US3778755A - Self-staking wire grip terminal - Google Patents

Self-staking wire grip terminal Download PDF

Info

Publication number
US3778755A
US3778755A US00304090A US3778755DA US3778755A US 3778755 A US3778755 A US 3778755A US 00304090 A US00304090 A US 00304090A US 3778755D A US3778755D A US 3778755DA US 3778755 A US3778755 A US 3778755A
Authority
US
United States
Prior art keywords
circuit board
eyelet
fingers
finger
bend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00304090A
Inventor
R Marks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Berg Electronics Inc
FCI Americas Technology LLC
Original Assignee
Berg Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berg Electronics Inc filed Critical Berg Electronics Inc
Application granted granted Critical
Publication of US3778755A publication Critical patent/US3778755A/en
Anticipated expiration legal-status Critical
Assigned to BERG TECHNOLOGY, INC. reassignment BERG TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: E.I. DU PONT DE NEMOURS AND COMPANY
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • H01R12/58Fixed connections for rigid printed circuits or like structures characterised by the terminals terminals for insertion into holes

Definitions

  • a wire grip circuit board terminal having a cylindrical body, a circumferential flange on one end and collapsable fingers on the other end.
  • the collapsable fingers permit staking of the terminals to circuit boards of different thicknesses.
  • the terminals are staked to circuit boards without the necessity of special staking tooling for collapsing the fingers.
  • the ends of the fingers grip wires inserted into the terminals.
  • SELF-STAKING WIRE GRIP TERMINAL Wire grip circuit board eyelets of the type shown in US Pat. Nos. 3,368,188 and 3,504,328 are well known in the art. These terminals include a cylindrical body, a circumferential flange at the upper end of the body and a circumferential flange member at the bottom of the body. The eyelets are inserted in holes formed through the thickness of the circuit board with the circumferential flange member extending outwardly of the board and are staked to the board by generally conical flaring tooling engageable with the circumferential flange member to flare it outwardly of the body about the lower corner of the circuit board hole. This staking operation is illustrated in U.S. Pat. Nos.
  • circuit board eyelets may include wire grip fingers located generally within the thickness of the circuit board.
  • US. Pat. No. 3,156,517 discloses a solder well terminal staked to a circuit board with wire grip fingers located in the well to one side of the circuit board.
  • the invention relates to an improved self staking wire grip terminal similar to the cylindrical circuit board eyelets of the type illustrated in US. Pat. Nos. 3,368,188 and 3,504,328.
  • the eyelet includes a flange for engaging the top of the circuit board, a cylindrical body portion which fits into a circuit board hole, and a number of collapsable fingers extending downwardly from the body beyond the circuit board.
  • the circuit board is held against an upper flat staking surface so that the upper eyelet flanges are sandwiched between the surface and the top of the circuit board.
  • a lower flat staking surface is then moved toward the upper surface so that it engages the free ends of the fingers.
  • circuit board holes are formed through circuit boards with a relatively large tolerance concerning their location on the board.
  • the conventional conical staking tooling is provided on the staking plate in alignment with the design or intended location of each circuit board hole. In actuality the circuit board hole may be shifted laterally on the board an appreciable distance from the design location. This means that during staking the lower cylindrical flange member is offset with respect to the staking tool and that the member is imperfectly deformed during staking. Eyelets staked in this manner are so imperfectly attached to the circuit board that they must be replaced. This problem is eliminated with the present circuit board eyelet because the specialized staking tooling is not required.
  • the collapsable legs of the present eyelet enable the eyelet to be staked to circuit boards of different thicknesses without impairing the physical. connection between the eyelet and the board. Also the wire grip ends of the fingers serve to retain leads in the eyelet without regard to the thickness of the board. This advantage is important since the thickness of mass produced circuit boards varies appreciably.
  • FIG. 1 is a side view of a terminal strip illustrating a number of eyelets according to the invention
  • FIG. 2 is a view similar to that of FIG. 1 illustrating an individual eyelet held by the strip;
  • FIG. 3 is a view taken along line 3-3 of FIG. 2;
  • FIG. 4 is a partially broken away view illustrating a terminal in a circuit board hole between a pair of staking surfaces
  • FIGS. 5 and 6 are views similar to FIG. 4 illustrating the staking operation
  • FIGS. 7, 8 and 9 are similar to FIGS. 4, 5 and 6 but illustrate the staking operation on a circuit board of greater thickness than that of FIG. 4;
  • FIGS. 10, 11 and 12 are also similar to FIGS. 4, 5 and 6 but illustrates the staking of an eyelet on acircuit board having a thickness less than the circuit board of FIG. 4;
  • FIG. 13 is a view of the top of the eyelet taken along line 13-13 of FIG. 6;
  • FIG. 14 is a sectional view taken through a staked eyelet illustrating a lead held therein by the ends of the staked fingers;
  • FIG. 15 is a view similar to that of FIG. 14 illustrating an embodiment of the invention in which the upper flange includes a number of wire grip fingers;
  • FIG. 16 is a view taken along line I6- 16 of FIG. 15 without the lead illustrating the upper wire grip fingers.
  • Circuit board eyelets 10 illustrated in FIG. 1 are preferably stamp formed from thin sheet metal stock and may be secured at regular intervals to a thin carrier strip 12 by severable connecting portions 14.
  • Each eyelet includes a cylindrical body 16 with a flange 18 on the end thereof adjacent the strip 12.
  • flange 18 includes five tabs 20 arranged around the end of body 16.
  • Portion 14 connecting the eyelet to the strip 12 is an extension of one of the tabs 20.
  • a longitudinal seam 22 extends along the side of the body 16 away from tab 14.
  • the body 16 need not be cylindrical but may have a prismatic or other cross section.
  • collapsable fingers 24 extend from the end of the body 16 away from flange 18 with the free ends or finger tips 26 gripped closely together around the longitudinal axis of the terminal.
  • the tips of the fingers may be slightly spaced from each other, as illustrated in FIG. 1 or may actually touch each other, as illustrated in FIG. 3.
  • the body 16 is cut away between adjacent fingers at 28 to facilitate bending of the fingers during staking of the terminal.
  • the fingers each include three generally flat sections 30, 32 and 34 interconnected by an inwardly directed or inner sharp bend 36 and an outwardly directed or outer sharp bend 38.
  • Flat section 30 extends from body 16 to inner bend 36
  • flat section 32 extends from inner bend 36 to outer bend 38
  • flat section 34 extends from an outer bend 38 to finger tip 26.
  • Outer bend 38 is located approximately midway along the length of the finger and the inner bend 36 is located approximately midway along the length of the portion of finger extending between the body and the outer bend.
  • Outer bend 38 is positioned to the outside of the axis of the finger and is further away from the axis than the inner bend 36.
  • the axis of the finger is defined by a line extending from finger tip 26 to the junction between section 30 and body 16.
  • the width of the fingers 24 varies along the length thereof.
  • the width remains constant from body I6 along flat portion 30 and approximately one half of flat portion 32.
  • the width of the lower part of portion 32 increases to a maximum width just above bend 38. This width is maintained through approximately one half of portion 34 with the width of the free end of portion 34 decreasing to relatively narrow tips 26. This decrease in width permits close positioning of the tips adjacent each other in surrounding relationship to the longitudinal axis of the terminal.
  • Terminals 10 as described may be fitted within circuit board holes 40 formed through the thickness of circuit board 42, as illustrated best in FIG. 4.
  • the flat upper flange l8 rests flush upon printed circuit pad 44 with the terminal body 16 within the hole and fingers 24 extending down from the body and out of the bottom of the hole.
  • a circuit pad may be provided at the bottom of the hole.
  • staking surface 48 is below terminal tips 26. As the plate is raised it engages the tips and forces the same toward each other to assure that the tips engage each other and prevent further lateral movement of the tips.
  • pontinued upward movement of plate 48 collapses the fingers 24 about outer corners 38. The outer corners bend because they are located outwardly of the finger axes. The inner corners 36 do not bend. With the collapse of the fingers resulting from bending at corners 38, the flat portions 30 and 32 are pivoted outwardly of the hole 40 about their juncture with terminal body 16.
  • circuit board 42 is such that this engagement occurs at inner corner 36.
  • staking plate 48 collapses the portions of the fingers below the circuit board, as shown in FIG. 6 which illustrates the terminal fully staked to the circuit board.
  • Staking plates 46 and 48 are then opened to permit removal of the circuit board 42 with staked terminals 20 thereon.
  • Leads 52 may be inserted into the staked terminals as illustrated in FIG. 14. The leads force apart the wire grip ends of the fingers. The ends of the fingers securely hold the leads in place for a subsequent soldering operation.
  • Eyelets 10 are particularly adapted for wave soldering in which case the bottom surface of the circuit board is exposed to a wave of molten solder which flows into the eyelet through openings between the fingers, up through the eyelet body and on to the circuit board pad at the top of the circuit board to form the desired solder joint.
  • the fingers hold the lead in place and prevent lead movement during soldering.
  • the lower staking surface 48 is flat and does not require specialized tooling for staking the terminals. This means that the staking operation is carried out as desired and is not affected by off-center circuit board holes. Also the cost of staking tooling is appreciably reduccd by eliminating the necessity of providing tooling in the lower plate for each individual eyelet in the circuit board. The tolerance for positioning circuit board holes may be decreased to permit location of a hole in a greater area on the circuit board without affecting the reliability of the staking operation. This represents a saving in circuit board costs.
  • FIGS. 4, 5 and 6 illustrate the staking of an eyelet 10 to a circuit board 42 having a nominal thickness for the eyelet.
  • the eyelet may also be staked to circuit boards having a thickness less than that of the nominal thickness circuit board or to circuit boards having a thickness greater than that of the nominal thickness circuit board.
  • FIGS. 7, 8 and 9 illustrate staking of an eyelet 10 to a circuit board 54 having a thickness greater than that of circuit baord 42.
  • FIGS. l0, l1 and 12 illustrate staking of the same eyelet to a circuit board 56 having a thickness less than the thickness of circuit board 42.
  • a terminal 10 is positioned in a circuit board hole 58 extending through board 54 with the upper flange 18 held flush on the top of the board by upper staking plate 46.
  • the lower flat staking plate 48 is raised to bring the finger tips 26 together. Further raising of the plate collapses the fingers 24 about outer bends 38 in a manner similar to the collapse during the initial staking of an eyelet 10 to circuit board 42. As flat portions 30 and 32 of each finger are bent outwardly away from body 16, portion 32 engages the lower corner 60 of hole 58. Further upward movement of staking plate 48 results in a collapse of the exposed portions of fingers 24. The staking operation is completed when the lower staking plate reaches the position of FIG.
  • FIGS. 10, 11 and 12 illustrate staking a terminal 10 to a circuit board having a thickness less than that of circuit board 32.
  • the staking operation is essentially the same as that previously described with the exception that during the initial staking step flat portion 30 is brought into engagement with the lower corner 62 of circuit board hole 64. Further upward movement of the lower staking plate collapses the fingers about the corner 62, as illustrated, in essentially the same manner as shown in FIGS. 6 and 9. Again leads may be inserted into the staked eyelets on board 56 prior to a soldering operation.
  • the outward bending of the legs brings the narrow width portion of the legs 24 into contact with the lower corner of the circuit board hole.
  • This contact between the lower corner of the hole and the minimum width portion of the legs assures that the legs bend about the corner at the contact point to securely hold the eyelet to the circuit board.
  • the legs are weakened at the contact point because of the reduced width in order to assure the desired bending at the lower hole corner during staking.
  • FIGS. and 16 illustrate a further embodiment of the invention in which the upper flange 18 engages reverse bend wire grip fingers 66 which form extensions of tabs 20 bent back on top of the tabs and extending over the interior of body 16. These fingers provide additional wire grip support for retaining a lead 70 in the eyelet. It is frequently desirable to secure a lead in place against possible lateral movement during soldering. This is assured by providing the spaced pair of wire grip fingers. With the exception of the additional wire grip fingers 66, the eyelet 68 of FIGS. 15 and 16 is identical to eyelet 10.
  • Circuit board holes are conventionally formed by either a drilling or a punching operation. In both these operations it is difficult to accurately control the diameter of the hole.
  • the variation in circuit board hole diameter mades it difficult to stake conventional eyelets to circuit boards.
  • Eyelets of the type disclosed herein represent an improvement over conventional eyelets in this regard since the staking legs 24 bend outwardly of the hole until they engage the edge of the hole.
  • a tight staked joint is formed between the eyelet and the circuit board without regard to the diameter of the individual hole.
  • the tight physical connection between the eyelet and the circuit board improves the subsequently formed solder connection.
  • a circuit board eyelet adapted to be staked in a circuit board hole comprising a hollow generally cylindrical body, flange means at one end of the body having a central longitudinal axis, and a plurality of spaced staking fingers extending away from the other end of the body with the free ends of the fingers grouped'together in converging relation adjacent the axis of the eyelet, each finger including a sharp outer bend located between the body and the finger ends defining an apex facing generally inwardly toward said axis and a sharp inner bend defining an apex facing generally outwardly away from said axis located between the body and the outer bend, whereby during staking the portions of the fingers between the body and the outer bends are pivoted away from said axis and into contact with the adjacent edge of the circuit board hole, the ends of the fingers forming means for receiving and holding a lead inserted through the eyelet body.
  • each finger includes a first flat portion extending from the body to said inner bend, a second flat portion extending from the inner bend to the outer bend and a third flat portion extending form the outer bend to the end of the finger.
  • a circuit board eyelet comprising a generally cylindrical body having a central longitudinal axis, an outwardly extending flange at one end of the body, and a plurality of collapsable fingers extending from the other end of the body, each finger including a sharp outer bend located approximately midway along the length thereof defining an apex facing generally inwardly toward said axis and a sharp inner bend located approximately midway along the portion thereof between said body and said outer bend defining an apex facing generally outwardly, away from said axis, said outer bend being located further from a line extending from the tip of the finger to the junction between the finger and the body than said inner bend whereby upon axial collapse of the eyelet positioned in the circuit board hole said legs first collapse about said outer bend to move said leg portions outwardly against the circuit board hole to confine the eyelet in the hole;

Abstract

A wire grip circuit board terminal having a cylindrical body, a circumferential flange on one end and collapsable fingers on the other end. The collapsable fingers permit staking of the terminals to circuit boards of different thicknesses. The terminals are staked to circuit boards without the necessity of special staking tooling for collapsing the fingers. The ends of the fingers grip wires inserted into the terminals.

Description

United States Patent Marks Dec. 11, 1973 SELF-STAKING WIRE GRIP TERMINAL [56] References Cited [75] Inventor: Richard L. Marks, Mechanicsburg, UNITED STATES PATENTS Pa. 3,336,828 8/1967 Granger 85/71 [131 Assign: Berg Electronics, 1119-, New 332333 1/132? l r'ii'lljiiji 3331i;
Cumberland, Pa. FOREIGN PATENTS OR APPLlCATlONS [22] 1972 67,574 12 1913 Switzerland 24 219 211 Appl. No.: 304,090
Primary ExaminerMarvin A. Champion 1521 U.S. c1 339/220 R, 339/258 P, 339/276 R, Hafer 85/7l [51] Int. Cl H01! 9108 [58] Field of Search 339/217 R, 217 s, [57] ABSTRACT 339/217 PS, 217 JP, 220 R, 220 A, 220 C, 220 L, 220 T, 219 R, 219 F, 258 R, 258 A, 258 C, 258 F, 258 P, 258 S, 258 T, 258 TC, 256 R, 275 R, 275 A, 275 B, 275 C, 275 E, 275 R, 275 T, 252 P, 276 R, 276 A, 276 C, 276 D, 276 E, 276 F, 276 R, 258 RR; 29/203, 625, 626; 85/71, 37; 24/94, 73 D, 95, 96, 213, 219
A wire grip circuit board terminal having a cylindrical body, a circumferential flange on one end and collapsable fingers on the other end. The collapsable fingers permit staking of the terminals to circuit boards of different thicknesses. The terminals are staked to circuit boards without the necessity of special staking tooling for collapsing the fingers. The ends of the fingers grip wires inserted into the terminals.
6 Claims, 16 Drawing Figures "IIII-lIDIIIIIIII-IIIII lll ll .t
SELF-STAKING WIRE GRIP TERMINAL Wire grip circuit board eyelets of the type shown in US Pat. Nos. 3,368,188 and 3,504,328 are well known in the art. These terminals include a cylindrical body, a circumferential flange at the upper end of the body and a circumferential flange member at the bottom of the body. The eyelets are inserted in holes formed through the thickness of the circuit board with the circumferential flange member extending outwardly of the board and are staked to the board by generally conical flaring tooling engageable with the circumferential flange member to flare it outwardly of the body about the lower corner of the circuit board hole. This staking operation is illustrated in U.S. Pat. Nos. 3,538,581, 3,571,924 and 3,574,935. All of the patents relating to the evelets per se and to staking of the eyelets to circuit boards are assigned to the assigner of the present invention. The circuit board eyelets may include wire grip fingers located generally within the thickness of the circuit board. US. Pat. No. 3,156,517 discloses a solder well terminal staked to a circuit board with wire grip fingers located in the well to one side of the circuit board.
The invention relates to an improved self staking wire grip terminal similar to the cylindrical circuit board eyelets of the type illustrated in US. Pat. Nos. 3,368,188 and 3,504,328. The eyelet includes a flange for engaging the top of the circuit board, a cylindrical body portion which fits into a circuit board hole, and a number of collapsable fingers extending downwardly from the body beyond the circuit board. During staking the circuit board is held against an upper flat staking surface so that the upper eyelet flanges are sandwiched between the surface and the top of the circuit board. A lower flat staking surface is then moved toward the upper surface so that it engages the free ends of the fingers. As the surfaces close the fingers buckle outwardly of the circuit board hole to engage the lower corner of the hole so that the eyelet is confined in the hole by the upper flange and the outwardly bent portion of the fingers. After staking the free ends of the fingers are close to each other and serve to hold a lead inserted into the eyelet in place prior to and during a soldering operation. If desired, additional wire grip fingers may be provided at the upper flange so that the eyelet includes two sets of wire grip fingers. After staking, leads are inserted in the eyelets and are held by the fingers. The circuit board may then be soldered to form electrical connections between the leads and circuit pads on the board.
During staking the eyelet fingers are deformed to attach the eyelet to the circuit board without the necessity of the conventional conical staking heads. This means that eyelets can be staked to a circuit board with improved reliability. In production, circuit board holes are formed through circuit boards with a relatively large tolerance concerning their location on the board. The conventional conical staking tooling is provided on the staking plate in alignment with the design or intended location of each circuit board hole. In actuality the circuit board hole may be shifted laterally on the board an appreciable distance from the design location. This means that during staking the lower cylindrical flange member is offset with respect to the staking tool and that the member is imperfectly deformed during staking. Eyelets staked in this manner are so imperfectly attached to the circuit board that they must be replaced. This problem is eliminated with the present circuit board eyelet because the specialized staking tooling is not required.
The collapsable legs of the present eyelet enable the eyelet to be staked to circuit boards of different thicknesses without impairing the physical. connection between the eyelet and the board. Also the wire grip ends of the fingers serve to retain leads in the eyelet without regard to the thickness of the board. This advantage is important since the thickness of mass produced circuit boards varies appreciably.
Other objects and features of the invention will become apparent as the description proceeds, especially when taken in conjunction with the accompanying drawings illustrating the invention, of which there are two sheets.
IN THE DRAWINGS FIG. 1 is a side view of a terminal strip illustrating a number of eyelets according to the invention;
FIG. 2 is a view similar to that of FIG. 1 illustrating an individual eyelet held by the strip;
FIG. 3 is a view taken along line 3-3 of FIG. 2;
FIG. 4 is a partially broken away view illustrating a terminal in a circuit board hole between a pair of staking surfaces;
FIGS. 5 and 6 are views similar to FIG. 4 illustrating the staking operation;
FIGS. 7, 8 and 9 are similar to FIGS. 4, 5 and 6 but illustrate the staking operation on a circuit board of greater thickness than that of FIG. 4;
FIGS. 10, 11 and 12 are also similar to FIGS. 4, 5 and 6 but illustrates the staking of an eyelet on acircuit board having a thickness less than the circuit board of FIG. 4;
FIG. 13 is a view of the top of the eyelet taken along line 13-13 of FIG. 6;
FIG. 14 is a sectional view taken through a staked eyelet illustrating a lead held therein by the ends of the staked fingers;
FIG. 15 is a view similar to that of FIG. 14 illustrating an embodiment of the invention in which the upper flange includes a number of wire grip fingers; and
'FIG. 16 is a view taken along line I6- 16 of FIG. 15 without the lead illustrating the upper wire grip fingers.
Circuit board eyelets 10 illustrated in FIG. 1 are preferably stamp formed from thin sheet metal stock and may be secured at regular intervals to a thin carrier strip 12 by severable connecting portions 14. Each eyelet includes a cylindrical body 16 with a flange 18 on the end thereof adjacent the strip 12. As illustrated in FIGS. 3 and 13, flange 18 includes five tabs 20 arranged around the end of body 16. Portion 14 connecting the eyelet to the strip 12 is an extension of one of the tabs 20. A longitudinal seam 22 extends along the side of the body 16 away from tab 14. The body 16 need not be cylindrical but may have a prismatic or other cross section.
Four collapsable fingers 24 extend from the end of the body 16 away from flange 18 with the free ends or finger tips 26 gripped closely together around the longitudinal axis of the terminal. The tips of the fingers may be slightly spaced from each other, as illustrated in FIG. 1 or may actually touch each other, as illustrated in FIG. 3. The body 16 is cut away between adjacent fingers at 28 to facilitate bending of the fingers during staking of the terminal.
As illustrated at FIGS. 2 and 4, the fingers each include three generally flat sections 30, 32 and 34 interconnected by an inwardly directed or inner sharp bend 36 and an outwardly directed or outer sharp bend 38. Flat section 30 extends from body 16 to inner bend 36, flat section 32 extends from inner bend 36 to outer bend 38 and flat section 34 extends from an outer bend 38 to finger tip 26. Outer bend 38 is located approximately midway along the length of the finger and the inner bend 36 is located approximately midway along the length of the portion of finger extending between the body and the outer bend. Outer bend 38 is positioned to the outside of the axis of the finger and is further away from the axis than the inner bend 36. The axis of the finger is defined by a line extending from finger tip 26 to the junction between section 30 and body 16.
As illustrated best in FIG. 4, the width of the fingers 24 varies along the length thereof. The width remains constant from body I6 along flat portion 30 and approximately one half of flat portion 32. The width of the lower part of portion 32 increases to a maximum width just above bend 38. This width is maintained through approximately one half of portion 34 with the width of the free end of portion 34 decreasing to relatively narrow tips 26. This decrease in width permits close positioning of the tips adjacent each other in surrounding relationship to the longitudinal axis of the terminal.
Terminals 10 as described may be fitted within circuit board holes 40 formed through the thickness of circuit board 42, as illustrated best in FIG. 4. The flat upper flange l8 rests flush upon printed circuit pad 44 with the terminal body 16 within the hole and fingers 24 extending down from the body and out of the bottom of the hole. A circuit pad may be provided at the bottom of the hole. After the terminals 10! are positioned in holes 40 in the circuit board, the board is held against a flat upper staking plate 46 so that the flanges 18 are confined against the top of the circuit board. Staking is accomplished by raising a flat lower staking plate 48 up against the projecting ends of fingers 24 to collapse the same, as illustrated in FIGS. 5 and 6, and thereby stake the terminals to the circuit board.
In FIG. 4, staking surface 48 is below terminal tips 26. As the plate is raised it engages the tips and forces the same toward each other to assure that the tips engage each other and prevent further lateral movement of the tips. After the tips have been brought together, pontinued upward movement of plate 48 collapses the fingers 24 about outer corners 38. The outer corners bend because they are located outwardly of the finger axes. The inner corners 36 do not bend. With the collapse of the fingers resulting from bending at corners 38, the flat portions 30 and 32 are pivoted outwardly of the hole 40 about their juncture with terminal body 16.
Outward pivotal movement continues until the fingers engage the bottom corner of the hole 50 as illustrated in FIG. 5. The thickness of circuit board 42 is such that this engagement occurs at inner corner 36. After engagement between the fingers and corner 50, further upward movement of staking plate 48 collapses the portions of the fingers below the circuit board, as shown in FIG. 6 which illustrates the terminal fully staked to the circuit board. Staking plates 46 and 48 are then opened to permit removal of the circuit board 42 with staked terminals 20 thereon. Leads 52 may be inserted into the staked terminals as illustrated in FIG. 14. The leads force apart the wire grip ends of the fingers. The ends of the fingers securely hold the leads in place for a subsequent soldering operation. The soldering operation fills the eyelet bodies with solder to form a reliable electrical connection between the leads and the printed circuit pad on the circuit board. Eyelets 10 are particularly adapted for wave soldering in which case the bottom surface of the circuit board is exposed to a wave of molten solder which flows into the eyelet through openings between the fingers, up through the eyelet body and on to the circuit board pad at the top of the circuit board to form the desired solder joint. The fingers hold the lead in place and prevent lead movement during soldering.
The lower staking surface 48 is flat and does not require specialized tooling for staking the terminals. This means that the staking operation is carried out as desired and is not affected by off-center circuit board holes. Also the cost of staking tooling is appreciably reduccd by eliminating the necessity of providing tooling in the lower plate for each individual eyelet in the circuit board. The tolerance for positioning circuit board holes may be decreased to permit location of a hole in a greater area on the circuit board without affecting the reliability of the staking operation. This represents a saving in circuit board costs.
The staking steps shown in FIGS. 4, 5 and 6 illustrate the staking of an eyelet 10 to a circuit board 42 having a nominal thickness for the eyelet. The eyelet may also be staked to circuit boards having a thickness less than that of the nominal thickness circuit board or to circuit boards having a thickness greater than that of the nominal thickness circuit board. FIGS. 7, 8 and 9 illustrate staking of an eyelet 10 to a circuit board 54 having a thickness greater than that of circuit baord 42. FIGS. l0, l1 and 12 illustrate staking of the same eyelet to a circuit board 56 having a thickness less than the thickness of circuit board 42.
Referring now to FIGS. 7, 8 and 9, a terminal 10 is positioned in a circuit board hole 58 extending through board 54 with the upper flange 18 held flush on the top of the board by upper staking plate 46. The lower flat staking plate 48 is raised to bring the finger tips 26 together. Further raising of the plate collapses the fingers 24 about outer bends 38 in a manner similar to the collapse during the initial staking of an eyelet 10 to circuit board 42. As flat portions 30 and 32 of each finger are bent outwardly away from body 16, portion 32 engages the lower corner 60 of hole 58. Further upward movement of staking plate 48 results in a collapse of the exposed portions of fingers 24. The staking operation is completed when the lower staking plate reaches the position of FIG. 9 and the portions of fingers 24 projecting outwardly of hole 58 are collapsed as illustrated. As in the staking operations illustrated in FIGS. 4 through 6 and FIGS. 10 through 12, the fingers are held tightly against the bottom corner of the circuit board hole during the final collapse of the exposed finger portions. After the staking tooling has opened and the board and terminals are removed from the staking apparatus, leads may be inserted into the terminal between the wire grip ends of the fingers prior to the soldering operation of the type previously described.
FIGS. 10, 11 and 12 illustrate staking a terminal 10 to a circuit board having a thickness less than that of circuit board 32. The staking operation is essentially the same as that previously described with the exception that during the initial staking step flat portion 30 is brought into engagement with the lower corner 62 of circuit board hole 64. Further upward movement of the lower staking plate collapses the fingers about the corner 62, as illustrated, in essentially the same manner as shown in FIGS. 6 and 9. Again leads may be inserted into the staked eyelets on board 56 prior to a soldering operation.
During staking of a terminal 10 to any of circuit boards 42, 54 and 56 the outward bending of the legs brings the narrow width portion of the legs 24 into contact with the lower corner of the circuit board hole. This contact between the lower corner of the hole and the minimum width portion of the legs assures that the legs bend about the corner at the contact point to securely hold the eyelet to the circuit board. The legs are weakened at the contact point because of the reduced width in order to assure the desired bending at the lower hole corner during staking.
The movement of the staking tooling 46 and 48 in staking eyelets 10 to circuit board 42, 54 and 56 is identical. Thus, on a production run it is not necessary to alter the adjustment of the staking tooling to accomodate circuit boards of different thicknesses.
FIGS. and 16 illustrate a further embodiment of the invention in which the upper flange 18 engages reverse bend wire grip fingers 66 which form extensions of tabs 20 bent back on top of the tabs and extending over the interior of body 16. These fingers provide additional wire grip support for retaining a lead 70 in the eyelet. It is frequently desirable to secure a lead in place against possible lateral movement during soldering. This is assured by providing the spaced pair of wire grip fingers. With the exception of the additional wire grip fingers 66, the eyelet 68 of FIGS. 15 and 16 is identical to eyelet 10.
Circuit board holes are conventionally formed by either a drilling or a punching operation. In both these operations it is difficult to accurately control the diameter of the hole. The variation in circuit board hole diameter mades it difficult to stake conventional eyelets to circuit boards. Eyelets of the type disclosed herein represent an improvement over conventional eyelets in this regard since the staking legs 24 bend outwardly of the hole until they engage the edge of the hole. Thus, a tight staked joint is formed between the eyelet and the circuit board without regard to the diameter of the individual hole. The tight physical connection between the eyelet and the circuit board improves the subsequently formed solder connection.
While I have illustrated and described preferred embodiments of my invention, it is understood that these are capable of modification, and I therefore do not wish to be limited to the precise details set forth, but desire to avail myself of such changes and alterations as fall within the purview of the following claims.
What I claim as my invention is:
1. A circuit board eyelet adapted to be staked in a circuit board hole comprising a hollow generally cylindrical body, flange means at one end of the body having a central longitudinal axis, and a plurality of spaced staking fingers extending away from the other end of the body with the free ends of the fingers grouped'together in converging relation adjacent the axis of the eyelet, each finger including a sharp outer bend located between the body and the finger ends defining an apex facing generally inwardly toward said axis and a sharp inner bend defining an apex facing generally outwardly away from said axis located between the body and the outer bend, whereby during staking the portions of the fingers between the body and the outer bends are pivoted away from said axis and into contact with the adjacent edge of the circuit board hole, the ends of the fingers forming means for receiving and holding a lead inserted through the eyelet body.
2. A circuit board eyelet as in claim 1 wherein each finger includes a first flat portion extending from the body to said inner bend, a second flat portion extending from the inner bend to the outer bend and a third flat portion extending form the outer bend to the end of the finger.
3. A circuit board eyelet as in claim 2 wherein in each finger the outer bend, is located further from a line extending from the tip of the finger to the junction between the finger and the body than the inner bend.
4. A circuit board eyelet as in claim 3 wherein the width of each finger at the inner bend is less than the width of the finger at the outer bend.
5. A circuit board eyelet comprising a generally cylindrical body having a central longitudinal axis, an outwardly extending flange at one end of the body, and a plurality of collapsable fingers extending from the other end of the body, each finger including a sharp outer bend located approximately midway along the length thereof defining an apex facing generally inwardly toward said axis and a sharp inner bend located approximately midway along the portion thereof between said body and said outer bend defining an apex facing generally outwardly, away from said axis, said outer bend being located further from a line extending from the tip of the finger to the junction between the finger and the body than said inner bend whereby upon axial collapse of the eyelet positioned in the circuit board hole said legs first collapse about said outer bend to move said leg portions outwardly against the circuit board hole to confine the eyelet in the hole;
6. A circuit board eyelet as in claim 5 wherein said eyelet includes a set of wire grip fingers extending from outer edges of said flange into the opening at one end of the body, the ends of such fingers being spaced closely together to receive and hold a lead inserted into the body.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3!778'! 755 Dated December 11, 1973 Richard L. Marks Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Signed and sealed this 9th day of April 197R.
(SEAL) Attest:
C. MARSHALL DANN EDWARD MJ LETCHER,JR.
Commissioner of Patents Attesting Officer ORM PC4050 I uscoMM-Dc 60376-P69 fl US. GOVERNMENT PRINTING OFFICE: 9'9 0-365-33 3 9

Claims (6)

1. A circuit board eyelet adapted to be staked in a circuit board hole comprising a hollow generally cylindrical body, flange means at one end of the body having a central longitudinal axis, and a plurality of spaced staking fingers extending away from the other end of the body with the free ends of the fingers grouped together in converging relation adjacent the axis of the eyelet, each finger including a sharp outer bend located between the body and the finger ends defining an apex facing generally inwardly toward said axis and a sharp inner bend defining an apex facing generally outwardly away from said axis located between the body and the outer bend, whereby during staking the portions of the fingers between the body and the outer bends are pivoted away from said axis and into contact with the adjacent edge of the circuit board hole, the ends of the fingers forming means for receiving and holding a lead inserted through the eyelet body.
2. A circuit board eyelet as in claim 1 wherein each finger includes a first flat portion extending from the body to said inner bend, a second flat portion extending from the inner bend to the outer bend and a third flat portion extending form the outer bend to the end of the finger.
3. A circuit board eyelet as in claim 2 wherein in each finger the outer bend is located further from a line extending from the tip of the finger to the junction between the finger and the body than the inner bend.
4. A circuit board eyelet as in claim 3 wherein the width of each finger at the inner bend is less than the width of the finger at the outer bend.
5. A circuit board eyelet comprising a generally cylindrical body having a central longitudinal axis, an outwArdly extending flange at one end of the body, and a plurality of collapsable fingers extending from the other end of the body, each finger including a sharp outer bend located approximately midway along the length thereof defining an apex facing generally inwardly toward said axis and a sharp inner bend located approximately midway along the portion thereof between said body and said outer bend defining an apex facing generally outwardly, away from said axis, said outer bend being located further from a line extending from the tip of the finger to the junction between the finger and the body than said inner bend whereby upon axial collapse of the eyelet positioned in the circuit board hole said legs first collapse about said outer bend to move said leg portions outwardly against the circuit board hole to confine the eyelet in the hole.
6. A circuit board eyelet as in claim 5 wherein said eyelet includes a set of wire grip fingers extending from outer edges of said flange into the opening at one end of the body, the ends of such fingers being spaced closely together to receive and hold a lead inserted into the body.
US00304090A 1972-11-06 1972-11-06 Self-staking wire grip terminal Expired - Lifetime US3778755A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US30409072A 1972-11-06 1972-11-06

Publications (1)

Publication Number Publication Date
US3778755A true US3778755A (en) 1973-12-11

Family

ID=23175006

Family Applications (1)

Application Number Title Priority Date Filing Date
US00304090A Expired - Lifetime US3778755A (en) 1972-11-06 1972-11-06 Self-staking wire grip terminal

Country Status (3)

Country Link
US (1) US3778755A (en)
DE (1) DE2355355A1 (en)
GB (1) GB1447073A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046445A (en) * 1976-08-23 1977-09-06 International Telephone And Telegraph Corporation Spring bushing for conductive back-plane connection
US4123640A (en) * 1976-05-27 1978-10-31 General Motors Corporation Push button type switch having deformable housing sleeve for permanent attachment to conductive panel
FR2460092A1 (en) * 1979-06-25 1981-01-16 Castanet Raymond Insert for holding component legs on PCB - is collar inserted through board with tongues clamping wire
US4585295A (en) * 1982-09-30 1986-04-29 Universal Instruments Corporation Circuit board eyelet-type wire gripper
EP0250097A1 (en) * 1986-06-19 1987-12-23 The Whitaker Corporation Electrical connector for easy assembly onto a circuit board and eyelets therefor
US4731034A (en) * 1987-03-16 1988-03-15 Elco Industries, Inc. Electrical terminal assembly and method of making the same
US4842552A (en) * 1988-03-04 1989-06-27 Amp Incorporated Tolerance forgiving boardlock
US4865555A (en) * 1987-08-03 1989-09-12 Amp Incorporated Connector with open-ended boardlock
US5131853A (en) * 1991-08-12 1992-07-21 Delco Electronics Corporation Low profile receptacle terminal for soldering to a circuit board
US5336111A (en) * 1993-09-28 1994-08-09 The Whitaker Corporation Boardlock for an electrical connector
US5393247A (en) * 1994-03-23 1995-02-28 The Whitaker Corporation Component mounting device
US5489219A (en) * 1994-05-24 1996-02-06 The Whitaker Corporation Self-retaining board lock
US5997367A (en) * 1995-06-05 1999-12-07 Vlt Corporation Adapter
US20040258499A1 (en) * 2003-06-18 2004-12-23 Koushik Saha Fastener for internal refrigerator/freezer elements
US20050129461A1 (en) * 2002-02-11 2005-06-16 Bruno David J. Two-part snap-together panel fastener
US6969220B2 (en) * 2003-04-24 2005-11-29 Black & Decker Inc. Wall anchor for a screw, and assembly constituted by such a wall anchor and a screw
US8721376B1 (en) * 2012-11-01 2014-05-13 Avx Corporation Single element wire to board connector
US9136641B2 (en) 2012-11-01 2015-09-15 Avx Corporation Single element wire to board connector
US9255596B2 (en) * 2011-09-14 2016-02-09 Profil Verbindungstechnik Gmbh & Co. Kg Rivet element
US20160221069A1 (en) * 2013-09-17 2016-08-04 Profil Verbindungstechnik Gmbh & Co. Kg Rivet element
US20180287270A1 (en) * 2017-03-29 2018-10-04 Te Connectivity Germany Gmbh Electrical Contact Element And Method of Producing A Hard-Soldered, Electrically Conductive Connection to a Mating Contact by Means of A Pressed-In Soldering Body Made from Hard Solder
US10218107B2 (en) 2014-10-06 2019-02-26 Avx Corporation Caged poke home contact
US10320096B2 (en) 2017-06-01 2019-06-11 Avx Corporation Flexing poke home contact
US10707598B2 (en) * 2018-01-23 2020-07-07 Tyco Electronics (Shanghai) Co. Ltd. Conductive terminal and connector assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091610A (en) * 2006-10-02 2008-04-17 Sumitomo Wiring Syst Ltd Printed-circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH67574A (en) * 1913-12-19 1915-01-16 Alfred Weibel stud
US2967285A (en) * 1958-05-21 1961-01-03 Foxboro Co Electrical pin-board data system
US3336828A (en) * 1964-08-05 1967-08-22 Anciens Etablissements Bac Blind nuts
US3505921A (en) * 1969-03-21 1970-04-14 Illinois Tool Works Fastening device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH67574A (en) * 1913-12-19 1915-01-16 Alfred Weibel stud
US2967285A (en) * 1958-05-21 1961-01-03 Foxboro Co Electrical pin-board data system
US3336828A (en) * 1964-08-05 1967-08-22 Anciens Etablissements Bac Blind nuts
US3505921A (en) * 1969-03-21 1970-04-14 Illinois Tool Works Fastening device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123640A (en) * 1976-05-27 1978-10-31 General Motors Corporation Push button type switch having deformable housing sleeve for permanent attachment to conductive panel
US4046445A (en) * 1976-08-23 1977-09-06 International Telephone And Telegraph Corporation Spring bushing for conductive back-plane connection
FR2460092A1 (en) * 1979-06-25 1981-01-16 Castanet Raymond Insert for holding component legs on PCB - is collar inserted through board with tongues clamping wire
US4585295A (en) * 1982-09-30 1986-04-29 Universal Instruments Corporation Circuit board eyelet-type wire gripper
EP0250097A1 (en) * 1986-06-19 1987-12-23 The Whitaker Corporation Electrical connector for easy assembly onto a circuit board and eyelets therefor
US4717219A (en) * 1986-06-19 1988-01-05 Amp Incorporated Electrical connector and assembly eyelets
US4731034A (en) * 1987-03-16 1988-03-15 Elco Industries, Inc. Electrical terminal assembly and method of making the same
US4865555A (en) * 1987-08-03 1989-09-12 Amp Incorporated Connector with open-ended boardlock
US4842552A (en) * 1988-03-04 1989-06-27 Amp Incorporated Tolerance forgiving boardlock
US5131853A (en) * 1991-08-12 1992-07-21 Delco Electronics Corporation Low profile receptacle terminal for soldering to a circuit board
US5336111A (en) * 1993-09-28 1994-08-09 The Whitaker Corporation Boardlock for an electrical connector
US5393247A (en) * 1994-03-23 1995-02-28 The Whitaker Corporation Component mounting device
US5489219A (en) * 1994-05-24 1996-02-06 The Whitaker Corporation Self-retaining board lock
US5997367A (en) * 1995-06-05 1999-12-07 Vlt Corporation Adapter
US20050129461A1 (en) * 2002-02-11 2005-06-16 Bruno David J. Two-part snap-together panel fastener
US6969220B2 (en) * 2003-04-24 2005-11-29 Black & Decker Inc. Wall anchor for a screw, and assembly constituted by such a wall anchor and a screw
US20040258499A1 (en) * 2003-06-18 2004-12-23 Koushik Saha Fastener for internal refrigerator/freezer elements
US9255596B2 (en) * 2011-09-14 2016-02-09 Profil Verbindungstechnik Gmbh & Co. Kg Rivet element
US9768527B2 (en) 2012-11-01 2017-09-19 Avx Corporation Single element wire to board connector
US9166325B2 (en) 2012-11-01 2015-10-20 Avx Corporation Single element wire to board connector
US9136641B2 (en) 2012-11-01 2015-09-15 Avx Corporation Single element wire to board connector
US9466893B2 (en) 2012-11-01 2016-10-11 Avx Corporation Single element wire to board connector
US8721376B1 (en) * 2012-11-01 2014-05-13 Avx Corporation Single element wire to board connector
US10116067B2 (en) 2012-11-01 2018-10-30 Avx Corporation Single element wire to board connector
US20160221069A1 (en) * 2013-09-17 2016-08-04 Profil Verbindungstechnik Gmbh & Co. Kg Rivet element
US10218107B2 (en) 2014-10-06 2019-02-26 Avx Corporation Caged poke home contact
US20180287270A1 (en) * 2017-03-29 2018-10-04 Te Connectivity Germany Gmbh Electrical Contact Element And Method of Producing A Hard-Soldered, Electrically Conductive Connection to a Mating Contact by Means of A Pressed-In Soldering Body Made from Hard Solder
US11145995B2 (en) * 2017-03-29 2021-10-12 Te Connectivity Germany Gmbh Electrical contact element and method of producing a hard-soldered, electrically conductive connection to a mating contact by means of a pressed-in soldering body made from hard solder
US10320096B2 (en) 2017-06-01 2019-06-11 Avx Corporation Flexing poke home contact
US10566711B2 (en) 2017-06-01 2020-02-18 Avx Corporation Flexing poke home contact
US10707598B2 (en) * 2018-01-23 2020-07-07 Tyco Electronics (Shanghai) Co. Ltd. Conductive terminal and connector assembly

Also Published As

Publication number Publication date
DE2355355A1 (en) 1974-05-16
GB1447073A (en) 1976-08-25

Similar Documents

Publication Publication Date Title
US3778755A (en) Self-staking wire grip terminal
US3504328A (en) Circuit board eyelet
US3777303A (en) Hole liner for printed circuit boards
US3718895A (en) Connecting device for printed circuit board
EP0302901B1 (en) Solderable lead
EP0250097B1 (en) Electrical connector for easy assembly onto a circuit board and eyelets therefor
US4017143A (en) Solderless electrical contact
US4821411A (en) Method of manufacturing electrical contact pins
US4017142A (en) Self-staking circuit board pin contact
EP0516023B1 (en) Pylon actuated locking eyelet
US3951494A (en) Electrical connector
EP0138309A1 (en) Compliant press-fit electrical contact
US3818423A (en) Integrated circuit terminal and method
US3992076A (en) Circuit board socket
US4534603A (en) Assembly of a contact spring and wire wrap terminal
GB2310088A (en) Surface mount connector promoting capilliary action
EP0831502A1 (en) Method for producing an electrolytic capacitor
US3955877A (en) Low profile contact
US4343530A (en) Wave solderable quick disconnect male terminal for printed circuit boards
US5062818A (en) Miniature bulb assembly and method of producing the same
US3158425A (en) Pin socket for printed circuit board
US5788515A (en) Electrical connector for mounting on the surface of a printed circuit board
US4720268A (en) Compliant conductive pin
JP3085572B2 (en) Connection terminal
US4125309A (en) Miniature pin board assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: BERG TECHNOLOGY, INC., NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:E.I. DU PONT DE NEMOURS AND COMPANY;REEL/FRAME:008321/0185

Effective date: 19961209