterpolyimide inner layer and polyester outer layer | |
| US3498940A (en) | Dimer fatty acid modified polyester-urethane compositions | |
| US3835121A (en) | Theic-hydantoin-ester resins for wire coatings | |
| US3732186A (en) | Polyisocyanates containing cyclic imide groups | |
| US4180612A (en) | Hydantoin-polyester coating compositions | |
| US3919144A (en) | Production of polyesters from tris({67 -hydroxyalkyl)isocyanurate alkylene oxide adducts | |
| US3852106A (en) | Polyamide-imide polymer having an ordered structure | |
| US4124419A (en) | Self-bonding varnish for magnet wire and magnets produced using said | |
| US3699082A (en) | Method of processing preformed polyester resins and converting to coating materials | |
| US3705874A (en) | Process for the production of polyhydantoin plastics containing imide groups | |
| US3538186A (en) | Polyester coating materials | |
| US3889036A (en) | Theic-hydantoin-ester resins for wire coatings |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CHEMICAL BANK Free format text: SECURITY INTEREST;ASSIGNOR:ESEX GROUP, INC.;REEL/FRAME:006399/0203 Effective date: 19921009 |