US3779922A - Barium-containing dispersions and process - Google Patents

Barium-containing dispersions and process Download PDF

Info

Publication number
US3779922A
US3779922A US00264095A US3779922DA US3779922A US 3779922 A US3779922 A US 3779922A US 00264095 A US00264095 A US 00264095A US 3779922D A US3779922D A US 3779922DA US 3779922 A US3779922 A US 3779922A
Authority
US
United States
Prior art keywords
percent
barium
mixture
reaction
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00264095A
Inventor
W Lesuer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Application granted granted Critical
Publication of US3779922A publication Critical patent/US3779922A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • C07D207/402,5-Pyrrolidine-diones
    • C07D207/4042,5-Pyrrolidine-diones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. succinimide
    • C07D207/408Radicals containing only hydrogen and carbon atoms attached to ring carbon atoms
    • C07D207/412Acyclic radicals containing more than six carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/106Liquid carbonaceous fuels containing additives mixtures of inorganic compounds with organic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/56Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/081Inorganic acids or salts thereof containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • C10M2201/083Inorganic acids or salts thereof containing nitrogen nitrites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/085Phosphorus oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/124Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms containing hydroxy groups; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/141Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/146Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings having carboxyl groups bound to carbon atoms of six-membeered aromatic rings having a hydrocarbon substituent of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/22Acids obtained from polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/08Halogenated waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/044Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms having cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/14Containing carbon-to-nitrogen double bounds, e.g. guanidines, hydrazones, semicarbazones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/18Containing nitrogen-to-nitrogen bonds, e.g. hydrazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • C10M2215/222Triazines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/028Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/044Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/064Thiourea type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/083Dibenzyl sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2221/041Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds involving sulfurisation of macromolecular compounds, e.g. polyolefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature

Definitions

  • This invention relates to a novel process for solubilizing or dispersing barium, metal compounds in liquid media. Particularly, the invention relates to a process for preparing stable dispersions of basic metal compounds in an organic liquid medium.
  • the novel compositions produced by the process as well as lubricants and fuels containing these compositions also form part of the present inventive concept.
  • the barium-containing dispersions produced by the process of the present invention particularly useful as additives for lubricating compositions.
  • the products function effectively as dispersants and detergents in lubricating oil compositions for internal combustion engines.
  • they are also useful as anti-screenclogging agents in petroleum distillate fuels, e.g., gasoline, kerosene, fuel oils, etc., and smoke supressants in diesel fuels.
  • Another object is to provide a process for preparing stable barium-containing dispersions particularly useful as additives for fuels and lubricants.
  • a further object is to provide novel bariumcontaining compositions.
  • An additional object is to provide lubricant and fuel compositions containing dispersed metal compounds therein. 7
  • gaseous carbon dioxide is preferred for use in the process of this invention
  • other materials capable of producing carbon dioxide in situ may also be used.
  • urea, carbamates, and ammonium carbonates can be employed since they produce CO in situ under the conditions of the process.
  • Promoters useful according to the present process are the phenols.
  • the phenolic promoters include a variety of alkylated hydroxy-substituted benzene and napthalenes.
  • a particularly useful class of phenols are the monoand dialkylated phenols in which each alkyl substituent contains from about six to about two hundred carbon atoms, and preferably from six to twenty carbon atoms.
  • Illustrative phenolic promoters are the heptylphenols, octylphenols, dodecylphenols, nonylphenols, polypropylene (M.W. of )-substituted phenol, polyisobutene (M.W. of l200)-substituted phergls,
  • reacting barium compounds can be sulfides, hydrosulfides, amides, or alcoholates derived from alcohols having from about one to about thirty carbon atoms.
  • the preferred barium compounds are the oxides, hydroxides, and lower alkoxides, the latter being derived from lower alkanols containing up to about seven carbon atoms.
  • Specific basically reacting metal compounds include barium oxide, barium hydroxide, barium hydroxide monohydrate, barium methoxide, barium ethoxide, barium isopropoxide, and the like.
  • the substituents from the substituted succinic acids from which the stabilizing agents are derived is a substantially saturated aliphatic hydrocarbon radical having at least about fifty aliphatic carbon atoms.
  • the substituent may contain pendant aryl groups or substantially inert polar groups.
  • the polar groups should not be present in sufficiently large numbers to alter the substantially hydrocarbon character of the substituent.
  • Exemplary polar groups include halo, car- 'bqn i.q?sy :Q-(i 2 m "591 hi1 1r fl9lh psr limit on the number of polar groups is about 10 percent by weight based on the total weight of the hydrocarbon portion of the substituent.
  • the hydrocarbon substituent should contain no more than about 5 percent olefinic linkages based on the total number of carbon-tocarbon covalent linkages present in the substituent. Preferably, the number of olefinic linkages will not exceed about 2 percent of the total convalent linkages.
  • the source of the hydrocarbon substituent on the substituted succinic acid includes principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of monoolefms having from two to thirty carbon atoms.
  • the especially useful polymers are the polymers of l-monoolefins such as ethylene, propene, l-butene, isobutene, l-hexene, l-octene, 2-methyll -heptene, 3-cyclohexyll -butene, and 2-methyl-5-propyl-l-hexene.
  • Polymers of medial olefins i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by 2-butene, 3-butene, and 4-octene. The preferred substituent is derived from polymerized isobutylene or propene.
  • interpolymers of the foregoing olefins with each other and/or with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, polyolefins.
  • Such interpolymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isopropene; ethylene with piperylene; isobutene with chloroprene; isobutene with P-methylstyrene; l-hexene with 1,3-hexadiene; l-octene with l-hexene; l-heptene with l-pentene; 3-methyl-l-butene with l-octene; 3,3-dimethyl-1-penetene with l-hexene; isobutene with styrene and piperylene; etc.
  • the relative proportions of the monoolefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final products derived from such interpolymers.
  • oilsolubility and stability and the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80 percent, preferably at least about 95 percent, on a weight basis, of units derived from aliphatic monoolefins.
  • interpolymers include the copolymer of 95 percent of isobutene and percent of styrene; the terpolymer of 98 percent of isobutene with 1 percent of piperylene and 1 percent of chloroprene; the terpolymer of 95 percent of isobutene with 2 percent of l-butene and 3 percent of l-hexene; the terpolymer of 80 percent of isobutene with percent of l-pentene and 10 percent of l-octene; the copolymer of 80 percent of l-hexene and percent of l-heptene; the terpolymer of 90 percent of isobutene with 2 percent of cyclohexene and 8 percent of propene; and the copolymer of 80 percent of ethylene and 20 percent of propene.
  • the percentages refer to the percent by weight of total interpolymer weight.
  • hydrocarbon substituents are saturated aliphatic hydrocarbons, e.g., highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of the high molecular weight olefin polymers illustrated above or other high molecular weight'olefinic substances.
  • Olefin polymer having molecular weights from about 700 to about 10,000 are the preferred source of the substituent with those having molecular weights of about 700 to 5,000 being especially preferred.
  • the stabilizing agents are the amides, imides, and amidines derived from the above-described substituted succinic acids, carboxylic acids and the appropriate amines.
  • acid-producing equivalents such as anhydrides, halides, lower alkyl esters, and the like can be used in lieu of the substituted succinic acid per se in preparing these stabilizing agents.
  • the substituted succinic acids and acid-producing compounds necessary for preparing the stabilizing agents are known in the prior art.
  • the stabilizing agents themselves are also known or can be prepared through conventional processes.
  • Substituted succinic acid producing compounds are readily prepared by reacting maleic anhydride with a suitable olefin polymer of chlorinated hydrocarbon of the types described hereinabove.
  • the reaction involves merely heating the two reactants at a temperature of about 100C. to 200C.
  • the product of such a reaction is a succinic anhydride having a large hydrocarbon substituent.
  • the hydrocarbon substituent may contain olefinic linkages. These may be converted, if desired, to saturated paraffinic linkages by hydrogenation.
  • the an hydride may be hydrolyzed by treatment with water or steam to the corresponding acid and the acid converted to the corresponding halide. It will be noted in this regard that the anhydride is equivalent to the acids and the acid halides insofar as their utility in the preparation of the dispersants of this invention. In fact, the anhydride is often more reactive then the acid and is often preferred.
  • hydrocarbons containing an activating polar substituent i.e., a substituent which is capable of activating the hydrocarbon molecule in respect to reaction with maleic acid or maleic anhydride, may be used in the above-illustrated reaction for preparing the substituted succinic acids.
  • polar substituents are exemplified by sulfide, disulfide, nitro, mercaptan, halo, carbonyl, or formyl radicals.
  • polarsubstituted hydrocarbons examples include polypropene sulfide, dipolyisbutene disulfide, nitrated mineral oil, dipolyethylene sulfide, brominated polyethylene, etc.
  • Another useful method for preparing succinic acids and anhydrides involves the reaction of itaconic acid with a high molecular weight olefin or a polar-substituted hydrocarbon at a temperature usually within the range of from about 100C.-200C.
  • the stabilizing agents prepared from the reaction of polyolefin-substituted succinic acid or anhydride and monoor polyamines, particularly polyalkylene polyamines having up to about ten amino nitrogens, are especially suitable, the reaction products generally comprise a mixture of amides, imides, and/or amidines.
  • the reaction products of polyisobutene-substituted succinic anhydride and polyethylene polyamines containing up to about ten amino nitrogens are excellent stabilizing agents.
  • These anhydride-mine products are disclosed in Pat. Nos. 3,018,250; 3,024,195; 3,172,892; 3,216,936; 3,219,666; and 3,272,746.
  • a convenient method for preparing the acylated nitrogen stabilizing agents from substitued succinic acid or acid-producing compounds comprises reacting the acid or an acid-producing compound with at least about one-half an equivalent of a nitrogen-containing compound characterized by the presence within its structure of at least one group of the formula
  • the above-process is generally carried out by heating a mixture of the succinic acid-producing and nitrogencontaining reactants at a temperature above about C., preferably within the range of about C. to about 250C.
  • a solvent such as benzene, toluene, naphtha, mineral oil, xylene, n-hexane, or the like often desirable in the above process to facilitate the control of the reaction temperature.
  • the relative ratio of the succinic acid-producing compounds to the nitrogen-containing reactants in the above process are such that at least about one-half of a stoichiometrically equivalent amount of a nitrogencontaining reactant is'used for each equivalent of the acid-producing compound. It should be noted that the 1 equivalent weight of the nitrogen-containing reactant is based upon the number of the nitrogen-containing radiently without any adverse effect. On the other hand,
  • the lower limit of about one-half equivalent of a nitrogen-containing reactant used for each equivalent of the acid producing compound is based upon the stoichiometry for the formation of products having predominantly imide linkages. In most instances, the preferred amount of the nitrogen-containing reactant is approximately one equivalent for each equivalent of the acidproducing reactant.
  • the process of the present invention is normally conducted in the presence of a substantially inert, essentially n onpolar organic liquid diluent. Since the resulting products are particularly useful as additives for lubricating oil and fuel compositions, the diluent normally will be a liquid which is soluble in lubricating oils and fuels. For this reason, the diluent usually comprises a lubricating oil such as a synthetic lubricating oil or a mineral lubricating oil. However, other organic diluents can also be employed, either along or in combination with each other or in combination with lubricating oil diluents.
  • Suitable solvents include dialkyl ketones, alkyl aryl ketones, e.g., dipropyl ketone, methyl butyl ketone, acetophenone, and ethers such as npropylether, n-amylether, and isoamylether.
  • Particularly useful diluents include the aliphatic and aromatic hydrocarbons and halohydrocarbons such as benzene, toluene, xylene, chlorobenzene; lower boiling petroleum distillates such as kerosene and the various naphthas, the normally liquid aliphatic hydrocarbons and halohydrocarbons such as hexane, heptane, hexane, chlorohexane, cyclopentane, cyclohexane, ethyl cyclohexane, and the like.
  • diluents which serve as the reaction medium are used alone or in combination with mineral oil or other natural or synthetic oils;
  • the weight ratio of oil to the other solvent is generally 1:20 to It is usually desirable for the lubricating oil to comprise at least about 50 percent by weight of the weight of diluent, especially if the product is to be used as a lubricant additive.
  • reaction product including the inert diluent
  • the resulting reaction product can be added directly to the lubricating oil or fuel composition in which it is to be employed.
  • readily removable diluents can be removed by conventional techniques such as distillation prior to incorporating the reaction mixture into the lubricant or fuel composition.
  • the amount of diluent employed can be increased or decreased during formation of the dispersions or before adding to the fuel or lubricant to facilitate mixing, temperature control, or to meet some other particular requirement related to the ultimate use of the composition.
  • reflux conditions to retain diluent and/or promotor having a boiling point that is lower than that of the reaction temperature.
  • the need for such conditions depends on the particular promoters and diluents, the amount of each present, the reaction temperature, the duration of the reaction, and the amount of metal to be dispersed in the reaction product.
  • the invention encompasses bringing the various reactants together in any order.
  • the procedure found to produce the best overall results comprises forming an initial reaction mixture made up of at least one each of a basically reacting barium compound, phenolic promoter, stabilizing agent, and the diluent.
  • the carbon dioxide is then introduced into this initial mixture.
  • the carbon dioxide and the basically reacting barium compound react to form a metal-containing reaction product which is dispersed in the reaction medium.
  • the stabilizing agent prevents the metal-containing reaction product from precipitating, i.e., it stabilizes the dispersion.
  • This indicated order or reaction can be varied to produce the best results with given reactants under given conditions.
  • the basically reacting barium compound can be added in increments during the introduction of the acidic material.
  • additional stabilizing agent and/or diluent can be added during or after the process. The determination of an optimum order of reaction for given conditions is a matter of routine experimentation.
  • the basically reacting barium compound and the stabilizing agent normally are employed in amounts such that the ratio of equivalents of stabilizing agent to equivalents of barium is about 1:0.1 to about 1:30 and preferably 1:0.5 to about 1:12.
  • the number of equivalents in a stabilizing agent is the number of carboxylic acid functions present.
  • a polyisobutenyl substituted succinic amide or imide contains two carboxylic functions. Thus, it has two equivalents per molecule.
  • Barium has two equivalents per mole of basically reacting metal compound.
  • the amount of carbon dioxide employed depends upon the amount of metal to be dispersed in the reaction mixture. Theoretically, the ratio of equivalents of carbon dioxide to equivalents of barium to be dispersed is 1:1. However, as a practical matter, utilization of the carbon dioxide is not very efficient. Accordingly, the ratio of equivalents of carbon dioxide to equivalents of metal to be dispersed ranges from the stoichiometric ratioof about 1:1 to a large excess, for example, about 10:1.
  • the promotor will be present in the reaction mass in an amount such that the ratio of the number of equivalents of promotor to basically reacting barium compound is about 0.05:1 to 1:1 and preferably 0.1:1 to 0.5:1.
  • the number of equivalents for a phenolic promotor depends upon the number of phenolic hydroxy groups present in the molecule. Thus one mole of heptyl phenol contains one equivalent of promotor.
  • an organic diluent is normally employed in a process. Since the diluent is inactive, the amount present is not particularly critical. However, the diluent will ordinarily comprise from about 10 percent to about 90 percent, and preferably 30 to 70 percent, by weight of the reaction mixture based on the total weight of material in the reaction mixture exclusive of the acidic material.
  • the temperature at which the carbon dioxide is contacted with the initial reaction mixture can vary from about 75C. to about 300C.
  • the optimum temperature depends in a large measure upon the promotor employed.
  • the temperature usually ranges from about 80C. to about 300C. and preferably from about 100C. to about 250C.
  • EXAMPLE 1 A reaction mixture comprising 196 parts by weight of mineral oil, 280 parts by weight of a polyisobutenyl (M.W.lO)-substituted succinic anhydride (0.5 equivalents) and 15.4 parts of a commercial mixture of ethylene polyamine having an average composition corresponding to that of tetraethylene pentamine (0.357 equivalents) is mixed over a period of approximately 15 minutes.
  • the reaction mass is then heated to 150C. over a hour period and subsequently blown with nitrogen at a rate of five parts per hour for 5 hours while maintaining a temperature of 150-l55C. to remove water.
  • the material is then filtered producing 477 parts of product in oil solution.
  • Example 2 The procedure of Example 1A is repeated but the amount of amine is increased so that the ratio of equivalents of polyisobutenyl substituted succinic anhydride to ethylene polyamine mixture is 1:1.
  • Example 1A The procedure of Example 1A is repeated with the amount of amine being increased so that the ratio of equivalents of anhydride to amine is 1:15.
  • Example 1A The proceudre of Example 1A is repeated except that the ratio of equivalents of anhydride to amine is 1:2.
  • Example I A. To a reaction vessel are added 249 parts mineral oil, 35.6 parts heptylphenol, and 400 parts of a 40 percent oil solution of the acylated nitrogen compound produced according to Example 1A. This mixture is heated to about 148C. over a 1.5 hour period. Then 139 parts of barium hydroxide monohydrate are added over a 1.1 hour period. Subsequently, carbon dioxide is bubbled through the mixture at a rate of 10 parts per hour for 8 hours while maintaining the temperature of the mass at 150-160C. Thereafter, the mass is filtered, the filtrate is characterized by a barium content of 1 1.7 percent, a nitrogen content of 0.52 percent, and an oil content of 50 percent.
  • Example 2A The general procedure of Example 1A is repeated using 2,618 parts of the oil solution of the product of 1A, 231 parts of heptylphenol, 1,515 parts of barium hydroxide monohydrate, and 3,031 parts of diluent oil. This mixture is blown with carbon dioxide via a submerged line for 2.5 hours at a rate of five parts per hour. The reaction mass is blown with nitrogen for 2 hours while maintaining the temperature of the mass at 165C. and thereafter filtered. 6,000 parts of the filtrate is recovered. The filtrate is a brown viscous liquid characterized by a varium sulfate ash content of 24 percent, a nitrogen content of 0.39 percent, and an oil content of 54.7 percent.
  • Example 1A To a three-liter flash equipped with a reflux condenser and container 655 grams of the filtrate of Example 1A, grams of propylene tetramer-substituted phenol, 211 grams of mineral oil, and 18 grams of isooctanol, there is added 184 grams of barium oxide over a 15-minute period while the temperature of the mixture is maintained at -105C. Then 22 grams of water is added and the temperature of the mixture is elevated to 120C. This mixture is blown with carbon dioxide at 1 cubic foot per hour for 2 hours while maintaining a temperature of 145-l70C. Subsequently, the carbonated mass is blown with nitrogen at 2 cubic feet per hour for 1 hour during which the temperature is 145-155C. and then filtered. The filtrate is a brown liquid containing 40 percent oil and is characterized by a nitrogen and barium sulfate ash content of 0.56 percent and 23.14 percent, respectively.
  • a half-zinc salt half-acylated nitrogen stabilizing agent is prepared as follows: A reaction mixture containing 402 parts mineral oil, 13 parts water, and 560 parts of a polyisobutenyl (M.W.-1,000)-substituted succinic anhydride is heated at 75-82C. for 0.5 hour to convert the anhydride to acid. Thereafter, 20.5 parts of zinc oxide is added over a 0.5 hour period while maintaining the temperature at about 80C. This mixture is then heated at 93-98C. for 4 hours under reflux conditions and then at about C. for 0.5 hour.
  • M.W.-1,000 polyisobutenyl
  • Example ID Following the general procedure of Example ID, 4,000 grams of the above filtrate, 231 grams of heptylphenol, 2,287 grams of mineral oil (diluent), 91 1 grams of barium hydroxide monohydrate are carbonated at a rate of 3 cubic feet per hour, blown with nitrogen for 2.5 hours, and filtered.
  • Example 18 The general procedure of Example 18 is repeated by carbonatinga mixture of 549 grams of the product .of Example 1D, 1 16 grams of heptylphenol, 455 grams of barium hydroxide monohydrate, and 1,100 grams of oil for 2 hours at 1.5 cubic feet per hour. The carbonated mixture is blown with nitrogen for 1 hour and filtered. The filtrate is a brown liquid characterized as follows: weight 1974 grams; oil content 59 percent;
  • a mixture comprising 1,820 grams of a filtrate prepared as an Example 1B having an oil content of percent, 58 grams of heptylphenol, and 300 grams of mineral oil is heated to 70C. and 249 grams of barium oxide are added. The mixture is then carbonated at a rate of 5 cubic feet of CO per hour until the carbonated mixture is slightly acidic. During carbonation the reaction mass is heated to 150C. The carbonated mixture is filtered. The filtrate contains 41.5 percent oil and is characterized by a barium sulfate ash content of 13.58 percent and a nitrogen content of 1.1 percent.
  • the stabilizing agents of the present invention can be used along or in combination with each other in preparing the metal-containing dispersions.
  • these stabilizing agents can be used in conjunction with other known stabilizing agents or peptizing agents as they are denominated in the prior art.
  • These peptizing agents are quite diverse and include the oil-soluble organic acids and the Group I and Group II metal salts thereof such as the petrosulfonic acids, barium petrosulfonate, oleic acid, calcium oleate, the phosphorus acid mixture produced by stream blowing the reaction product of polyisobutylene and P 5 and the like.
  • peptizing agents are aliphatic amines such as N-octadecyl propylene diamine and the condensation product of such amines with lower aldehydes such as formaldehyde. These and other peptizing agents are well known in the art and require no further discussion herein.
  • the barium-containing dispersions of the present invention can be incorporated directly into various lubricating and fuel compositions.
  • the amount to be used depends upon whether the additive is added to a lubricant, a fuel, and the environment under which the lubricant or fuel is to be employed.
  • these barium-containing dispersions can be successfully employed as detergent-dispersant additives for crankcase lubricating oils when employed in an amount sufficient to'impart a sulfate ash content to the lubricating oil of 0.01 percent to 20 percent, preferably 0.01 percent to 10 percent by weight.
  • the lubricating oil is to be used as a crankcase lubricant for gasoline engines, it normally will contain up to about 1 percent ash.
  • sufficient additive should be used to provide the lubricant with an ash content of up to about 2-5 percent ash while marine diesels may require enough additive to provide an ash content of 10 percent or more.
  • the barium-containing dispersions When the barium-containing dispersions are added to fuels as anti-screenclogging agents, they will normally be employed in amounts such that the ash content of the fuel will be from about 0.001 to about 0.05 percent. If, however, the additive is used in a diesel fuel to suppress the formation of black exhaust smoke upon combustion of the fuel in a diesel engine, enough additive should be employed to impart a sulfate ash content to the diesel fuel of about 0.01 to about 1 percent preferably 0.01 to 0.5 percent.
  • the barium-containing dispersions of the present invention can be used along or in combination with other fuel and lubricating additives known in the prior art.
  • additives include for example, other detergents of the ash-containing type, ashless dispersants, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust inhibiting agents, and oxidation and corrosion inhibitors.
  • the ash-containing detergents are the well known neutral and basic alkali or alkaline earth metal salts of sulfonic acids, carboxylic acids, or organic phosphorus containing acids. These latter are characterized by at least one direct carbon-to-phosphorus linkage.
  • Such acids can be prepared by the steam-treating an olefin polymer e.g., polyisobutene having a molecular weight of 1,000, with a phosphorizingagent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
  • an olefin polymer e.g., polyisobutene having a molecular weight of 1,000
  • a phosphorizingagent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pen
  • the most commonly used salts of such acids are the sodium, potassium lithium, calcium, magnesium, strontium, and barium salts.
  • the calcium and barium salts are used more extensively then the others.
  • the basic salts are those metal salts known in the art wherein the metal is present in a stoichiometrically larger amount than that necessary to neutralize the acid.
  • the calcium and the barium overbased petrosulfonic acids are typical examples of such basic salts.
  • the ashless dispersants are also a well known class of materials used as additives for lubricating oils and fuels. They are particularly effective as dispersants at lower temperatures.
  • the stabilizing agents of the present invention are representative of these dispersants.
  • chlorinated aliphatic hydrocarbons such as chlorinated wax
  • organic sulfides and polysulfides such as benzyldisulfide, bis-(chlorobenzyl)disulfide, dibutyltetrasulfide, sulfurized sperm oil, sulfurized methyl ester of oleic acid, sulfurized alkylphenol, sulfurized dipentene, and sulfurized terpene, sulfurized Diels-Alder adducts such as sulfurized adduct of butadiene and butylacrylate; phosphosulfurized hydrocarbons such as the reaction product of a phosphorus sulfide with terpentine or methyl oleate; phosphorus esters such as the dihydrocarbon and trihydrocarbon phosphites, e.g., dibutylphosphite diheptylphosphi
  • additional additives When additional additives are present, they will normally be employed in amounts such that they comprise from about 0.001 percent to about 20 percent by weight of the total composition.
  • additional ashless dispersants can be employed in amounts of from about 0.1 percent to about percent while additional metal-containing detergents will be present in amounts of from about 0.1 percent to about percent by weight.
  • the present barium-containing dispersions contain a dispersant, it will be obvious to those skilled in the art that the present compositions can be substituted in known lubricating compositions in such a manner that the barium-containing dispersions replaces all or a portion of the metal and the stabilizing agents replaces all or a portion of the ashless dispersants in the known compositions.
  • pour point depressants extreme pressure additives, viscosity index improving agents, and anti-foaming agents, and the like are normally employed in amounts up to about 0.001 percent to about 10 percent by weight of the total composition depending on the nature and purpose of the particular additive.
  • compositions exemplify typical useful embodiments of the metal-containing dispersions of the present invention.
  • COMPOSITION D Diesel fuel containing 0.15 percent barium sulfate ash from the product of Example IA.
  • th barium-containing dispersions in mineral lubricating oils or petroleum distillate fuels
  • present invention is not limited to use in mineral oil-based lubricating compositions.
  • Other lubricating oils, natural as well as synthetic can be used as the base of the lubricating oil and grease compositions contemplated by the present invention.
  • Such natural and synthetic bases include hydrocarbon oils produced from alkylene oxides such as polyethylene oxide and polypropylene oxide polymers or the esters and ethers thereof.
  • the synthetic ester oils such as those produced from polycarboxylic acids and alcohols including glycols and polyglycols are also contemplated as being without the scope of the invention. Examples of these oils are dibutyl adipate, di-(2-ethylhexyl) sebacate, dilauryl azelate, etc.
  • the process comprising carbonating at a temperature of from about C. to about 300C. at least one basically reacting barium compound selected from the class consisting of barium oxide, barium hydroxide, and barium lower alkoxide in the presence of (a) an alkylated phenol selected from the group consisting of monoand dialkylated phenols where the alkyl groups contain from six to twenty carbon atoms, (b) a stabilizing agent which is the reaction product produced by reacting at a temperature within the range of about C to about 250C.
  • At least one acid-producing compound selected from the class consisting of substantially saturated hydrocarbon-substituted succinic acid and anhydride wherein the substantially saturated hydrocarbon substituent contains at least about fifty aliphatic carbon atoms, with an ethylene polyamine wherein the ratio of acid-producing compound to the ethylene polyamine is from about one equivalent of acid-producing compound to about 0.5 equivalents to 2 moles of ethylene polyamine; wherein the ratio of equivalents of stabilizing agent to equivalents of basically reacting barium compound is about 1:05 to about 1:12, the ratio of equivalents of carbon dioxide to equivalents of basically reacting barium metal compound is about 1:1 to about 1:10, and the ratio of equivalents of alkylated phenol to basically reacting barium compound is about 0.121 to about 0.511.
  • a lubricant of fuel comprising a major amount of a lubricating oil or petroleum distillate fuel, respectively, and a minor amount of barium-containing dispersion according to claim 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Process for preparing barium-containing dispersions in essentially inert diluents by contacting a basically reacting barium compound with carbon dioxide in the presence of a stabilizing agent and promoter. A typical process comprises carbonating a mixture of barium hydroxide monohydrate, heptyl phenol, and the reaction product of polyisobutenyl-substitutedsuccinic anhydride and an alkylene polyamine. The bariumcontaining dispersions thus produced are useful as additives for fuels and lubricants.

Description

United States Patent 1191 LeSuer Dec. 18, 1973 BARIUM-CONTAINING DISPERSIONS AND 63 PROCESS [75] Inventor: William M. LeSuer, Cleveland, Ohio [56] uNlTE g s fli gs giqrENTs [73] Assgnee' l l' .corporat'on 2,695,910 11 1954 Assefi' et al. 44/68 x Wckhffe Ohm 2,777,874 1/1957 Asseff et al.... 260/504 [22] Filed; J 19, 1972 3,45l,93l 6/1969 Kahn et al. 44/51 X Appl' 264095 Primary ExaminerPatrick P. Garvin R l t d US, A li ti D t Assistant Examiner-Andrew H. Metz [60] Continuation-impart Of Ser. N0. 118,489, Feb. 24,
1971, abandoned, which is a continuation-in-part of Set. N0. 864,894, 0m. 8, 1969, abandoned, CT cmltinuation-ifl-pan 0f 6, Process for preparing barium-containing dispersions in Sald a essentially inert diluents by contacting a basically reg g g S :9. .4 i 332 acting barium compound with carbon dioxide in the 2 iz dlvlslon 0 presence of a stabilizing agent and promoter. A typical process comprises carbonating a mixture of barium 1521 Us. c1 252/347, 44/51, 44/63, d f hepyl and the 252/18, 252/25, 252/336 252/34 252/40], tlon product of p0ly1sobutenyl-substituted-succinic an- 252/515 A hydride and an alkylene polyamlne. The barium- 51 1111. C1. Cl0m 1/32, ClOm 3/26 9P d'spersims thus Pmduced are useful as [58] Field of Search 252/18, 25,-336, dmves fuels and 3 Claims, No Drawings 1 BARIUM-CONTAINING DISPERSIONS AND PROCESS This is a continuation-in-part of copending application Ser. No. 118,489 filed Feb. 24, 1971, now abandoned, which, in turn, is a continuation-in-part application of Ser. No. 864,894 filed Oct. 8, 1969 and now abandoned. Ser. No. 864,894 is a continuation-in-part of Ser. No. 681,028 filed Nov. 6, 1967, now US. Pat. 3,515,669. Ser. No. 118,489 is also a continuation of now abandoned application Ser. No. 64,632 filed Aug. 17, 1970 which, in turn, is a division of application Ser. No. 864,894 indentified above.
This invention relates to a novel process for solubilizing or dispersing barium, metal compounds in liquid media. Particularly, the invention relates to a process for preparing stable dispersions of basic metal compounds in an organic liquid medium. The novel compositions produced by the process as well as lubricants and fuels containing these compositions also form part of the present inventive concept.
it is well-known that stable dispersions of bariumcontaining compositions are used extensively as detergents and corrosion inhibitors in lubricating compositions, particularly as additives for internal combustion engine lubricantsThese solutions have also been found useful as petroleum-distillate fuel additives. For example, the presence of a basic metal in a diesel fuel inhibits the formation of black exhaust smoke upon combustion of the fuel in operating diesel engines. Basic metalcontaining compositions and uses therefore are described, for example, in US. Pat. Nos. 2,616,905; 1
2,723,234; 2,777,874; 2,781,403; 3,031,284; 3,256,186; 3,312,618; and 3,342,733. The use of basic metal-containing compositions as smoke suppressants in diesel fuels is discloseed in German Auslegeschrift 1,243,914.
The barium-containing dispersions produced by the process of the present invention particularly useful as additives for lubricating compositions. For example, the products function effectively as dispersants and detergents in lubricating oil compositions for internal combustion engines. However, like the abovedescribed metal containing products of the prior art, they are also useful as anti-screenclogging agents in petroleum distillate fuels, e.g., gasoline, kerosene, fuel oils, etc., and smoke supressants in diesel fuels.
In accord with the foregoing, it is a principal of this invention to provide a process for incorporating barium compounds into organic liquid media.
Another object is to provide a process for preparing stable barium-containing dispersions particularly useful as additives for fuels and lubricants.
A further object is to provide novel bariumcontaining compositions.
An additional object is to provide lubricant and fuel compositions containing dispersed metal compounds therein. 7
These and other objects of the invention can be achieved by the process comprising the steps of contacting a carbon dioxide with at least one basically reacting barium compound in the presence of (A) at least one promotor selected from the class consisting of phenols and (B) at least one stabilizing agent selected from the class consisting of the amides, imides, and amidine derivatives of substituted succinic acids wherein the acids are characterized by a substantially saturated hydrocarbon portion having at least about fifty aliphatic carbon atoms. The process is normally conducted in the presence of a substantially inert, essentially nonpolar organic liquid diluent. The novel compositions produced by this process can then be incorporated in fuels and lubricants to provide the lubricant and fuel compositions contemplated by this invention.
While gaseous carbon dioxide is preferred for use in the process of this invention, other materials capable of producing carbon dioxide in situ may also be used. For example, urea, carbamates, and ammonium carbonates can be employed since they produce CO in situ under the conditions of the process.
Promoters useful according to the present process are the phenols. The phenolic promoters include a variety of alkylated hydroxy-substituted benzene and napthalenes. A particularly useful class of phenols are the monoand dialkylated phenols in which each alkyl substituent contains from about six to about two hundred carbon atoms, and preferably from six to twenty carbon atoms. Illustrative phenolic promoters are the heptylphenols, octylphenols, dodecylphenols, nonylphenols, polypropylene (M.W. of )-substituted phenol, polyisobutene (M.W. of l200)-substituted phergls,
cyclohexylphenols and behenylphenols.
Basically reacting barium compounds can be sulfides, hydrosulfides, amides, or alcoholates derived from alcohols having from about one to about thirty carbon atoms. However, the preferred barium compounds are the oxides, hydroxides, and lower alkoxides, the latter being derived from lower alkanols containing up to about seven carbon atoms. Specific basically reacting metal compounds include barium oxide, barium hydroxide, barium hydroxide monohydrate, barium methoxide, barium ethoxide, barium isopropoxide, and the like.
The substituents from the substituted succinic acids from which the stabilizing agents are derived is a substantially saturated aliphatic hydrocarbon radical having at least about fifty aliphatic carbon atoms. The substituent may contain pendant aryl groups or substantially inert polar groups. However, the polar groups should not be present in sufficiently large numbers to alter the substantially hydrocarbon character of the substituent. Exemplary polar groups include halo, car- 'bqn i.q?sy :Q-(i 2 m "591 hi1 1r fl9lh psr limit on the number of polar groups is about 10 percent by weight based on the total weight of the hydrocarbon portion of the substituent. The hydrocarbon substituent should contain no more than about 5 percent olefinic linkages based on the total number of carbon-tocarbon covalent linkages present in the substituent. Preferably, the number of olefinic linkages will not exceed about 2 percent of the total convalent linkages.
The source of the hydrocarbon substituent on the substituted succinic acid includes principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of monoolefms having from two to thirty carbon atoms. The especially useful polymers are the polymers of l-monoolefins such as ethylene, propene, l-butene, isobutene, l-hexene, l-octene, 2-methyll -heptene, 3-cyclohexyll -butene, and 2-methyl-5-propyl-l-hexene. Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by 2-butene, 3-butene, and 4-octene. The preferred substituent is derived from polymerized isobutylene or propene.
Also useful are the interpolymers of the foregoing olefins with each other and/or with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, polyolefins. Such interpolymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isopropene; ethylene with piperylene; isobutene with chloroprene; isobutene with P-methylstyrene; l-hexene with 1,3-hexadiene; l-octene with l-hexene; l-heptene with l-pentene; 3-methyl-l-butene with l-octene; 3,3-dimethyl-1-penetene with l-hexene; isobutene with styrene and piperylene; etc.
The relative proportions of the monoolefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final products derived from such interpolymers. Thus, for reasons of oilsolubility and stability and the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80 percent, preferably at least about 95 percent, on a weight basis, of units derived from aliphatic monoolefins.
Specific examples of such interpolymers include the copolymer of 95 percent of isobutene and percent of styrene; the terpolymer of 98 percent of isobutene with 1 percent of piperylene and 1 percent of chloroprene; the terpolymer of 95 percent of isobutene with 2 percent of l-butene and 3 percent of l-hexene; the terpolymer of 80 percent of isobutene with percent of l-pentene and 10 percent of l-octene; the copolymer of 80 percent of l-hexene and percent of l-heptene; the terpolymer of 90 percent of isobutene with 2 percent of cyclohexene and 8 percent of propene; and the copolymer of 80 percent of ethylene and 20 percent of propene. The percentages refer to the percent by weight of total interpolymer weight.
Another source of hydrocarbon substituents are saturated aliphatic hydrocarbons, e.g., highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of the high molecular weight olefin polymers illustrated above or other high molecular weight'olefinic substances.
Olefin polymer having molecular weights from about 700 to about 10,000 are the preferred source of the substituent with those having molecular weights of about 700 to 5,000 being especially preferred.
The stabilizing agents are the amides, imides, and amidines derived from the above-described substituted succinic acids, carboxylic acids and the appropriate amines. As mentioned before, acid-producing equivalents such as anhydrides, halides, lower alkyl esters, and the like can be used in lieu of the substituted succinic acid per se in preparing these stabilizing agents. The substituted succinic acids and acid-producing compounds necessary for preparing the stabilizing agents are known in the prior art. The stabilizing agents themselves are also known or can be prepared through conventional processes.
Substituted succinic acid producing compounds are readily prepared by reacting maleic anhydride with a suitable olefin polymer of chlorinated hydrocarbon of the types described hereinabove. The reaction involves merely heating the two reactants at a temperature of about 100C. to 200C. The product of such a reaction is a succinic anhydride having a large hydrocarbon substituent. The hydrocarbon substituent may contain olefinic linkages. These may be converted, if desired, to saturated paraffinic linkages by hydrogenation. The an hydride may be hydrolyzed by treatment with water or steam to the corresponding acid and the acid converted to the corresponding halide. It will be noted in this regard that the anhydride is equivalent to the acids and the acid halides insofar as their utility in the preparation of the dispersants of this invention. In fact, the anhydride is often more reactive then the acid and is often preferred.
In lieu of the olefins or chlorinated hydrocarbons, other hydrocarbons containing an activating polar substituent, i.e., a substituent which is capable of activating the hydrocarbon molecule in respect to reaction with maleic acid or maleic anhydride, may be used in the above-illustrated reaction for preparing the substituted succinic acids. Such polar substituents are exemplified by sulfide, disulfide, nitro, mercaptan, halo, carbonyl, or formyl radicals. Examples of such polarsubstituted hydrocarbons include polypropene sulfide, dipolyisbutene disulfide, nitrated mineral oil, dipolyethylene sulfide, brominated polyethylene, etc. Another useful method for preparing succinic acids and anhydrides involves the reaction of itaconic acid with a high molecular weight olefin or a polar-substituted hydrocarbon at a temperature usually within the range of from about 100C.-200C.
The stabilizing agents prepared from the reaction of polyolefin-substituted succinic acid or anhydride and monoor polyamines, particularly polyalkylene polyamines having up to about ten amino nitrogens, are especially suitable, the reaction products generally comprise a mixture of amides, imides, and/or amidines. The reaction products of polyisobutene-substituted succinic anhydride and polyethylene polyamines containing up to about ten amino nitrogens are excellent stabilizing agents. These anhydride-mine products are disclosed in Pat. Nos. 3,018,250; 3,024,195; 3,172,892; 3,216,936; 3,219,666; and 3,272,746.
The foregoing patents are incorporated herein by reference for their disclosure of 1) the requisite acids or acids producing compounds such as acid halides, acid anhydrides, and the like useful in producing the stabilizing agents, (2) processes for preparing amides, imides, and amidines from these acid producing compounds, and (3) actual examples of suitable amides, etc., which can be satisfactorily employed as stabilizing agents in the present invention.
A convenient method for preparing the acylated nitrogen stabilizing agents from substitued succinic acid or acid-producing compounds comprises reacting the acid or an acid-producing compound with at least about one-half an equivalent of a nitrogen-containing compound characterized by the presence within its structure of at least one group of the formula The above-process is generally carried out by heating a mixture of the succinic acid-producing and nitrogencontaining reactants at a temperature above about C., preferably within the range of about C. to about 250C. The use of a solvent such as benzene, toluene, naphtha, mineral oil, xylene, n-hexane, or the like often desirable in the above process to facilitate the control of the reaction temperature.
The relative ratio of the succinic acid-producing compounds to the nitrogen-containing reactants in the above process are such that at least about one-half of a stoichiometrically equivalent amount of a nitrogencontaining reactant is'used for each equivalent of the acid-producing compound. It should be noted that the 1 equivalent weight of the nitrogen-containing reactant is based upon the number of the nitrogen-containing radiently without any adverse effect. On the other hand,
the lower limit of about one-half equivalent of a nitrogen-containing reactant used for each equivalent of the acid producing compound is based upon the stoichiometry for the formation of products having predominantly imide linkages. In most instances, the preferred amount of the nitrogen-containing reactant is approximately one equivalent for each equivalent of the acidproducing reactant.
The process of the present invention is normally conducted in the presence of a substantially inert, essentially n onpolar organic liquid diluent. Since the resulting products are particularly useful as additives for lubricating oil and fuel compositions, the diluent normally will be a liquid which is soluble in lubricating oils and fuels. For this reason, the diluent usually comprises a lubricating oil such as a synthetic lubricating oil or a mineral lubricating oil. However, other organic diluents can also be employed, either along or in combination with each other or in combination with lubricating oil diluents. Suitable solvents include dialkyl ketones, alkyl aryl ketones, e.g., dipropyl ketone, methyl butyl ketone, acetophenone, and ethers such as npropylether, n-amylether, and isoamylether.
Particularly useful diluents include the aliphatic and aromatic hydrocarbons and halohydrocarbons such as benzene, toluene, xylene, chlorobenzene; lower boiling petroleum distillates such as kerosene and the various naphthas, the normally liquid aliphatic hydrocarbons and halohydrocarbons such as hexane, heptane, hexane, chlorohexane, cyclopentane, cyclohexane, ethyl cyclohexane, and the like. These diluents which serve as the reaction medium are used alone or in combination with mineral oil or other natural or synthetic oils; When a combination of oil in one or more of the other solvents is used, the weight ratio of oil to the other solvent is generally 1:20 to It is usually desirable for the lubricating oil to comprise at least about 50 percent by weight of the weight of diluent, especially if the product is to be used as a lubricant additive.
Upon completion of the present process, solids are removed from the reaction mass by filtration or other conventional means, and the resulting reaction product, including the inert diluent, can be added directly to the lubricating oil or fuel composition in which it is to be employed. Optionally, readily removable diluents can be removed by conventional techniques such as distillation prior to incorporating the reaction mixture into the lubricant or fuel composition. As is apparent to those skilled in the art, the amount of diluent employed can be increased or decreased during formation of the dispersions or before adding to the fuel or lubricant to facilitate mixing, temperature control, or to meet some other particular requirement related to the ultimate use of the composition.
It is obvious that it may be desirable to use reflux conditions to retain diluent and/or promotor having a boiling point that is lower than that of the reaction temperature. The need for such conditions depends on the particular promoters and diluents, the amount of each present, the reaction temperature, the duration of the reaction, and the amount of metal to be dispersed in the reaction product.
The invention encompasses bringing the various reactants together in any order. However, the procedure found to produce the best overall results comprises forming an initial reaction mixture made up of at least one each of a basically reacting barium compound, phenolic promoter, stabilizing agent, and the diluent. The carbon dioxide is then introduced into this initial mixture. During the course of the reaction, the carbon dioxide and the basically reacting barium compound react to form a metal-containing reaction product which is dispersed in the reaction medium. The stabilizing agent prevents the metal-containing reaction product from precipitating, i.e., it stabilizes the dispersion.
This indicated order or reaction can be varied to produce the best results with given reactants under given conditions. Thus, the basically reacting barium compound can be added in increments during the introduction of the acidic material. Moreover, additional stabilizing agent and/or diluent can be added during or after the process. The determination of an optimum order of reaction for given conditions is a matter of routine experimentation.
The basically reacting barium compound and the stabilizing agent normally are employed in amounts such that the ratio of equivalents of stabilizing agent to equivalents of barium is about 1:0.1 to about 1:30 and preferably 1:0.5 to about 1:12. For purposes of determining this ratio, the number of equivalents in a stabilizing agent is the number of carboxylic acid functions present. For example, a polyisobutenyl substituted succinic amide or imide contains two carboxylic functions. Thus, it has two equivalents per molecule. Barium has two equivalents per mole of basically reacting metal compound.
The amount of carbon dioxide employed depends upon the amount of metal to be dispersed in the reaction mixture. Theoretically, the ratio of equivalents of carbon dioxide to equivalents of barium to be dispersed is 1:1. However, as a practical matter, utilization of the carbon dioxide is not very efficient. Accordingly, the ratio of equivalents of carbon dioxide to equivalents of metal to be dispersed ranges from the stoichiometric ratioof about 1:1 to a large excess, for example, about 10:1.
From the foregoing, it is apparent that the entire amount of basically reacting metal employed in the reaction mixture is not necessarily reacted with the carbon dioxide and thereby dispersed. All that is required is that some carbon dioxide be reacted with at least a portion of the basically reacting barium compound so that some barium compound is dispersed in the reaction mixture. Unreacted non-dispersed basically reacting barium compound is normally removed from the reaction mixture upon completion by filtration of other convenient means.
The promotor will be present in the reaction mass in an amount such that the ratio of the number of equivalents of promotor to basically reacting barium compound is about 0.05:1 to 1:1 and preferably 0.1:1 to 0.5:1. The number of equivalents for a phenolic promotor depends upon the number of phenolic hydroxy groups present in the molecule. Thus one mole of heptyl phenol contains one equivalent of promotor.
As stated before, an organic diluent is normally employed in a process. Since the diluent is inactive, the amount present is not particularly critical. However, the diluent will ordinarily comprise from about 10 percent to about 90 percent, and preferably 30 to 70 percent, by weight of the reaction mixture based on the total weight of material in the reaction mixture exclusive of the acidic material.
The temperature at which the carbon dioxide is contacted with the initial reaction mixture can vary from about 75C. to about 300C. The optimum temperature depends in a large measure upon the promotor employed. With phenolic promoters, the temperature usually ranges from about 80C. to about 300C. and preferably from about 100C. to about 250C.
The following examples demonstrate the preparation of typical stabilizing agents. It is to be understood that these examples are merely illustrative. Unless otherwise indicated, all percentages and parts express percent by weight and parts by weight.
EXAMPLE 1 A. A reaction mixture comprising 196 parts by weight of mineral oil, 280 parts by weight of a polyisobutenyl (M.W.lO)-substituted succinic anhydride (0.5 equivalents) and 15.4 parts of a commercial mixture of ethylene polyamine having an average composition corresponding to that of tetraethylene pentamine (0.357 equivalents) is mixed over a period of approximately 15 minutes. The reaction mass is then heated to 150C. over a hour period and subsequently blown with nitrogen at a rate of five parts per hour for 5 hours while maintaining a temperature of 150-l55C. to remove water. The material is then filtered producing 477 parts of product in oil solution.
B. The procedure of Example 1A is repeated but the amount of amine is increased so that the ratio of equivalents of polyisobutenyl substituted succinic anhydride to ethylene polyamine mixture is 1:1.
C. The procedure of Example 1A is repeated with the amount of amine being increased so that the ratio of equivalents of anhydride to amine is 1:15.
D. The proceudre of Example 1A is repeated except that the ratio of equivalents of anhydride to amine is 1:2.
The following examples demonstrate the process of the invention. The resulting products are the desired barium containing compositions discussed hereinbefore.
Example I A. To a reaction vessel are added 249 parts mineral oil, 35.6 parts heptylphenol, and 400 parts of a 40 percent oil solution of the acylated nitrogen compound produced according to Example 1A. This mixture is heated to about 148C. over a 1.5 hour period. Then 139 parts of barium hydroxide monohydrate are added over a 1.1 hour period. Subsequently, carbon dioxide is bubbled through the mixture at a rate of 10 parts per hour for 8 hours while maintaining the temperature of the mass at 150-160C. Thereafter, the mass is filtered, the filtrate is characterized by a barium content of 1 1.7 percent, a nitrogen content of 0.52 percent, and an oil content of 50 percent.
B. The general procedure of Example 1A is repeated using 2,618 parts of the oil solution of the product of 1A, 231 parts of heptylphenol, 1,515 parts of barium hydroxide monohydrate, and 3,031 parts of diluent oil. This mixture is blown with carbon dioxide via a submerged line for 2.5 hours at a rate of five parts per hour. The reaction mass is blown with nitrogen for 2 hours while maintaining the temperature of the mass at 165C. and thereafter filtered. 6,000 parts of the filtrate is recovered. The filtrate is a brown viscous liquid characterized by a varium sulfate ash content of 24 percent, a nitrogen content of 0.39 percent, and an oil content of 54.7 percent.
C. To a three-liter flash equipped with a reflux condenser and container 655 grams of the filtrate of Example 1A, grams of propylene tetramer-substituted phenol, 211 grams of mineral oil, and 18 grams of isooctanol, there is added 184 grams of barium oxide over a 15-minute period while the temperature of the mixture is maintained at -105C. Then 22 grams of water is added and the temperature of the mixture is elevated to 120C. This mixture is blown with carbon dioxide at 1 cubic foot per hour for 2 hours while maintaining a temperature of 145-l70C. Subsequently, the carbonated mass is blown with nitrogen at 2 cubic feet per hour for 1 hour during which the temperature is 145-155C. and then filtered. The filtrate is a brown liquid containing 40 percent oil and is characterized by a nitrogen and barium sulfate ash content of 0.56 percent and 23.14 percent, respectively.
D. The general procedure of [(C) is followed utilizing 2,618 grams of the filtrate of Example 1A, 232 grams of heptylphenol, 1,129 grams of barium oxide, 2,725 grams of diluent oil, 144 grams of water, and grams of isooctanol. The reaction mixture is blown with car bon dioxide at 4 cubic feet per hour for 0.5 hour and then blown with nitrogen (to assist in the removel of water) at 2 cubic feet per hour for 1 hour. A filtrate weighing 6,408 grams is obtained. The filtrate contains 51.7 percent diluent oil and is characterized by a barium sulfate ash content of 23.1 percent and a nitrogen content of 0.38 percent.
E. A half-zinc salt half-acylated nitrogen stabilizing agent is prepared as follows: A reaction mixture containing 402 parts mineral oil, 13 parts water, and 560 parts of a polyisobutenyl (M.W.-1,000)-substituted succinic anhydride is heated at 75-82C. for 0.5 hour to convert the anhydride to acid. Thereafter, 20.5 parts of zinc oxide is added over a 0.5 hour period while maintaining the temperature at about 80C. This mixture is then heated at 93-98C. for 4 hours under reflux conditions and then at about C. for 0.5 hour.
To the resulting mixture is added 20.6 parts of the commercial amine mixture of Example 1A while maintaining the temperature at about l-125C. Thereafter the mixture is heated for six hours at l50155C., the last 5 hours being accompanied by nitrogen blowing to facilitate water removal. After filtration, 980 parts of fitrate are obtained characterized by a zinc content of 1.63 percent and a nitrogen content of 0.72 percent.
Following the general procedure of Example ID, 4,000 grams of the above filtrate, 231 grams of heptylphenol, 2,287 grams of mineral oil (diluent), 91 1 grams of barium hydroxide monohydrate are carbonated at a rate of 3 cubic feet per hour, blown with nitrogen for 2.5 hours, and filtered. The filtrate weights 6,885 grams and is characterized by an oil content of 52 percent, a zinc content of 0.92 percent, a nitrogen content of 0.37 percent and a barium content of 8.23 percent.
F. The general procedure of Example 18 is repeated by carbonatinga mixture of 549 grams of the product .of Example 1D, 1 16 grams of heptylphenol, 455 grams of barium hydroxide monohydrate, and 1,100 grams of oil for 2 hours at 1.5 cubic feet per hour. The carbonated mixture is blown with nitrogen for 1 hour and filtered. The filtrate is a brown liquid characterized as follows: weight 1974 grams; oil content 59 percent;
nitrogen content 0.58 percent; BaSO, ash content 24.35 percent.
G. A mixture comprising 1,820 grams of a filtrate prepared as an Example 1B having an oil content of percent, 58 grams of heptylphenol, and 300 grams of mineral oil is heated to 70C. and 249 grams of barium oxide are added. The mixture is then carbonated at a rate of 5 cubic feet of CO per hour until the carbonated mixture is slightly acidic. During carbonation the reaction mass is heated to 150C. The carbonated mixture is filtered. The filtrate contains 41.5 percent oil and is characterized by a barium sulfate ash content of 13.58 percent and a nitrogen content of 1.1 percent.
Obviously, the stabilizing agents of the present invention can be used along or in combination with each other in preparing the metal-containing dispersions. However, these stabilizing agents can be used in conjunction with other known stabilizing agents or peptizing agents as they are denominated in the prior art. These peptizing agents are quite diverse and include the oil-soluble organic acids and the Group I and Group II metal salts thereof such as the petrosulfonic acids, barium petrosulfonate, oleic acid, calcium oleate, the phosphorus acid mixture produced by stream blowing the reaction product of polyisobutylene and P 5 and the like. Other peptizing agents are aliphatic amines such as N-octadecyl propylene diamine and the condensation product of such amines with lower aldehydes such as formaldehyde. These and other peptizing agents are well known in the art and require no further discussion herein.
The barium-containing dispersions of the present invention can be incorporated directly into various lubricating and fuel compositions. The amount to be used depends upon whether the additive is added to a lubricant, a fuel, and the environment under which the lubricant or fuel is to be employed. For example, these barium-containing dispersions can be successfully employed as detergent-dispersant additives for crankcase lubricating oils when employed in an amount sufficient to'impart a sulfate ash content to the lubricating oil of 0.01 percent to 20 percent, preferably 0.01 percent to 10 percent by weight. If the lubricating oil is to be used as a crankcase lubricant for gasoline engines, it normally will contain up to about 1 percent ash. On the other hand for diesel engines, sufficient additive should be used to provide the lubricant with an ash content of up to about 2-5 percent ash while marine diesels may require enough additive to provide an ash content of 10 percent or more.
When the barium-containing dispersions are added to fuels as anti-screenclogging agents, they will normally be employed in amounts such that the ash content of the fuel will be from about 0.001 to about 0.05 percent. If, however, the additive is used in a diesel fuel to suppress the formation of black exhaust smoke upon combustion of the fuel in a diesel engine, enough additive should be employed to impart a sulfate ash content to the diesel fuel of about 0.01 to about 1 percent preferably 0.01 to 0.5 percent.
The barium-containing dispersions of the present invention can be used along or in combination with other fuel and lubricating additives known in the prior art. These additives include for example, other detergents of the ash-containing type, ashless dispersants, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust inhibiting agents, and oxidation and corrosion inhibitors.
The ash-containing detergents are the well known neutral and basic alkali or alkaline earth metal salts of sulfonic acids, carboxylic acids, or organic phosphorus containing acids. These latter are characterized by at least one direct carbon-to-phosphorus linkage. Such acids can be prepared by the steam-treating an olefin polymer e.g., polyisobutene having a molecular weight of 1,000, with a phosphorizingagent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are the sodium, potassium lithium, calcium, magnesium, strontium, and barium salts. The calcium and barium salts are used more extensively then the others. The basic salts are those metal salts known in the art wherein the metal is present in a stoichiometrically larger amount than that necessary to neutralize the acid. The calcium and the barium overbased petrosulfonic acids are typical examples of such basic salts.
The ashless dispersants are also a well known class of materials used as additives for lubricating oils and fuels. They are particularly effective as dispersants at lower temperatures. The stabilizing agents of the present invention are representative of these dispersants.
Extreme pressure agents, corrosion inhibiting agents, and oxidation-inhibiting agents are exemplified by chlorinated aliphatic hydrocarbons such as chlorinated wax; organic sulfides and polysulfides such as benzyldisulfide, bis-(chlorobenzyl)disulfide, dibutyltetrasulfide, sulfurized sperm oil, sulfurized methyl ester of oleic acid, sulfurized alkylphenol, sulfurized dipentene, and sulfurized terpene, sulfurized Diels-Alder adducts such as sulfurized adduct of butadiene and butylacrylate; phosphosulfurized hydrocarbons such as the reaction product of a phosphorus sulfide with terpentine or methyl oleate; phosphorus esters such as the dihydrocarbon and trihydrocarbon phosphites, e.g., dibutylphosphite diheptylphosphite, dicyclohexylphosphite, pentylphenylphosphite, dipentylphenylphosphite, tridecylphosphite, distearylphosphite, and polypropylene (molecular weight 500)- substituted phenylphosphite; metal thiocarbonates exemplified by zinc dioctyldithiocarbonate and barium heptylphenyldi-thiocarbonate; Group II metal salts of phosphorodithioic acids such as zinc dicyclohexylphosphorodithioate, zinc dioctylphosphorodithioate, barium di(heptylphenyl) phosphorodithioate, cadmium dinonylphosphorodithioate, and the zinc salt of a phosphorodithioic acid produced by the reaction of phosphorus pentasulfide with an equimolar mixture of isopropyl alcohol and n-hexyl alcohol.
These additional additives are well known to those skilled in the art and the foregoing listing is merely to illustrate the types of additional additives which can be present in the lubricating and fuel compositions in which the metal-containing dispersions of the present invention are employed. A brief survey of additives for lubricating compositions is contained in LUBRICANT ADDITIVES, C. V. Smalheer and R. Kennedy Smith, published by The Lezius-Hiles Company, Cleveland, Ohio, 1967.
When additional additives are present, they will normally be employed in amounts such that they comprise from about 0.001 percent to about 20 percent by weight of the total composition. For example additional ashless dispersants can be employed in amounts of from about 0.1 percent to about percent while additional metal-containing detergents will be present in amounts of from about 0.1 percent to about percent by weight. Since the present barium-containing dispersions contain a dispersant, it will be obvious to those skilled in the art that the present compositions can be substituted in known lubricating compositions in such a manner that the barium-containing dispersions replaces all or a portion of the metal and the stabilizing agents replaces all or a portion of the ashless dispersants in the known compositions. Pour point depressants, extreme pressure additives, viscosity index improving agents, and anti-foaming agents, and the like are normally employed in amounts up to about 0.001 percent to about 10 percent by weight of the total composition depending on the nature and purpose of the particular additive.
The following compositions exemplify typical useful embodiments of the metal-containing dispersions of the present invention.
COMPOSITION A SAE lOW-30 mineral lubricating oil containing 3 percent of the product of Example I(C), 0.06 percent of phosphorus as zinc di-n-octylphosphorodithioate, and 0.2 percent sulfate ash as basic barium mahogany sulfonate.
COMPOSITION B SAE 30 mineral lubricating oil containing 6 percent of the filtrate of Example IA.
COMPOSITION C SAE 80 mineral lubricating oil containing 1 percent of the reaction product of polyisobutenyl-substituted succinic anhydride and tetraethylene pentamine reacted in an equivalent ratio of 1:1, percent of the product of Example IA, 0.1 percent phosphorus as zinc di-n-hexylphosphorodithioate, 10 percent of a chlorinated paraffin wax having a chlorine content of 40 percent, 2 percent of dibyltetrasulfide, 2 percent of sulfurized dipentene, 0.2 percent of oleyl amide, 0.003 percent of an anti-foam agent, 0.3 percent of a pour point depressant and 3 percent of a viscosity index improver.
COMPOSITION D Diesel fuel containing 0.15 percent barium sulfate ash from the product of Example IA.
COMPOSITION E Kerosene containing 0.01 percent sulfate ash of the product of Example IA.
While the foregoing generally refers to the use of th barium-containing dispersions in mineral lubricating oils or petroleum distillate fuels, it should be understood that the present invention is not limited to use in mineral oil-based lubricating compositions. Other lubricating oils, natural as well as synthetic can be used as the base of the lubricating oil and grease compositions contemplated by the present invention. Such natural and synthetic bases include hydrocarbon oils produced from alkylene oxides such as polyethylene oxide and polypropylene oxide polymers or the esters and ethers thereof. The synthetic ester oils such as those produced from polycarboxylic acids and alcohols including glycols and polyglycols are also contemplated as being without the scope of the invention. Examples of these oils are dibutyl adipate, di-(2-ethylhexyl) sebacate, dilauryl azelate, etc.
What is or is:
l. The process comprising carbonating at a temperature of from about C. to about 300C. at least one basically reacting barium compound selected from the class consisting of barium oxide, barium hydroxide, and barium lower alkoxide in the presence of (a) an alkylated phenol selected from the group consisting of monoand dialkylated phenols where the alkyl groups contain from six to twenty carbon atoms, (b) a stabilizing agent which is the reaction product produced by reacting at a temperature within the range of about C to about 250C. at least one acid-producing compound selected from the class consisting of substantially saturated hydrocarbon-substituted succinic acid and anhydride wherein the substantially saturated hydrocarbon substituent contains at least about fifty aliphatic carbon atoms, with an ethylene polyamine wherein the ratio of acid-producing compound to the ethylene polyamine is from about one equivalent of acid-producing compound to about 0.5 equivalents to 2 moles of ethylene polyamine; wherein the ratio of equivalents of stabilizing agent to equivalents of basically reacting barium compound is about 1:05 to about 1:12, the ratio of equivalents of carbon dioxide to equivalents of basically reacting barium metal compound is about 1:1 to about 1:10, and the ratio of equivalents of alkylated phenol to basically reacting barium compound is about 0.121 to about 0.511.
2. A barium-containing dispersion produced according to the process of claim 1.
3. A lubricant of fuel comprising a major amount of a lubricating oil or petroleum distillate fuel, respectively, and a minor amount of barium-containing dispersion according to claim 2.

Claims (2)

  1. 2. A barium-containing dispersion produced according to the process of claim 1.
  2. 3. A lubricant of fuel comprising a major amount of a lubricating oil or petroleum distillate fuel, respectively, and a minor amount of barium-containing dispersion according to claim 2.
US00264095A 1967-11-06 1972-06-19 Barium-containing dispersions and process Expired - Lifetime US3779922A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US68102867A 1967-11-06 1967-11-06
US86489469A 1969-10-18 1969-10-18
US11849071A 1971-02-24 1971-02-24
US11848971A 1971-02-24 1971-02-24
US26409572A 1972-06-19 1972-06-19
US26728472A 1972-06-29 1972-06-29

Publications (1)

Publication Number Publication Date
US3779922A true US3779922A (en) 1973-12-18

Family

ID=27557930

Family Applications (3)

Application Number Title Priority Date Filing Date
US681028A Expired - Lifetime US3515669A (en) 1967-11-06 1967-11-06 High molecular weight carboxylic acid ester stabilized metal dispersions and lubricants and fuels containing the same
US00264095A Expired - Lifetime US3779922A (en) 1967-11-06 1972-06-19 Barium-containing dispersions and process
US00267284A Expired - Lifetime US3783131A (en) 1967-11-06 1972-06-29 Calcium-containing dispersions and process

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US681028A Expired - Lifetime US3515669A (en) 1967-11-06 1967-11-06 High molecular weight carboxylic acid ester stabilized metal dispersions and lubricants and fuels containing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00267284A Expired - Lifetime US3783131A (en) 1967-11-06 1972-06-29 Calcium-containing dispersions and process

Country Status (2)

Country Link
US (3) US3515669A (en)
GB (1) GB1121578A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011167A (en) * 1975-07-09 1977-03-08 Mobil Oil Corporation Lubricant compositions containing metal complexes as detergents
US4059536A (en) * 1974-03-29 1977-11-22 Institut Francais Du Petrole Improved process for preparing superbasic detergent additives
US4661544A (en) * 1985-12-20 1987-04-28 The Lubrizol Corporation Homogeneous stabilizer compositions for vinyl halide polymers
US4665117A (en) * 1985-12-20 1987-05-12 The Lubrizol Corporation Basic metal salts having improved color and stability and vinyl halide polymers containing same
US5556569A (en) * 1995-04-06 1996-09-17 The Lubrizol Corporation Non-conventional overbased materials
US5830935A (en) * 1996-06-13 1998-11-03 Omg Americas, Inc. Color of basic metal organic salts by employing C7 -C17 alkyl glycidyl esters and stabilized halogen-containing polymers
US5859267A (en) * 1995-11-08 1999-01-12 Omg Americas, Inc. Process for improving color of basic metal organic salts and stabilizing halogen-containing polymers therewith
US6348164B1 (en) 1997-08-26 2002-02-19 Omg Americas, Inc. Process for improving shelf stability of liquid overbased calcium carboxylates, mixed metal stabilizers containing same, and stabilizing halogen-containing polymers therewith
US6639090B2 (en) 2001-05-18 2003-10-28 Omg Americas, Inc. Powdered overbased amorphous alkaline earth metal salts and processes for making
US6689893B2 (en) 2001-05-18 2004-02-10 Omg Americas, Inc. Shelf stable haze free liquids of overbased alkaline earth metal salts
US6773631B2 (en) 2001-05-18 2004-08-10 Hammond Group, Inc. Liquid overbased mixed metal stabilizer composition of calcium, barium and zinc for stabilizing halogen-containing polymers
US7163912B2 (en) 2001-05-18 2007-01-16 Omg Americas, Inc. Lubricant compositions containing an overbased amorphous alkaline earth metal salt as a metal protectant
US20090264327A1 (en) * 2008-04-21 2009-10-22 Omg Americas, Inc. Overbased metal carboxylate precursor and process for making
US9828487B2 (en) 2013-03-15 2017-11-28 Delta specialties Liquid compositions of overbased calcium carboxylate and process for its preparation

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764536A (en) * 1971-10-14 1973-10-09 Texaco Inc Overbased calcium salts of alkenylsuccinimide
US5037565A (en) * 1973-10-05 1991-08-06 The Lubrizol Corporation Basic alkali metal sulfonate dispersions, process for their preparation, and lubricants containing same
US4123368A (en) * 1977-03-24 1978-10-31 Rohm And Haas Company Alkaline earth metal salt dispersions in acrylic polymers
US4306983A (en) * 1979-03-26 1981-12-22 Nalco Chemical Company Process for preparing overbased magnesium sulfonates
US4347147A (en) * 1980-09-04 1982-08-31 Nalco Chemical Company Process for preparing overbased magnesium sulfonates
FR2521158A1 (en) * 1982-02-05 1983-08-12 Inst Francais Du Petrole PROCESS FOR THE PREPARATION OF CALCIUM-ORGANO-SOLUBLE COMPLEXES, THE COMPLEXES OBTAINED AND THEIR USE, IN PARTICULAR AS ADDITIVES FOR IMPROVING THE COMBUSTION OF GASES AND FUEL OILS
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4613342A (en) 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4575526A (en) 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4564460A (en) 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4509950A (en) * 1983-03-24 1985-04-09 Imperial Chemical Industries Plc Emulsifying agents
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
MX9305120A (en) * 1992-09-04 1994-03-31 Lubrizol Corp SULFURATED OVERBASED COMPOSITIONS.
US6294506B1 (en) 1993-03-09 2001-09-25 Chevron Chemical Company Lubricating oils having carbonated sulfurized metal alkyl phenates and carbonated metal alkyl aryl sulfonates
US5356552A (en) * 1993-03-09 1994-10-18 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Chlorine-free lubricating oils having modified high molecular weight succinimides
EP0731159A3 (en) * 1995-03-07 1997-05-21 Ethyl Corp Overbased lithium salt lubricant additives and production thereof
USH1536H (en) * 1995-04-11 1996-06-04 The Lubrizol Corporation Overbased materials in ester media
US5821205A (en) 1995-12-01 1998-10-13 Chevron Chemical Company Polyalkylene succinimides and post-treated derivatives thereof
EP0781794B1 (en) 1995-12-19 2000-05-17 Chevron Chemical Company LLC Very long chain alkylphenyl polyoxyalkylene amines and fuel compositions containing the same
US5637119A (en) 1995-12-29 1997-06-10 Chevron Chemical Company Substituted aromatic polyalkyl ethers and fuel compositions containing the same
US5792729A (en) 1996-08-20 1998-08-11 Chevron Chemical Corporation Dispersant terpolymers
US20060135375A1 (en) * 2004-12-21 2006-06-22 Chevron Oronite Company Llc Anti-shudder additive composition and lubricating oil composition containing the same
US8859473B2 (en) 2008-12-22 2014-10-14 Chevron Oronite Company Llc Post-treated additive composition and method of making the same
US20100160193A1 (en) * 2008-12-22 2010-06-24 Chevron Oronite LLC Additive composition and method of making the same
CA2864434A1 (en) 2012-02-17 2013-08-22 The Lubrizol Corporation Mixtures of olefin-ester copolymer with polyolefin as viscosity modifier
SG10201606835UA (en) 2012-02-17 2016-10-28 Lubrizol Corp Lubricating composition including esterified copolymer and low dispersant levels suitable for driveline applications
US20150240183A1 (en) 2012-09-24 2015-08-27 The Lubrizol Corporation Lubricant comprising a mixture of an olefin-ester copolymer with an ethylene alpha-olefin copolymer
CN104995289B (en) 2012-12-20 2020-12-22 路博润公司 Lubricant compositions comprising 4-hydroxybenzamide friction modifiers
CN105829510B (en) 2013-09-30 2021-09-28 路博润公司 Friction control method
KR102403745B1 (en) 2015-07-22 2022-05-31 셰브런 오로나이트 테크놀로지 비.브이. Marine Diesel Cylinder Lubricating Oil Composition
CA3023663A1 (en) 2016-05-18 2017-11-23 The Lubrizol Corporation Hydraulic fluid composition
US20180057765A1 (en) 2016-08-29 2018-03-01 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions
EP3526317A1 (en) 2016-10-12 2019-08-21 Chevron Oronite Technology B.V. Marine diesel lubricant oil compositions
JP6965341B2 (en) 2016-10-18 2021-11-10 シェブロン・オロナイト・テクノロジー・ビー.ブイ. Diesel Lubricants Composition for Ships

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2695910A (en) * 1951-05-03 1954-11-30 Lubrizol Corp Methods of preparation of superbased salts
US2777874A (en) * 1952-11-03 1957-01-15 Lubrizol Corp Metal complexes and methods of making same
US3451931A (en) * 1963-12-26 1969-06-24 Exxon Research Engineering Co Metal-containing detergent-dispersants for lubricants

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3194823A (en) * 1963-03-18 1965-07-13 Lubrizol Corp Organic complexes
USRE26433E (en) * 1963-12-11 1968-08-06 Amide and imide derivatives of metal salts of substituted succinic acids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2695910A (en) * 1951-05-03 1954-11-30 Lubrizol Corp Methods of preparation of superbased salts
US2777874A (en) * 1952-11-03 1957-01-15 Lubrizol Corp Metal complexes and methods of making same
US3451931A (en) * 1963-12-26 1969-06-24 Exxon Research Engineering Co Metal-containing detergent-dispersants for lubricants

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059536A (en) * 1974-03-29 1977-11-22 Institut Francais Du Petrole Improved process for preparing superbasic detergent additives
US4011167A (en) * 1975-07-09 1977-03-08 Mobil Oil Corporation Lubricant compositions containing metal complexes as detergents
US4661544A (en) * 1985-12-20 1987-04-28 The Lubrizol Corporation Homogeneous stabilizer compositions for vinyl halide polymers
US4665117A (en) * 1985-12-20 1987-05-12 The Lubrizol Corporation Basic metal salts having improved color and stability and vinyl halide polymers containing same
WO1987003868A1 (en) 1985-12-20 1987-07-02 The Lubrizol Corporation Basic metal salts having improved color and stability and vinyl halide polymers containing same
US4743397A (en) * 1985-12-20 1988-05-10 The Lubrizol Corporation Homogenous stabilizer compositions for vinyl halide polymers
US5556569A (en) * 1995-04-06 1996-09-17 The Lubrizol Corporation Non-conventional overbased materials
EP0737736A2 (en) * 1995-04-06 1996-10-16 The Lubrizol Corporation Non-conventional overbased materials
EP0737736A3 (en) * 1995-04-06 1998-01-28 The Lubrizol Corporation Non-conventional overbased materials
US5859267A (en) * 1995-11-08 1999-01-12 Omg Americas, Inc. Process for improving color of basic metal organic salts and stabilizing halogen-containing polymers therewith
US5830935A (en) * 1996-06-13 1998-11-03 Omg Americas, Inc. Color of basic metal organic salts by employing C7 -C17 alkyl glycidyl esters and stabilized halogen-containing polymers
US6348164B1 (en) 1997-08-26 2002-02-19 Omg Americas, Inc. Process for improving shelf stability of liquid overbased calcium carboxylates, mixed metal stabilizers containing same, and stabilizing halogen-containing polymers therewith
US20040214936A1 (en) * 2001-05-18 2004-10-28 Hammond Group, Inc. Liquid overbased mixed metal stabilizer composition of calcium, barium and zinc for stabilizing halogen-containing polymers
US6689893B2 (en) 2001-05-18 2004-02-10 Omg Americas, Inc. Shelf stable haze free liquids of overbased alkaline earth metal salts
US20040053795A1 (en) * 2001-05-18 2004-03-18 Omg Americas, Inc. Shelf stable haze free liquids of overbased alkaline earth metal salts, processes and stabilizing halogen-containing polymers therewith
US6773631B2 (en) 2001-05-18 2004-08-10 Hammond Group, Inc. Liquid overbased mixed metal stabilizer composition of calcium, barium and zinc for stabilizing halogen-containing polymers
US6639090B2 (en) 2001-05-18 2003-10-28 Omg Americas, Inc. Powdered overbased amorphous alkaline earth metal salts and processes for making
US6844386B2 (en) 2001-05-18 2005-01-18 Hammond Group, Inc. Shelf stable haze free liquids of overbased alkaline earth metal salts, processes and stabilizing halogen-containing polymers therewith
US7078459B2 (en) 2001-05-18 2006-07-18 Hammond Group, Inc. Liquid overbased mixed metal stabilizer composition of calcium, barium and zinc for stabilizing halogen-containing polymers
US7163912B2 (en) 2001-05-18 2007-01-16 Omg Americas, Inc. Lubricant compositions containing an overbased amorphous alkaline earth metal salt as a metal protectant
US20090264327A1 (en) * 2008-04-21 2009-10-22 Omg Americas, Inc. Overbased metal carboxylate precursor and process for making
US9828487B2 (en) 2013-03-15 2017-11-28 Delta specialties Liquid compositions of overbased calcium carboxylate and process for its preparation
US10407558B2 (en) 2013-03-15 2019-09-10 Delta Specialties Company Liquid compositions of overbased calcium carboxylate and process for its preparation

Also Published As

Publication number Publication date
US3783131A (en) 1974-01-01
US3515669A (en) 1970-06-02
GB1121578A (en) 1968-07-31

Similar Documents

Publication Publication Date Title
US3779922A (en) Barium-containing dispersions and process
US3496105A (en) Anion exchange process and composition
US3629109A (en) Basic magnesium salts processes and lubricants and fuels containing the same
US4357250A (en) Nitrogen-containing terpolymer-based compositions useful as multi-purpose lubricant additives
US3806456A (en) Acylated nitrogen compositions
CA1055700A (en) Basic alkali sulfonate dispersions and processes
US3787374A (en) Process for preparing high molecular weight carboxylic compositions
AU628807B2 (en) Improved dispersant additives derived from amido-amine adducts
JP2642710B2 (en) Dispersing additives derived from amido-amines
US4627928A (en) Basic non-carbonated magnesium compositions and fuel, lubricant and additive concentrate compositions containing same
US3444170A (en) Process which comprises reacting a carboxylic intermediate with an amine
CA1337867C (en) Ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid lubricant dispersant additives
US3574101A (en) Acylating agents,their salts,and lubricants and fuels containing the same
US4021419A (en) Basic metal salts of sulfur- and methylene-bridged poly-phenol compositions, and epoxide-reacted derivatives thereof, and lubricants containing them
US3725441A (en) Acylating agents, their salts, and lubricants and fuels containing the same
US3541014A (en) Molybdenum-containing lubricant compositions
EP0460309B2 (en) Modified dispersant compositions
JPS63501018A (en) Diesel lubricant and method
AU3925693A (en) Two-cycle engine lubricant and method of using same
AU659450B2 (en) Overbased alkali metal salts and methods for making the same
WO1993021143A1 (en) Metal carboxylates of alkylene bis-phenol alkonic acids useful as additives for fuels and lubricants
US3458495A (en) Reaction product of a phosphosulfurized hydrocarbon and an alkylene amino phenol and method for preparing
US5037565A (en) Basic alkali metal sulfonate dispersions, process for their preparation, and lubricants containing same
EP0551466B1 (en) The use of an additive composition to improve wet filterability of lubricating compositions
US5449470A (en) Overbased alkali salts and methods for making same