US3777274A - Electronic interaction guide structure for acoustic surface waves - Google Patents

Electronic interaction guide structure for acoustic surface waves Download PDF

Info

Publication number
US3777274A
US3777274A US00218732A US3777274DA US3777274A US 3777274 A US3777274 A US 3777274A US 00218732 A US00218732 A US 00218732A US 3777274D A US3777274D A US 3777274DA US 3777274 A US3777274 A US 3777274A
Authority
US
United States
Prior art keywords
drift
piezoelectric
surface waves
acoustic surface
lossy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00218732A
Inventor
D Abraham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Application granted granted Critical
Publication of US3777274A publication Critical patent/US3777274A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/0296Surface acoustic wave [SAW] devices having both acoustic and non-acoustic properties
    • H03H9/02976Surface acoustic wave [SAW] devices having both acoustic and non-acoustic properties with semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F13/00Amplifiers using amplifying element consisting of two mechanically- or acoustically-coupled transducers, e.g. telephone-microphone amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02779Continuous surface reflective arrays
    • H03H9/02787Continuous surface reflective arrays having wave guide like arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6403Programmable filters

Definitions

  • ABSTRACT 12 Claims 6 Drawing Figures SOURCE DRIFT FIELD PAIENIEDBEE 4W 3.777.274
  • the storing or delaying of one signal and comparing it with the next signal received is a typical processing function performed by a delay line and the delay line, in particular, illustrates the advantages of using acoustical or microsonic techniques in conjunction with the more familiar electromagnetic spectrum devices.
  • a microsound or acoustical delay line one centimeter long can provide as much delay as l kilometer of coaxial cable. Consequently, if one requires a complex processing system consisting of vast number of delays, switching devices, etc., as alluded to above in the area of realtime radar signal processing, the use of microsound or acoustical devices rather than standard electromagnetic hardware would greatly reduce the structural volume of devices required.
  • acoustic surface waves have been propagated on crystals with very low losses and, in addition, amplification of such acoustic surface waves has been accomplished by exciting the acoustic surface waves on a minimum loss, single crystal piezoelectric medium and then imparting energy to the surface waves by means of the interaction between such surface waves and high mobility drift electrons established in an adjacent semiconductor with a drift velocity slightly in excess of the acoustic wave velocity; the critical dimension in the amplifier structure being that the spacing between the piezoelectric surface and the semiconductor must be comparable to or smaller than an acoustic wavelength.
  • the single crystal piezoelectrics utilized to attain minimum acoustical losses have an inherent high orientation dependence in order to achieve good piezoelectric property; i.e., electromechanical conversion.
  • a narrow guide strip is mounted on an acoustic surface wave supporting substrate material effective to produce a socalled localized perturbed region having elastic properties different from the substrate.
  • the acoustic surface (or bulk) waves are guided or restricted in their-propagation due to reflections at the edges of the guide strip material resulting from discontinuity in the propagation velocity between the guide material strip and the substrate.
  • Such a guide structure is considered practical only where the width of the guide strip is approximately equal to an acoustic wavelength or less, inasmuch as energy losses are otherwise very large; whereas, fabrication of such a structure becomes increasingly more difficult as the frequency of the surface wave is increased.
  • the guiding of acoustic surface waves does not depend upon geometrical constraints but rather is accomplished by generating or exciting the surface waves in a piezoelectric material which is purposely made lossy (rather than having minimum loss as in surface wave amplifiers) and then maintaining the wave amplitude only in the chosen propagation path or paths by employing the above-described amplifying principle to balance the losses in the piezoelectric material.
  • a drift electron flow is established adjacent the lossy piezoelectric, with the drift electron channel defining the desired propagation path for the acoustic waves, such that the drift electrons will impart energy to sustain the acoustic surface waves only along the desired propagation path.
  • the acoustic surface waves will die out; i.e., be severely attenuated, due to the lossy nature of the piezoelectric.
  • the piezoelectric material is polycrystalline in nature, rather than a single crystal material as used in surface wave amplifiers, and the necessary level of acoustical energy loss is thus attained by means of the well-known grain boundary scattering effect.
  • the acoustical loss or attenuation coefficient a for the polycrystalline piezoelectric is selected, in accordance with the present invention, such that the surface waves will be propagated along the desired guide path with no significant attenuation
  • the polycrystalline nature of the piezoelectric material utilized in the proposed guide structure imposes no orientation dependence restrictions on the direction of propagation, thus permitting the surface waves to be guided along angled or curved paths and facilitating the creation of junctions between paths; thereby providing for structures in which the acoustical waves can be made to mix or can be fanned out.
  • a guide structure for the acoustic surface waves is formed by epitaxially mounting a semiconductor material on a high resistivity substrate to form a drift electron conduction channel; A lossy thin film of polycrystalline piezoelectric material is then brought in close proximity to the semi-conductor drift electron pathby depositing the piezoelectric film on the substrate overlying the epitaxial semiconductor.
  • a source of drift field voltage connected across the ends of the semiconductor drift electron channel and a suitable transducer connected to create or excite the acoustic surface waves in the lossy piezoelectric film, the surface waves will propagate along a path, determined by the path of the drift electron flow, towards a second or receiving transducer.
  • acoustic surface waves may be propagated through any desired length path, to achieve varying amounts of delay, by proper configuration of the drift electron flow channel and/or selectively routed in any desired path or paths through the lossy piezoelectric film by proper selective application of drift field voltages to a network of drift electron flow channels or paths.
  • One object of the present invention is thus to provide a method and apparatus for guiding acoustic surface waves.
  • Another object of the present invention is to provide a method andapparatus for guiding acoustic surface waves in a lossy piezoelectric material dueto the inter action of the acoustic waves and an adjacent drift electron flow.
  • Another object of the present invention is to provide a method and apparatus for selectively routing or guiding acoustic surface waves through a network of propagation paths.
  • Another object of the present invention is to provide a method and apparatus for guiding acoustic surface waves in a lossy piezoelectricmaterial by selectively establishing a drift electron flow in a network of conduction channels which interacts with the acoustic surface waves and imparts energy to the surface waves to sustain propagation thereof.
  • a further object of the present invention is to provide a guide structure for acoustic surface waves which takes advantage of existing semiconductor technology in order to reduce the required physical dimensions of the guide structure and improve its operating characteristics.
  • FIG, 4 is a perspective view of a further embodiment of the proposed guide structure of the present invention with the piezoelectric thin film removed to show an alternate configuration of a drift electron channel;
  • FIG. 5 is a perspective view of a still further embodiment of the proposed guide structure of the present invention with the piezoelectric thin film removed to show a network configuration of drift electron channels;
  • FIG. 6 is a diagrammatic illustration of circuitry for controlling the polarity of energization of a drift electron channel.
  • the acoustical surface wave guide structure constituting the illustrated embodiment of the invention is shown ascontaining two adjacent guide or propagation paths A and B, separated by a minimum distance d.
  • the structure associated with each of these guide paths is the same and has been illustrated in more detail in FIGS. 2 and 3.
  • the illustrated embodiment of the present invention comprises a substrate 10 of high resistivity (10 10' ohm/centimeter) material such as chromium doped single crystal gallium-arsenide.
  • Epitaxially mounted in the upper surface of the substrate 10 is a layer or film (approximately 3 micrometers thick) of high electron mobility semiconductor material, such as n-type gallium-arsenide, for example, in the form of one or more drift electron conducting channels (two of which are assumed in the embodiment of FIG. 1 with one, designated at 11b, being shown in detail in FIG. 2) which can be formed by epitaxial chemical vapor deposition.
  • the desired pattern or configuration of the conduction channel(s) 11 can be created either during the formation of the semiconductor film by suitable masking or subsequent to the film formation by pattern etching.
  • the semiconductor material used in the conduction channels 11 is preferably formed from a high quality single crystal in order to attain high electron mobility, to minimize electrical losses and to reduce the magnitude of the required drift fields. This, in turn, imposes the requirement that the substrate 10 upon which the semiconductor is prepared should also be a defectfree single crystal.
  • suitable substrate/semiconductor combinations include epitaxial silicon on sapphire and silicon on silicon.
  • the interaction between the drift electrons and the electric field associated with the acoustic waves takes place entirely within the semiconductor; this electric field decaying exponentically as it penetrates the semiconductor. Since the depth of penetration decreases as the conductivity of the semiconductor increases and since conductivity is proportional to the product of carrier mobility and concentration, it is desirable to keep the number of carriers in the semiconductor toa minimum inasmuch as it is preferable to have as high a carrier mobility as possible. Subject to these constraints there is no point in having the semiconductor film any thicker than the electric field penetration depth. As noted earlier, the thickness of a typical semiconductor channel (see FIGS. 2 and 3) is approximately three micrometers.
  • a lossy, polycrystalline piezoelectric thin film 12 approximately one micrometer thick is then deposited on the substrate 10, overlying the epitaxial semiconductor layer 11, with uniform spacing between the surface of the piezoelectric 12 and the electron drift region, inasmuch as the necessary interaction between the surface waves and the drift electrons cannot take place unless the drift electrons occupy a region in space closer than approximately one acoustic wavelength to the surface on which the surface waves are propagating.
  • the piezoelectric 12 can be formed from polycrystalline aluminum nitride deposited by reactive sputtering or similar technique.
  • the polycrystalline nature of the piezoelectric 12 prevents the structure from being orientation dependent, as is essential for proper guiding of the surface waves; i.e., the piezoelectric 12 is substantially isotropic over a dimension comparable to the width of a guide path, typically l0 centimeter, which requirement can be met if the microcrystallites comprising the piezoelectric film 12 have lateral dimensions less than approximately centimeter and are randomly oriented in the plane of the film 12.
  • the grain boundary scattering effect of this polycrystalline material 12 provides the mechanism to attain the necessary level of acoustical energy loss, as defined hereinabove; i.e., the attenuation coefficient a for acoustic waves propagating on the surface of piezoelectric film 12 must be sufficient to insure that a signal S, which is being maintained with unity net gain along a guide path by the interaction with adjacent drift electrons, with an interaction gain coefficient B, will be reduced to a level below that of the acceptable noise N at an adjacent guide path.
  • the minimum separation between guide paths A and B.(see FIG. 1) is designated as d
  • S, in the adjacent path or channel (path A) is given by the expression S S,,e where e is the base of the natural logarithm.
  • the interaction gain coefficient B for a particular guide path is equal to the attenuation a
  • the general expression for the signal S in the. guide path (e.g., path A) is S S c B S,,, where x is any distance along a guide path at which S is to be determined.
  • the signal S must be less than the acceptable noise N and since S S e" the minimum desired acoustical attenuation or loss factor a is given by the inequality a Ln (S /N) Expressed in decibels per centimeter, this minimun attenuation a for the piezoelectric 12 becomes a (db/cm) l0/d (Log S /N).
  • the acoustical loss or attenuation a must be less than the maximum or saturation interaction gain B achievable along the guide path.
  • acoustical loss or attenuation a will vary from one guide structure to another depending upon the requirements of practice.
  • the transducers 13a, b are connected to receive associated RF input signals and the others of which, 14a, b, are connected to suitable RF output circuitry.
  • the transducers 13a, b converts the RF input signals into corresponding acoustic surface waves applied to the surface of the piezoelectric thin film 12; whereas, the transducers 14a, b receive or pick up the acoustic surface waves after they have propagated along guide paths A and/or B on the piezoelectric 12 and converts each of the acoustical signals back into an RF output signal which is time delayed from the associated input RF signal, by an amount dependent upon the propagation time of the acoustic surface wave in and therefore the propagation path length of the associated guide path on the piezoelectric.
  • the transducers are shown "in the drawings as being of the well-known interdigital type merely for the purposes of illustration and that where it is necessary, in order to excite an acoustic wave, that the electric field applied to the piezoelectric 12 have a large component normal to the piezoelectric surface, one electrode could be placed under the piezoelectric film 12 and a counterelectrode placed on top of the film 12. Furthermore, if it is required that the transducer impedance match the impedance of the piezoelectric surface, the counterelectrode could be formed with a proper number of parallel elements, in
  • the piezoelectric film 12 is also provided with apertures 15a, b and 16a, b which permit connection of drift field voltage sources 17a and b to the end terminals of the epitaxial semiconductor channels (e.g., terminal contacts 18b and 19b for channel 11b in FIG. 2) in order to establish a drift electron flow from left to right in FIGS. 1 and 2, for example, in each of the epitaxial semiconductor layers.
  • the apertures or windows 15a, b and 16a, b might be formed by etching and the contact terminals (e.g., 18b and 19b) might be formed by diffusing a gold-tin film into the surface of the semiconductor material.
  • these contacts are ohmic in nature; i.e., non-rectifying.
  • the drift electron flow within a semiconductor channel imparts energy to the acoustic surface wave introduced into polycrystalline piezoelectric thin film 12, at the associated input trans ducer 13a, b, only along the direction of electron flow in that semiconductor channel; i.e., as represented by the dotted propagation paths A and B in FIG. 1.
  • the acoustic surface wave will die out, due to the lossy nature of the piezoelectric thin film 12, as defined hereinabove. Accordingly, by properly positioning the transducers 13a, b and 14a, b
  • the surface waves injected at input transducers 13a and b will propagate or be guided along paths A and B and be received by the output transducers 14a and b respectively.
  • the acoustical loss or attenuation factor a for the piezoelectric 12 is suchthat good signal isolation is maintained between the adjacent guide paths A" and 8".
  • the configuration of a semi- I conductor drift electron channel defines the shape of the associated guide or propagation path for the acoustic surface waves injected at input transducer 13a or b,
  • the polycrystalline piezoelectric material of film 12 is isotropic in the plane of the film so that the interaction between the surface waves and the drift electrons in the semiconductor is independent of the direction of surface wave propagation, as proposed in accordance with the present invention. Therefore, it should be obvious that any desired configuration or length of propagation path for the acoustic surface waves may be obtained by merely changing the configuration of the associated epitaxial conducting channel.
  • the epitaxial semiconductor layer may be of the serpentine configuration shown at 20 in the embodiment of FIG. 4 and thereby cause the input acoustic surface waves injected into the lossy thin film 21, at transducer 22, to follow a relatively long, winding propagation path back to the output transducer 23.
  • the drift field voltage source (not shown) would be connected, via apertures 24 and 25, to the end terminals 26 and 27 of the drift electron channel 20 shown in FIG. 4.
  • the substrate material can support an entire network of drift electron flow channels or paths and that the acoustic surface waves can be routed along the lossy piezoelectric thin film, as desired, by selective application of drift field voltages to the appropriate semiconductor path or paths.
  • the surface wave propagates. Otherwise, it dies out due to the lossy nature of the piezoelectric thin film along which it is propagating.
  • FIG. of the drawings One manner of selectively routing or guiding the acoustic surface waves is illustrated in FIG. of the drawings. More specifically, the semiconductor drift electron material is disposed on the substrate 28 in a Y-network configuration having a single channel portion 29 which leads into a pair of branch channel portions 30 and 31.
  • the piezoelectric thin film 32 is formed with apertures 33, 34, and 35 which permit connection of a drift field source to the ends of the semiconductor channels 29, 30 and 31 respectively, as will be described in more detail shortly, and also transducers 36, 37 and 38 which are aligned with the channels 29, 30 and 31 respectively.
  • one side of a drift field voltage source 39 is connected to end terminal 40 of semiconductor channel 29; whereas, the other side of the source 39 is adapted to be selectively connected to the end terminals 41 and 42 of channels 30 and 31 respectively, in accordance with the position of switch 43.
  • these connections from the source 39 to the semiconductor channels 29, 30 and 31 have not been illustrated as being made through apertures 33, 34 and 35 in the piezoelectric 32.
  • an input RF signal could be applied to transducer 36 and thereby excite an acoustic surface wave in the piezoelectric 32.
  • This surface wave will then be selectively routed or guided to branch channel 30 or 31, depending upon to which of these branch channels the switch 43 connects the other side of drift field source 39; e.g., if the terminal end 42 is connected to the source 39, the acoustic surface wave will propagate along channel 29 and into branch channel 31 where it will be received by transducer 38.
  • FIG. 6 Simplified circuitry for controlling the polarity of energization of the drift electron conduction channels 11 (e.g., see FIG. 2) is illustrated in FIG. 6 and comprises a polarity reversing switch 44 which is connected between a drift field source 17 and the associated terminals l8 and 19 of a conduction channel 11.
  • switch 44 In one position of switch 44, drift electron flow occurs from termina] 18 towards terminal 19 and the acoustic surface waves can therefore propagate from transducer 13 towards transducer 14; whereas, with switch 44 reversed, the drift electron flow is towards terminal 18 and therefore acoustic wave propagation can occur only from transducer 14 towards transducer 13.
  • a guide structure for acoustic surface waves comprising, in combination,
  • a polycrystalline piezoelectric film member having a power loss per unit length or expressed as which said drift electron flow will interact with and impart energy to sustain the propagation of acoustic surface waves within said'piezoelectricmember, said polycrystalline piezoelectric film member being substantially isotropic over the width of said propagation path, said acoustic surface waves being attenuated within said piezoelectric member, except along said propagation path, due to the lossy nature of said piezoelectric member,
  • first transducer means connected to said lossy piezoelectric member adjacent said conduction channel for establishing acoustic surface waves which propagate within said lossy piezoelectric member only along the propagation path defined by and in the direction of said drift electron flow, and
  • second transducer means connected to said lossy piezoelectric member adjacent said conduction channel and spaced from said first transducer means in the direction of propagation of said acoustic surface waves for receiving said acoustic surface waves after propagation along the propagation path defined by said drift electron flow.
  • drift electron conduction channel member is a semiconductor material characterized by high electron mobility.
  • the guide structure specified in claim 2 further including a high resistivity substrate to support said lossy piezoelectric film and said drift electron conduction channel member.
  • drift electron conduction channel member is a semiconductor layer epitaxially mounted on said substrate and said lossy piezoelectric thin film is deposited on said substrate overlying said epitaxial semiconductor layer.
  • drift electron conduction channel member forms a network of interconnected drift electron conduction channels and wherein said drift field voltage source means includes means for selectively creating a drift electron flow along a predetermined route through said network of interconnected drift electron conduction channels.
  • the guide structure specified in claim 1 further including means for reversing the polarity of energization of said drift electron conduction channel member by said drift voltage source means.
  • the guide structure specified in claim 7 further including means for reversing the polarity of energization of said drift electron conduction channel member by said drift field voltage source means.
  • a method of guiding acoustic surface waves comprising the steps of,
  • said polycrystalline piezoelectric film member being substantially isotropic over the width of said propagation path.
  • step of creating a drift electron flow along a predetermined channel is accomplished by selectively connecting a drift field voltage source across the ends of a selected path through a network of interconnected drift electron conduction channels.
  • the method specified in claim 10 further including the step of selectively controlling the direction of drift electron flow along said predetermined channel.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Acoustic surface waves are produced in a lossy piezoelectric material and are guided therealong due to the interaction between the acoustic waves and a drift electron flow established in an adjacent semiconductor matrial; i.e., the drift electrons impart energy sufficient to sustain propagation of the acoustic surface waves only in the desired direction defined by the drift electron path or channel.

Description

United States Patent [1 1 [111 3,777,274
Abraham 51 Dec. 4, 1973 ELECTRONIC INTERACTION GUIDE STRUCTURE FOR ACOUSTIC SURFACE WAVES Inventor: David Abraham, Rockville, Md.
Assignee: The United States of America as represented by the Secretary of the Navy, Washington, DC.
Filed: Jan. 18, 1972 Appl. No.: 218,732
Related US. Application Data OTHER PUBLICATIONS Collins et al., Electronics," Dec. 8, 1969, pp. 102-111.
White, Proc. IEEE, Aug. 1970, p. 1238-1276.
Primary ExaminerRoy Lake Assistant Examiner-Darwin R. Hostetter AttorneyR. S. Sciascia et a].
[57] ABSTRACT 12 Claims, 6 Drawing Figures SOURCE DRIFT FIELD PAIENIEDBEE 4W 3.777.274
SHEET1UF3 I7Q DRIFT FIELD SOURCE PAIENTEDDEB 4191s saw 2 nr a FIG.4
PATENTEDUEB 41w 3.777. 274
RIFT ELD URCE CONNECTED ACROSS TERMINALS IS AND IS OF FIG. 2 v Q 7 FIG. 5
DRIFT FIELD SOURCE FIG. 6
ELECTRONIC INTERACTION GUIDE STRUCTURE FOR ACOUSTIC SURFACE WAVES CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of my copending and commonly assigned application, Ser. No. 32,315, filed Apr. 27, 1970, which has now been abandoned.
BACKGROUND OF THE INVENTION Sophisticated radar systems have been proposed which envision real-time processing of the microwave return signals. The source of these signals is generally high power radars with bandwidths of the order of hundreds of megahertz and therefore, processing of the signals without loss of information will require that the processing systems have comparable bandwidth capability, although the frequency range employed can be shifted, for example, by mixing with the output of a suitable local oscillator.
In such a radar processing system, the storing or delaying of one signal and comparing it with the next signal received is a typical processing function performed by a delay line and the delay line, in particular, illustrates the advantages of using acoustical or microsonic techniques in conjunction with the more familiar electromagnetic spectrum devices. For example, a microsound or acoustical delay line one centimeter long can provide as much delay as l kilometer of coaxial cable. Consequently, if one requires a complex processing system consisting of vast number of delays, switching devices, etc., as alluded to above in the area of realtime radar signal processing, the use of microsound or acoustical devices rather than standard electromagnetic hardware would greatly reduce the structural volume of devices required.
For many years, the field of microsonics was limited to the use of volume wave devices such as ultrasonic delay lines. Moreover, the losses associated with acoustical transducers were quite large and the propagating signals were inaccessible until their emergence at the surface of the acoustic medium. More recently, however, acoustic surface waves have been propagated on crystals with very low losses and, in addition, amplification of such acoustic surface waves has been accomplished by exciting the acoustic surface waves on a minimum loss, single crystal piezoelectric medium and then imparting energy to the surface waves by means of the interaction between such surface waves and high mobility drift electrons established in an adjacent semiconductor with a drift velocity slightly in excess of the acoustic wave velocity; the critical dimension in the amplifier structure being that the spacing between the piezoelectric surface and the semiconductor must be comparable to or smaller than an acoustic wavelength. In such acoustic surface wave amplifiers, the single crystal piezoelectrics utilized to attain minimum acoustical losses have an inherent high orientation dependence in order to achieve good piezoelectric property; i.e., electromechanical conversion.
On the other hand, a need presently exists for effic ient structures for guiding such acoustic surface waves, if full advantage is to be taken of the above discussed properties of microsonics; i.e., in order to effect better utilization of the surface area-of the surface wave supporting medium and perform the various processing functions desired such as, for example, signal delay and signal routing. Along these lines, it has previously been proposed to construct guide structures for acoustic surface waves by geometrically constraining the surface waves through either the shape of the surface of the wave supporting medium or by variation of materials. In either event, the surface waves are confined (guided) in the desired path due to refraction or reflection effects arising from variations in the acoustic velocities between dissimilar regions on the surface. By way of example, in one proper art guide structure a narrow guide strip is mounted on an acoustic surface wave supporting substrate material effective to produce a socalled localized perturbed region having elastic properties different from the substrate. In this previously proposed guide structure, the acoustic surface (or bulk) waves are guided or restricted in their-propagation due to reflections at the edges of the guide strip material resulting from discontinuity in the propagation velocity between the guide material strip and the substrate. Unfortunately, such a guide structure is considered practical only where the width of the guide strip is approximately equal to an acoustic wavelength or less, inasmuch as energy losses are otherwise very large; whereas, fabrication of such a structure becomes increasingly more difficult as the frequency of the surface wave is increased.
SUMMARY OF THE INVENTION In accordance with the present invention, the guiding of acoustic surface waves does not depend upon geometrical constraints but rather is accomplished by generating or exciting the surface waves in a piezoelectric material which is purposely made lossy (rather than having minimum loss as in surface wave amplifiers) and then maintaining the wave amplitude only in the chosen propagation path or paths by employing the above-described amplifying principle to balance the losses in the piezoelectric material. In other words, a drift electron flow is established adjacent the lossy piezoelectric, with the drift electron channel defining the desired propagation path for the acoustic waves, such that the drift electrons will impart energy to sustain the acoustic surface waves only along the desired propagation path. In all other directions in the piezoelectric, the acoustic surface waves will die out; i.e., be severely attenuated, due to the lossy nature of the piezoelectric.
More specifically, in the proposed acoustic surface wave guide structure, the piezoelectric material is polycrystalline in nature, rather than a single crystal material as used in surface wave amplifiers, and the necessary level of acoustical energy loss is thus attained by means of the well-known grain boundary scattering effect. Generally speaking, the acoustical loss or attenuation coefficient a for the polycrystalline piezoelectric is selected, in accordance with the present invention, such that the surface waves will be propagated along the desired guide path with no significant attenuation,
while at the same time maintaining good isolation between adjacent guide paths. Moreover, the polycrystalline nature of the piezoelectric material utilized in the proposed guide structure imposes no orientation dependence restrictions on the direction of propagation, thus permitting the surface waves to be guided along angled or curved paths and facilitating the creation of junctions between paths; thereby providing for structures in which the acoustical waves can be made to mix or can be fanned out.
In one embodiment of the present invention, a guide structure for the acoustic surface waves is formed by epitaxially mounting a semiconductor material on a high resistivity substrate to form a drift electron conduction channel; A lossy thin film of polycrystalline piezoelectric material is then brought in close proximity to the semi-conductor drift electron pathby depositing the piezoelectric film on the substrate overlying the epitaxial semiconductor. With a source of drift field voltage connected across the ends of the semiconductor drift electron channel and a suitable transducer connected to create or excite the acoustic surface waves in the lossy piezoelectric film, the surface waves will propagate along a path, determined by the path of the drift electron flow, towards a second or receiving transducer.
In view of the foregoing discussion, it should be read ily apparent that, by means of the proposed structure of the present invention, acoustic surface waves may be propagated through any desired length path, to achieve varying amounts of delay, by proper configuration of the drift electron flow channel and/or selectively routed in any desired path or paths through the lossy piezoelectric film by proper selective application of drift field voltages to a network of drift electron flow channels or paths.
One object of the present invention is thus to provide a method and apparatus for guiding acoustic surface waves.
Another object of the present invention is to provide a method andapparatus for guiding acoustic surface waves in a lossy piezoelectric material dueto the inter action of the acoustic waves and an adjacent drift electron flow.
Another object of the present invention is to provide a method and apparatus for selectively routing or guiding acoustic surface waves through a network of propagation paths.
Another object of the present invention is to provide a method and apparatus for guiding acoustic surface waves in a lossy piezoelectricmaterial by selectively establishing a drift electron flow in a network of conduction channels which interacts with the acoustic surface waves and imparts energy to the surface waves to sustain propagation thereof.
A further object of the present invention is to provide a guide structure for acoustic surface waves which takes advantage of existing semiconductor technology in order to reduce the required physical dimensions of the guide structure and improve its operating characteristics.
Other objects, purposes and characteristic features of the present invention will in part be pointed out as the.
thin film removed to expose a semiconductor drift elec- FIG, 4 is a perspective view of a further embodiment of the proposed guide structure of the present invention with the piezoelectric thin film removed to show an alternate configuration of a drift electron channel;
FIG. 5 is a perspective view of a still further embodiment of the proposed guide structure of the present invention with the piezoelectric thin film removed to show a network configuration of drift electron channels; and
FIG. 6 is a diagrammatic illustration of circuitry for controlling the polarity of energization of a drift electron channel.
Referring now to the drawings and particularly to FIG. 1, the acoustical surface wave guide structure constituting the illustrated embodiment of the invention is shown ascontaining two adjacent guide or propagation paths A and B, separated by a minimum distance d. The structure associated with each of these guide paths is the same and has been illustrated in more detail in FIGS. 2 and 3. More specifically, the illustrated embodiment of the present invention comprises a substrate 10 of high resistivity (10 10' ohm/centimeter) material such as chromium doped single crystal gallium-arsenide. Epitaxially mounted in the upper surface of the substrate 10 is a layer or film (approximately 3 micrometers thick) of high electron mobility semiconductor material, such as n-type gallium-arsenide, for example, in the form of one or more drift electron conducting channels (two of which are assumed in the embodiment of FIG. 1 with one, designated at 11b, being shown in detail in FIG. 2) which can be formed by epitaxial chemical vapor deposition. The desired pattern or configuration of the conduction channel(s) 11 can be created either during the formation of the semiconductor film by suitable masking or subsequent to the film formation by pattern etching.
Even though the sole function of the substrate 10 might be to support the other materials comprising the proposed guide structure, it must however be compatible with those other materials. For example, in the presently preferred embodiment of the invention the semiconductor material used in the conduction channels 11 is preferably formed from a high quality single crystal in order to attain high electron mobility, to minimize electrical losses and to reduce the magnitude of the required drift fields. This, in turn, imposes the requirement that the substrate 10 upon which the semiconductor is prepared should also be a defectfree single crystal. In addition to the gallium-arsenide on gallium-arsenide combination noted above, other suitable substrate/semiconductor combinations include epitaxial silicon on sapphire and silicon on silicon.
As is well-known to those familiar with surface wave amplifiers, the interaction between the drift electrons and the electric field associated with the acoustic waves takes place entirely within the semiconductor; this electric field decaying exponentically as it penetrates the semiconductor. Since the depth of penetration decreases as the conductivity of the semiconductor increases and since conductivity is proportional to the product of carrier mobility and concentration, it is desirable to keep the number of carriers in the semiconductor toa minimum inasmuch as it is preferable to have as high a carrier mobility as possible. Subject to these constraints there is no point in having the semiconductor film any thicker than the electric field penetration depth. As noted earlier, the thickness of a typical semiconductor channel (see FIGS. 2 and 3) is approximately three micrometers.
A lossy, polycrystalline piezoelectric thin film 12 approximately one micrometer thick is then deposited on the substrate 10, overlying the epitaxial semiconductor layer 11, with uniform spacing between the surface of the piezoelectric 12 and the electron drift region, inasmuch as the necessary interaction between the surface waves and the drift electrons cannot take place unless the drift electrons occupy a region in space closer than approximately one acoustic wavelength to the surface on which the surface waves are propagating.
By way of example, the piezoelectric 12 can be formed from polycrystalline aluminum nitride deposited by reactive sputtering or similar technique. The polycrystalline nature of the piezoelectric 12 prevents the structure from being orientation dependent, as is essential for proper guiding of the surface waves; i.e., the piezoelectric 12 is substantially isotropic over a dimension comparable to the width of a guide path, typically l0 centimeter, which requirement can be met if the microcrystallites comprising the piezoelectric film 12 have lateral dimensions less than approximately centimeter and are randomly oriented in the plane of the film 12. Moreover, the grain boundary scattering effect of this polycrystalline material 12 provides the mechanism to attain the necessary level of acoustical energy loss, as defined hereinabove; i.e., the attenuation coefficient a for acoustic waves propagating on the surface of piezoelectric film 12 must be sufficient to insure that a signal S, which is being maintained with unity net gain along a guide path by the interaction with adjacent drift electrons, with an interaction gain coefficient B, will be reduced to a level below that of the acceptable noise N at an adjacent guide path.
In other words, if the minimum separation between guide paths A and B.(see FIG. 1) is designated as d, then the value of the signal S at one path or channel (e.g., path B) due to a signal. S, in the adjacent path or channel (path A) is given by the expression S S,,e where e is the base of the natural logarithm. On the other hand, if the interaction gain coefficient B for a particular guide path is equal to the attenuation a, the general expression for the signal S in the. guide path (e.g., path A) is S S c B S,,, where x is any distance along a guide path at which S is to be determined. If, as is proposed in accordance with the present invention, the signal S must be less than the acceptable noise N and since S S e" the minimum desired acoustical attenuation or loss factor a is given by the inequality a Ln (S /N) Expressed in decibels per centimeter, this minimun attenuation a for the piezoelectric 12 becomes a (db/cm) l0/d (Log S /N). Considering the other or maximum limit, in order to prevent significant attenuation along a guide path, the acoustical loss or attenuation a must be less than the maximum or saturation interaction gain B achievable along the guide path. Obviously, the exact value of acoustical loss or attenuation a will vary from one guide structure to another depending upon the requirements of practice. A typical range for the factor or might be 50 db/cm a 70 db/cm; where,
Fabricated on the upper surface of the piezoelectric thin film 12 are two pairs of interdigital transducers 13a, b and 14a, b, of well-known design, two of which,
13a, b, are connected to receive associated RF input signals and the others of which, 14a, b, are connected to suitable RF output circuitry. The transducers 13a, b converts the RF input signals into corresponding acoustic surface waves applied to the surface of the piezoelectric thin film 12; whereas, the transducers 14a, b receive or pick up the acoustic surface waves after they have propagated along guide paths A and/or B on the piezoelectric 12 and converts each of the acoustical signals back into an RF output signal which is time delayed from the associated input RF signal, by an amount dependent upon the propagation time of the acoustic surface wave in and therefore the propagation path length of the associated guide path on the piezoelectric.
It should be understood that the transducers are shown "in the drawings as being of the well-known interdigital type merely for the purposes of illustration and that where it is necessary, in order to excite an acoustic wave, that the electric field applied to the piezoelectric 12 have a large component normal to the piezoelectric surface, one electrode could be placed under the piezoelectric film 12 and a counterelectrode placed on top of the film 12. Furthermore, if it is required that the transducer impedance match the impedance of the piezoelectric surface, the counterelectrode could be formed with a proper number of parallel elements, in
- much the same manner as interdigital transducers are impedance matched to a surface. I
The piezoelectric film 12 is also provided with apertures 15a, b and 16a, b which permit connection of drift field voltage sources 17a and b to the end terminals of the epitaxial semiconductor channels (e.g., terminal contacts 18b and 19b for channel 11b in FIG. 2) in order to establish a drift electron flow from left to right in FIGS. 1 and 2, for example, in each of the epitaxial semiconductor layers. By way of example, the apertures or windows 15a, b and 16a, b might be formed by etching and the contact terminals (e.g., 18b and 19b) might be formed by diffusing a gold-tin film into the surface of the semiconductor material. Preferably, these contacts are ohmic in nature; i.e., non-rectifying.
In accordance with the well-known and abovementioned acoustic surface wave amplifying principle, the drift electron flow within a semiconductor channel; e.g., channel 11b in FIG. 2, imparts energy to the acoustic surface wave introduced into polycrystalline piezoelectric thin film 12, at the associated input trans ducer 13a, b, only along the direction of electron flow in that semiconductor channel; i.e., as represented by the dotted propagation paths A and B in FIG. 1. In all other directions, the acoustic surface wave will die out, due to the lossy nature of the piezoelectric thin film 12, as defined hereinabove. Accordingly, by properly positioning the transducers 13a, b and 14a, b
relative to the drift electron flow channels, as shown in FIGS. 1 and 2, the surface waves injected at input transducers 13a and b will propagate or be guided along paths A and B and be received by the output transducers 14a and b respectively. As noted above, the acoustical loss or attenuation factor a for the piezoelectric 12 is suchthat good signal isolation is maintained between the adjacent guide paths A" and 8".
It will thus be noted that the configuration of a semi- I conductor drift electron channel defines the shape of the associated guide or propagation path for the acoustic surface waves injected at input transducer 13a or b,
provided of course that the polycrystalline piezoelectric material of film 12 is isotropic in the plane of the film so that the interaction between the surface waves and the drift electrons in the semiconductor is independent of the direction of surface wave propagation, as proposed in accordance with the present invention. Therefore, it should be obvious that any desired configuration or length of propagation path for the acoustic surface waves may be obtained by merely changing the configuration of the associated epitaxial conducting channel. For example, the epitaxial semiconductor layer may be of the serpentine configuration shown at 20 in the embodiment of FIG. 4 and thereby cause the input acoustic surface waves injected into the lossy thin film 21, at transducer 22, to follow a relatively long, winding propagation path back to the output transducer 23. In the embodiment of FIG. 4, the drift field voltage source (not shown) would be connected, via apertures 24 and 25, to the end terminals 26 and 27 of the drift electron channel 20 shown in FIG. 4.
In view of the foregoing discussion, it will be appreciated by those skilled in the art that the substrate material can support an entire network of drift electron flow channels or paths and that the acoustic surface waves can be routed along the lossy piezoelectric thin film, as desired, by selective application of drift field voltages to the appropriate semiconductor path or paths. In other words, where interaction between the drift electrons and the acoustic surface wave occurs, the surface wave propagates. Otherwise, it dies out due to the lossy nature of the piezoelectric thin film along which it is propagating. This, coupled with the facts that the acoustic surface waves will only propagate in the direction of the drift electron flow and that drift electron flow direction is controlled by the choice of polarity of the drift field voltage source, permits various manners of processing of the acoustic surface waves to be performed on the piezoelectric thin film, so that maximum utilization of the surface area of the structure is made possible, in accordance with the present invention.
One manner of selectively routing or guiding the acoustic surface waves is illustrated in FIG. of the drawings. More specifically, the semiconductor drift electron material is disposed on the substrate 28 in a Y-network configuration having a single channel portion 29 which leads into a pair of branch channel portions 30 and 31. The piezoelectric thin film 32 is formed with apertures 33, 34, and 35 which permit connection of a drift field source to the ends of the semiconductor channels 29, 30 and 31 respectively, as will be described in more detail shortly, and also transducers 36, 37 and 38 which are aligned with the channels 29, 30 and 31 respectively.
In FIG. 5, one side of a drift field voltage source 39 is connected to end terminal 40 of semiconductor channel 29; whereas, the other side of the source 39 is adapted to be selectively connected to the end terminals 41 and 42 of channels 30 and 31 respectively, in accordance with the position of switch 43. For simplicity, these connections from the source 39 to the semiconductor channels 29, 30 and 31 have not been illustrated as being made through apertures 33, 34 and 35 in the piezoelectric 32.
In operation, an input RF signal could be applied to transducer 36 and thereby excite an acoustic surface wave in the piezoelectric 32. This surface wave will then be selectively routed or guided to branch channel 30 or 31, depending upon to which of these branch channels the switch 43 connects the other side of drift field source 39; e.g., if the terminal end 42 is connected to the source 39, the acoustic surface wave will propagate along channel 29 and into branch channel 31 where it will be received by transducer 38.
It should be apparent from the above that much more complex processing of anacoustic surface wave (and therefore the RF signal) can be performed, in accordance with the present invention, than was described above in connection with FIG. 5. For example, by controlling the polarity of energization of the drift electron channels or paths, in addition to which channel or path is energized, the direction of surface wave propagation can also be controlled. Moreover, the drift field source shown throughout the drawings can be either simply a battery or some other potential source involved in the over-all processing arrangement.
Simplified circuitry for controlling the polarity of energization of the drift electron conduction channels 11 (e.g., see FIG. 2) is illustrated in FIG. 6 and comprises a polarity reversing switch 44 which is connected between a drift field source 17 and the associated terminals l8 and 19 of a conduction channel 11. In one position of switch 44, drift electron flow occurs from termina] 18 towards terminal 19 and the acoustic surface waves can therefore propagate from transducer 13 towards transducer 14; whereas, with switch 44 reversed, the drift electron flow is towards terminal 18 and therefore acoustic wave propagation can occur only from transducer 14 towards transducer 13.
Various other modifications, adaptations and alterations of the present invention are of course possible in light of the above teachings. It should therefore be understood at this time that the invention defined by the appended claims may be practiced otherwise than as specifically described hereinabove.
What is claimed is:
1. A guide structure for acoustic surface waves comprising, in combination,
a polycrystalline piezoelectric film member having a power loss per unit length or expressed as which said drift electron flow will interact with and impart energy to sustain the propagation of acoustic surface waves within said'piezoelectricmember, said polycrystalline piezoelectric film member being substantially isotropic over the width of said propagation path, said acoustic surface waves being attenuated within said piezoelectric member, except along said propagation path, due to the lossy nature of said piezoelectric member,
first transducer means connected to said lossy piezoelectric member adjacent said conduction channel for establishing acoustic surface waves which propagate within said lossy piezoelectric member only along the propagation path defined by and in the direction of said drift electron flow, and
second transducer means connected to said lossy piezoelectric member adjacent said conduction channel and spaced from said first transducer means in the direction of propagation of said acoustic surface waves for receiving said acoustic surface waves after propagation along the propagation path defined by said drift electron flow.
2. The guide structure specified in claim 1 wherein said lossy piezoelectric member is in the form of a substantially fiat thin film.
3. The guide structure specified in claim 1 wherein said drift electron conduction channel member is a semiconductor material characterized by high electron mobility.
4. The guide structure specified in claim 2 further including a high resistivity substrate to support said lossy piezoelectric film and said drift electron conduction channel member. a
5. The guide structure specified in claim 4 wherein said drift electron conduction channel member is a semiconductor layer epitaxially mounted on said substrate and said lossy piezoelectric thin film is deposited on said substrate overlying said epitaxial semiconductor layer.
6. The guide structure specified in claim 5 wherein said high resistivity substrate is formed of chromium doped gallium arsenide, said epitaxial semiconductor layer is formed of gallium arsenide and said lossy piezoelectric thin film is formed of aluminum nitride.
7. The guide structure specified in claim 1 wherein said drift electron conduction channel member forms a network of interconnected drift electron conduction channels and wherein said drift field voltage source means includes means for selectively creating a drift electron flow along a predetermined route through said network of interconnected drift electron conduction channels.
8. The guide structure specified in claim 1 further including means for reversing the polarity of energization of said drift electron conduction channel member by said drift voltage source means.
9. The guide structure specified in claim 7 further including means for reversing the polarity of energization of said drift electron conduction channel member by said drift field voltage source means.
10. A method of guiding acoustic surface waves comprising the steps of,
establishing said acoustic surface waves in a polycrystalline piezoelectric film member having a power loss perunit length a expressed as where,
,B maximum or saturation interaction gain, d minimum separation between adjacent guide S /N minimum acceptable signal to noise power ratio, and
e base of the natural logarithm, and
creating adjacent said polycrystalline piezoelectric film member a drift electron flow along a predetermined channel effective to define a propagation path within said piezoelectric member solely along which said drift electron flow will interact with and impart energy to sustain the propagation of said acoustic surface waves in the direction of said drift electron flow,
said polycrystalline piezoelectric film member being substantially isotropic over the width of said propagation path.
11. The method specified in claim 10 wherein the step of creating a drift electron flow along a predetermined channel is accomplished by selectively connecting a drift field voltage source across the ends of a selected path through a network of interconnected drift electron conduction channels.
12. The method specified in claim 10 further including the step of selectively controlling the direction of drift electron flow along said predetermined channel.

Claims (12)

1. A guide structure for acoustic surface waves comprising, in combination, a polycrystalline piezoelectric film member having a power loss per unit length Alpha expressed as Beta max. > Alpha >Lne (So/N) 1/d where, Beta max. maximum or saturation interaction gain, d minimum separation between adjacent guide paths, So/N minimum acceptable signal to noise power ratio, and e base of the natural logarithm, a member disposed adjacent said lossy piezoelectric member and forming a drift electron conduction channel, a drift field voltage source means connected across the ends of said conduction channel to create a drift electron flow along said conduction channel, said drift electron flow defining a propagation path within said piezoelectric member solely along which said drift electron flow will interact with and impart energy to sustain the propagation of acoustic surface waves within said piezoelectric member, said polycrystalline piezoelectric film member being substantially isotropic over the width of said propagation path, said acoustic surface waves being attenuated within said piezoelectric member, except along said propagation path, due to the lossy nature of said piezoelectric member, first transducer means connected to said lossy piezoelectric member adjacent said conduction channel for establishing acoustic surface waves which propagate within said lossy piezoelectric member only along the propagation path defined by and in the direction of said drift electron flow, and second transducer means connected to said lossy piezoelectric member adjacent said conduction channel and spaced from said first transducer means in the direction of propagation of said acoustic surface waves for receiving said acoustic surface waves after propagation along the propagation path defined by said drift electron flow.
2. The guide structure specified in claim 1 wherein said lossy piezoelectric member is in the form of a substantially flat thin film.
3. The guide structure specified in claim 1 wherein said drift electron conduction channel member is a semiconductor material characterized by high electron mobility.
4. The guide structure specified in claim 2 further including a high resistivity substrate to support said lossy piezoelectric film and said drift electron conduction channel member.
5. The guide structure specified in claim 4 wherein said drift electron conduction channel member is a semiconductor layer epitaxially mounted on said substrate and said lossy piezoelectric thin film is deposited on said substrate overlying said epitaxial semiconductor layer.
6. The guide structure specified in claim 5 wherein said high resistivity substrate is formed of chromium doped gallium arsenide, said epitaxial semiconductor layer is formed of gallium arsenide and said lossy piezoelectric thin film is formed of aluminum nitride.
7. The guide structure specified in claim 1 wherein said drift electron conduction channel member forms a network of interconnected drift electron conduction channels and wherein said drift field voltage source means includes means for selectively creating a drift electron flow along a predetermined route through said network of interconnected drift electron conduction channels.
8. The guide structure specified in claim 1 further including means for reversing the polarity of energization of said drift electron conduction channel member by said drift voltage source means.
9. The guide structure specified in claim 7 further including means for reversing the polarity of energization of said drift electron conduction channel member by said drift field voltage source means.
10. A method of guiding acoustic surface waves comprising the steps of, establishing said acoustic surface waves in a polycrystalline piezoelectric film mEmber having a power loss per unit length Alpha expressed as Beta max. > Alpha >Lne (So/N1/d where, Beta max. maximum or saturation interaction gain, d minimum separation between adjacent guide paths, So/N minimum acceptable signal to noise power ratio, and e base of the natural logarithm, and creating adjacent said polycrystalline piezoelectric film member a drift electron flow along a predetermined channel effective to define a propagation path within said piezoelectric member solely along which said drift electron flow will interact with and impart energy to sustain the propagation of said acoustic surface waves in the direction of said drift electron flow, said polycrystalline piezoelectric film member being substantially isotropic over the width of said propagation path.
11. The method specified in claim 10 wherein the step of creating a drift electron flow along a predetermined channel is accomplished by selectively connecting a drift field voltage source across the ends of a selected path through a network of interconnected drift electron conduction channels.
12. The method specified in claim 10 further including the step of selectively controlling the direction of drift electron flow along said predetermined channel.
US00218732A 1972-01-18 1972-01-18 Electronic interaction guide structure for acoustic surface waves Expired - Lifetime US3777274A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21873272A 1972-01-18 1972-01-18

Publications (1)

Publication Number Publication Date
US3777274A true US3777274A (en) 1973-12-04

Family

ID=22816291

Family Applications (1)

Application Number Title Priority Date Filing Date
US00218732A Expired - Lifetime US3777274A (en) 1972-01-18 1972-01-18 Electronic interaction guide structure for acoustic surface waves

Country Status (1)

Country Link
US (1) US3777274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954795A (en) * 1987-08-19 1990-09-04 Samsung Electronics Co., Ltd. Surface acoustic wave filter for suppressing surface to surface interference for a satellite communication receiver

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3406358A (en) * 1967-10-30 1968-10-15 Bell Telephone Labor Inc Ultrasonic surface waveguides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3406358A (en) * 1967-10-30 1968-10-15 Bell Telephone Labor Inc Ultrasonic surface waveguides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Collins et al., Electronics, Dec. 8, 1969, pp. 102 111. *
White, Proc. IEEE, Aug. 1970, p. 1238 1276. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954795A (en) * 1987-08-19 1990-09-04 Samsung Electronics Co., Ltd. Surface acoustic wave filter for suppressing surface to surface interference for a satellite communication receiver

Similar Documents

Publication Publication Date Title
US3593174A (en) Solid state amplifier for microwave frequency signals
US3200354A (en) Ultrasonic wave transmission device utilizing semiconductor piezoelectric material to provide selectable velocity of transmission
US3274406A (en) Acoustic-electromagnetic device
US3833867A (en) Acoustic surface wave convolver with bidirectional amplification
US6894581B2 (en) Monolithic nonlinear transmission lines and sampling circuits with reduced shock-wave-to-surface-wave coupling
US4665374A (en) Monolithic programmable signal processor using PI-FET taps
GB2086167A (en) Carrier concentration controlled surface acoustic wave resonator
US3955160A (en) Surface acoustic wave device
US4199737A (en) Magnetostatic wave device
Stern Microsound components, circuits, and applications
JPS6093817A (en) Variable delay line unit
US4314214A (en) Magnetostatic-wave device comprising a conducting strip exchange structure
US3254309A (en) Microwave amplifier or oscillator employing negative resistance devices mounted a cross slots in wavepath wall
US4554519A (en) Magnetostatic wave delay line
US3886500A (en) Flat hybrid-t structure for transmitting wave energy
US3777274A (en) Electronic interaction guide structure for acoustic surface waves
US4322695A (en) Planar transmission line attenuator and switch
GB1372235A (en) Acoustic surface wave devices
US3414779A (en) Integrated parametric amplifier consisting of a material with both semiconductive and piezoelectric properties
US3582834A (en) Microwave ultrasonic delay line
US4495431A (en) Low reflectivity surface-mounted electrodes on semiconductive saw devices
US3314022A (en) Particular mode elastic wave amplifier and oscillator
EP0205570A1 (en) A compound dielectric multi-conductor transmission line.
US4575727A (en) Monolithic millimeter-wave electronic scan antenna using Schottky barrier control and method for making same
US4088969A (en) Tapped surface acoustic wave delay line