US3776542A - Electrically controlled cloth spreading machine - Google Patents

Electrically controlled cloth spreading machine Download PDF

Info

Publication number
US3776542A
US3776542A US00229602A US3776542DA US3776542A US 3776542 A US3776542 A US 3776542A US 00229602 A US00229602 A US 00229602A US 3776542D A US3776542D A US 3776542DA US 3776542 A US3776542 A US 3776542A
Authority
US
United States
Prior art keywords
cloth
switch
machine
reversing
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00229602A
Inventor
R Benson
J Chapman
R Reed
H Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saber Industries Inc
Original Assignee
Cutters Machine Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cutters Machine Co Inc filed Critical Cutters Machine Co Inc
Application granted granted Critical
Publication of US3776542A publication Critical patent/US3776542A/en
Assigned to NASHVILLE CITY BANK AND TRUST CO., COMMERCE UNION BANK, THIRD NATIONAL BANK IN NASHVILLE, A NATIONAL BANKING ASSOCIATION, FIRST AMERICAN NATIONAL BANK OF NASHVILLE, CITIZENS FIDELITY BANK & TRUST CO. reassignment NASHVILLE CITY BANK AND TRUST CO. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CUTTERS EXCHANGE, INC., A CORP. OF TN.
Assigned to FIRST AMERICAN NATIONAL BANK, A NATIONAL BANKING ASSOCIATION reassignment FIRST AMERICAN NATIONAL BANK, A NATIONAL BANKING ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SABER INDUSTRIES, INC.
Assigned to SABER INDUSTRIES, INC. reassignment SABER INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CUTTERS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H45/00Folding thin material
    • B65H45/02Folding limp material without application of pressure to define or form crease lines
    • B65H45/06Folding webs
    • B65H45/10Folding webs transversely
    • B65H45/101Folding webs transversely in combination with laying, i.e. forming a zig-zag pile
    • B65H45/103Folding webs transversely in combination with laying, i.e. forming a zig-zag pile by a carriage which reciprocates above the laying station

Definitions

  • the machine is also provided with various selective controls for manual, semi-automatic and automatic operation of the machine, and for spreading cloth face-to-face, face-up or face-down.
  • This invention relates to a cloth spreading machine, and more particularly to a versatile, electrically operated cloth spreading machine.
  • Cloth spreading machines and even electrically operated cloth spreading machines are known in the art. Also, cloth spreading machines have been developed, and are now in operation, which travel at high speed over the major portion of their reciprocable course between a pair of reversing stations and in low speed adjacent the reversing stations for cooperative engagement with the catcher mechanism to form folds in the ends of the layers of cloth.
  • various electrical switch controls have been adopted in order to reduce the speed of the machine just prior to its cooperation with the catcher mechanism. It is also known to resume the high speed of the machine as soon as possible after it has reversed its movement and formed the fold in the layer of cloth.
  • the spreading machine made in accordance with this invention is provided with an electrical motor drive, a reversible motor circuit, a motor speed control apparatus, and reversing and speed change switches adapted to be actuated at appropriate stations to permit the reduction of the speed of the spreading machine as it approaches its reversing station, to permit reversing of the machine at each end of its travel, and to resume its high speed within a short distance of the reversing station as the machine resumes its spreading operation.
  • the high speed switches are designed to momentarily close to energize a holding relay circuit which will maintain the machine at high speed as long as the holding relay circuit is energized' However, upon any interruption of current to the holding relay circuit, the speed of the machine will automatically be reduced.
  • a further object of this invention is to provide a timedelay circuit which will automatically brake the machine every time the speed of the machine is reduced from high to low, to reduce the deceleration time, and
  • This invention further contemplates circuitry which permits selective face-to-face cloth spreading, or facedown or face-up spreading.
  • an automatic braking mechanism is provided to stop the machine after each layer of cloth is spread, so the cloth may be cut.
  • circuitry also provides means for manually restarting the machine in its reverse direction to the opposite end of the course, without laying cloth, preparatory to laying the next layer of cloth.
  • the machine made in accordance with this invention also is provided with a remote control handle incororating a starting switch, and a re-starting switch for face-up or face-down spreading, to afford the operator of the machine the opportunity of viewing the spreading operation from the front of the machine while still being in full control of the machine.
  • the invention also contemplates the provision of an automatic mechanism for over-feeding the cloth web to accommodate the extra cloth demand created by the interaction of the spreading unit with the catcher mechanism.
  • FIG. 3 is an enlarged sectional elevation of the cloth overfeed mechanism
  • FIG. 4 is a schematic circuit diagram of the electrical drive and control system for the machine.
  • FIG. 1 discloses a cloth spreading machine 10 made in accordance with this invention, including a carrier frame 11 supported by wheels 12 and 13 for longitudinal movement along a spreading table 14.
  • a cloth supply roll 15 is supported for free rotary movement upon standards 16 mounted upon the frame 11 for unwinding and feeding a web of cloth 17.
  • the web 17 is threaded through an edge control device 18, beneath a pivotally mounted cloth tension rod 19 and then over a driven top feed roll 20.
  • the web 17 then depends through a cloth spreader frame or unit 21, having tuck blades or spreader blades, not shown, for spreading the cloth web 17 in layers 22 upon the table 14.
  • a catcher mechanism 24 including a catcher bar 25 is stationed upon the spreading table 14 at one end of the travel or course of the carrier frame 11 to cooperate with the spreader unit 21 in a well known manner to fold the end of each cloth layer 22.
  • An electrical motor 28 mounted on the frame 11 is operatively connected to drive the left rear wheel, not shown, which is connected by suitable chain and sprocket mechanism, not shown, to transverse drive shaft 29, which in turn is coupled through suitable sprocket end chain mechanism 30 to drive the right rear wheel 12.
  • the left front wheel behind the right front wheel 13, is drivingly connected to the top feed roll 20 through a transmission system 32, including sprockets and chains, over-driven clutches, and an electromagentic feed clutch 47, in such a manner that the top feed roll 20 is driven in the same direction independently of the front wheels 13.
  • a transmission system 32 including sprockets and chains, over-driven clutches, and an electromagentic feed clutch 47, in such a manner that the top feed roll 20 is driven in the same direction independently of the front wheels 13.
  • a power supply circuit 35 is connected to any suitable source of electricity, not shown, through the power switch 36, which is also disclosed upon the control panel 37 mounted on the side of the frame 11, as disclosed in FIG. 1.
  • the supply circuit 35 comprises the primary circuit of transformer 38 which changes the voltage in secondary circuit 39.
  • the edge control circuit 40 Connected in parallel to secondary circuit 39 is the edge control circuit 40 for energizing the edge control apparatus 18.
  • Automatic switch 42 is provided in secondary circuit 39 for supplying electricity to all of the other electrical circuits of the spreading machine 10, except the edge control circuit 40.
  • the edge control 18 will continuously operate to align the cloth web 17.
  • the cloth supply roll is loaded and the web 17 is threaded to the spreader frame 21, or when the frame 11 is pushed for manual spreading, the web 17 is continuously and automatically aligned.
  • the brake-clutch circuit 43 Connected in series with the secondary circuit 39 is the brake-clutch circuit 43 which feeds current to the DC. supply drive circuit 44 for the electromagnetic brake 45, and to the DC. supply drive circuit 46 for the electromagnetic clutch 47.
  • the brake 45 and the clutch 47 are connected in parallel by brake circuit 51.
  • the electromagnetic brake 45 is disclosed in FIG. 1 for engaging and disengaging the drive shaft 29, which in effect will brake or release the rear wheels 12 for moving the carriage frame 11.
  • the electromagnetic clutch 47 couples the electric motor 28 to the left rear drive wheel in any convenient manner, not shown.
  • the electromagnetic clutch 47 and the electromagnetic brake 45 are energized by the closing of drive switch 48.
  • Electromagnetic brake 45 may also be de-energized by the opening of switch 49, normally closed, when the brake relay coil 50 is energized.
  • the speed circuit 54 Connected in parallel to the brake clutch circuit 43 through the normally closed stop switch 53 is the speed circuit 54.
  • the speed circuit 54 comprises a high-speed circuit 55 connected in parallel with the low-speed circuit 56.
  • Mounted in parallel in high-speed circuit 55 are a pair of normally open, momentary, unidirectional, high-speed switches 57 and 58.
  • the highspeed switch 57 is shown in FIG. 2 mounted in the plunger box 60.
  • Connected in series in the low-speed circuit 56 are a pair of normally closed, momentary, unidirectional, low-speed switches 61 and 62, both of which are shown mounted in the low-speed switch box 63 on the side of the carrier frame 1 1.
  • the front low-speed switch 62 is provided with a depending arm 64 which is adapted to engage and be actuated by the actuator ramp 65 as the carrier frame 1 1 moves from left to-right in FIG. 1, that is, in a forward direction towards the catcher mechanism 24.
  • the arm 64 merely rides back over the actuator ramp 65 without energizing or de-energizing the switch 62.
  • the switch 61 is provided with the depending arm 66 which operates in reverse upon a ramp similar to 65 at the opposite, that is, the far left, end of the table 14.
  • the high-speed circuit 55 includes a speed control relay coil 68, which is also connected in series with the low-speed circuit 56 through the holding relay switch 69, controlled by the coil 68.
  • the speed selector switch is also a relay switch controlled by the coil 68 to selectively connect either a low-speed potentiometer 71, or a high-speed potentiometer 72, to the motor speed control apparatus 73 of conventional design.
  • the coil 68 is energized to depress the relay switches 69 and 70 causing the lowspeed circuit 56 to act as a holding relay circuit and connecting the high-speed potentiometer 72 to motor speed control apparatus 73.
  • the holding coil 68 is de-energized to open the holding relay 69 and connect the selector switch 70 with the low-speed potentiometer 71.
  • a starting circuit 75 including a manually operated, start switch 76.
  • start switch 76 When the start switch 76 is depressed, the starting relay coil 77 is energized to close the holding relay switch 78 to maintain the starting circuit 75 energized, even when the manual starting switch 76 is re leased.
  • a second relay switch 79 is connected in the motion circuit 80 to be moved to a closed position upon energization of the starting coil 77.
  • the motion circuit 80 is supplied with current through themotion supply circuit 81, which also furnishes current to the brake relay circuit 82 to energize the brake relay coil 50 and thereby release the brake 45.
  • a motion switch 84 is adapted to open and close the motion circuit 80, and is in the form of a plunger located in the top of the remote control handle 85.
  • the handle 85 is adapted to be held in the operators hand, and is connected to the control panel 37 through an electrical cable 86, for remote control of the machine 10. As shown in FIG. 1, the operators handle 85 is suspended in a bracket 87 mounted on the side of the carrier frame 11. While the handle 85 is mounted in the bracket 87, the motion switch plunger 84 is maintained depressed to close the motion circuit 80 by a depressing lug 88.
  • the handle 85' may be removed from the bracket 87 so that the operator may start and stop the machine 10 from a remote position.
  • variable high-speed potentiometer 72 which is connected to the motor speed control apparatus 73 through a lead, not shown, within the cable 86 and through the selector switch 70.
  • the wiper on the high-speed potentiometer 72 is connected to, or forms a part of, the plunger switch 84.
  • the depressing lug 88 which is threaded for vertical movement, may be adjusted to maintain the plunger switch 84 depressed in any desired position to obtain motor speeds of various corresponding values, while the selector switch 70 is in high-speed position.
  • the cable 86 is preferably long enough so that the operator may stand in front of the machine to observe the spreading operation, and still control the starting, stopping and speed of the machine.
  • the remote control handle 85 therefore provides a very versatile cloth spreading machine in which the operator has full control over the motion and speed of the machine at all times while the machine is normally operating at high speed between the ramps 65. As soon as the machine is actuated into low-speed by either ramp opening its corresponding low-speed switch 61 or 62, the operator can no longer control the speed of the machine, but can merely stop the machine, until the corresponding high-speed switch 57 or 58 is closed.
  • the operator may select any maximum speed he desires within the range of the high-speed potentiometer 72.
  • the operator may slow-down the machine 10 at any time, between the ramps 65, to inspect the fabric for flaws, and may increase or decrease the speed of the machine 10, at will, for any purpose.
  • An auxiliary motion supply circuit 90 is connected in parallel with the motion supply circuit 81, and contains in series the normally closed, momentary, reversing switches 91 and 92.
  • One of these reversing switches 92 is disclosed in FIG. 2 in the plunger box 60.
  • the other reversing switch 91 is located in a similar position in the catcher box 60 at the rear end of the carrier frame 11.
  • the forward reversing switch 92 when actuated is adapted to move to its dashed-line position to close the forward directional circuit 93 which includes in series a forward relay coil 94.
  • both of the directional circuits 93 and 95 may be provided with a manual directional switch 98, which is adapted to remain in the neutral position disclosed in FIG. 4, or be selectively turned to close either the forward directional circuit 93 or the reverse directional circuit 95, at the will of the operator.
  • the forward coil 94 and the reverse coil 96 are adpated, when alternately energized, to simultaneously move between forward and reverse positions, the motor directional relay switch 99 and the cloth feed directional relay switch 100. Both of these relay switches 99 and 100 are disclosed in their solid-line positions for closing the respective reverse circuits 101 and 103.
  • the relay switches 99 and 100 when in their dashed-line positions, will close their respective forward circuits 102 and 104.
  • the respective reverse and forward motor relay circuits 101 and 102 are respectively energized from motor directional circuit 135, they will illuminate their respective pilot lights 105 and 106, as well as energize their respective forward and reverse motor relay coils 107 and 108.
  • Energization of the reverse motor relay coil 107 simultaneously closes the reverse input relay switch 109 in the motor input circuit 110, the reverse fail-safe switch. 1 11, and the reverse output relay switch 112 in the motor output circuit 113.
  • Motor input circuit 1 10 and motor output circuit 1 13 are connected to each other by the armature leads 119 and 123 adapted to be connected to opposite sides of the armature 120 through the armature relay switches 121 and 124 when closed in their dashed-line positions by the energization of the motor relay coil 122.
  • the relay switches 121 and 124 are returned to their solid-line positions which connect the armature 120 to the dynamic brake 125, and automatically disconnects the armature 120 from the armature leads 119 and 123.
  • the relay switches 121 and 124 are in their de-energized positions, the energy from the armature 120 is discharged through the dynamic brake resistor 125 in order.to brake the motor 28.
  • the input circuit 110 and the output circuit 113 are connected to the motor speed control apparatus 73, and to a DC. source of supply.
  • the cloth feed reverse relay circuit 103 and forward relay circuit 104 are connected through the respective manual reverse feed switch 127 and forward feed switch 128 to the magnetic cloth feed clutch 130, which in turn is connected through feed circuit 129 to the DC. cloth feed supply 132.
  • the failsafe switches 111 and 115 which are selectively closed by the reverse and forward coils 107 and 108 in the motor directional circuity, are connected in parallel to alternately close the low-speed circuit 56.
  • the fail-safe switches 111 and 115 are duplicated in FIG. 4 to more clearly disclose their actuation and their function by avoiding an unnecessarily complicated wiring diagram.
  • the low-speed circuit 56 is momentarily interrupted by the shifting of the open and closed positions of the fail-safe switches 111 and 115, to release the holding relay 69 in the event it is being held in the high-speed position.
  • the switches 111 and 115 cause the circuit to fail safe into low speed upon every reversing movement of the carrier frame 11.
  • the holding relay 69 of the low-speed circuit 56 when it is in its normally de-energized position, it closes a time delay circuit 137.
  • the sequence of the time delay circuit 137 is such that after it is supplied with power through the relay switch 69, it will energize a relay coil 138 at the end of a predetermined period of time, for example, one second. Then the sequencing of the time delay circuit 137 will de-energize the coil 138 after a second pre-determined period, for example one-half second. While the time delay relay coil 138 is energized, it will close the relay switch 139 in the face circuit 140, and will simultaneously open the relay switch 141 in the motion circuit 80. After this brief period (one-half second) of energization of the relay coil 138, it becomes de-energized so that the relay switch 139 and the motion relay switch 141 resume their solid-line positions disclosed in FIG. 4.
  • the face switch 142 in the face circuit 140 is manually closed, while the time delay relay switch 139 is closed, the face relay coil 143 is energized to close the face holding relay switch 144, and to open, and hold open, the motion supply circuit relay switch 145.
  • the motion supply relay switch 145 will remain open until the manual overide switch 146 in the operators handle 85 is manually opened, to de-energize the holding coil 143.
  • the purpose of providing the time delay relay switch 141 is to open the'motion circuit 80 a brief enough period to dynamically brake the motor 28 from high speed to low speed. Because of the more rapid deceleration of the frame 11, the low-speed switch ramp 65 may be located closer to the catcher mechanism 24 so that the carrier frame 11 may travel a greater distance at high speed, and thereby improve production by reducing the spreading cycle time.
  • the manual face switch 142 is opened for face-toface spreading, and is closed for either face-up or facedown spreading.
  • the face switch 142 is closed to hold open the motion supply circuit 81, then the sole source of power for the motion circuit 80 is through the auxiliary motion supply circuit 90. Accordingly, during face-up or face-down spreading, the motion circuit 80, as well as the brake circuit 82, is de-energized upon the actuation of either of the reversing switches 91 or 92.
  • the carrier frame 11 is immediately stopped because, not only is the motor 28 dynamically braked, but also the magnetic brake 45 is immediately energized to brake the drive shaft 29 and therefore the rear wheels 12.
  • the face switch 142 remains open so that the motion circuit 80 and brake circuit 82 receive a continuous supply of current through the closed motion supply circuit 81, regardless of the actuation of the reversing switches 91 and 92.
  • a catcher mechanism 24 is used to cooperate with the spreader unit 21 in order to form a fold in the end of a layer of cloth, particularly in face-to-face spreading, the catcher bar 25, while engaging the depending web 17 and folding it over .the tuck blades, not shown, creates an extra demand on the cloth feed, which, if not met, will produce undue tension on the cloth web 17.
  • a cloth overfeed device 150 is mounted to control one end of the top roll.
  • the cloth feed device 150 includes a gear or pinion 151 coupled to the cloth feed roll shaft 152 by an overriding clutch, not shown.
  • a vertically reciprocable plunger rack 153 engages the gear 151 in such a manner that when it is thrust upward by the solenoid 154, the top roll is fed forward at a higher rate than its normal feed rate.
  • the plunger rack 153 is pivotally attached by pin 155 to the armature of the solenoid 154, so that it may be manually pivoted rearwardly, as disclosed by the arrows, to disengage the gear 151 and to actuate, and thereby open, the switch 156. Opening the switch 156 will de-energize the magnetic feed clutch 130, when it is desired for any reason to manually dis-engage the cloth feed drive, such as when it is desired to manually turn the top roll 20.
  • the solenoid 154 is energized by either one of the overfeed switches 157 and 158.
  • the overfeed switch 157 is located in the rear plunger box 60, while the other overfeed switch 158 is disclosed in FIG. 2 in the front plunger box 60.
  • the front plunger box 60 includes the reversing switch 92 located at the rear of the box, and the overfeed switch 158 and the high speed switch 57 located in the front of the box 60.
  • Reciprocably mounted for longitudinal movement through the plunger box 60 are a pair of plunger rods 160 and 161 which carry a plunger plate 162 adapted to engage and be depressed by the stop plate 163 fixed to the table 14 adjacent the catcher mechanism 24.
  • Plunger rods 160 and 161 carry actuator lugs or cams 164 and 165 for selectively actuating the switches 92, 158 and 57.
  • the plunger plate 162 engages the stop plate 163.
  • the plunger rods 160 and 161 are stopped while the plunger box 60 continues to ride along the rods causing one of the actuators 165 to actuate the overfeed switch 158, which opens the feed clutch circuit 129 and simultaneously energizes the overfeed solenoid 154, accelerating the top roll 20 to supply extra cloth to the spreader unit 21.
  • the high-speed actuator 165 merely rides over the high-speed switch 57 without actuation.
  • the actuator 164 will actuate the reversing switch 92 causing the relay switches 99 and 100 to shift to their solid-line positions in FIG. 4, thereby reversing the motor circuit as well as the cloth feed circuit.
  • the carrier frame 11 then begins to move rearward away from the catcher mechanism 24. Since the front wheels 13 reverse their rotation upon the table 14, the transmission 32 between the wheel 13 and the top feed roll 12 is also reversed, but the energization of the feed clutch 130 is also reversed to continue to drive the top feed roll 20 and the cloth web 17 forward.
  • the plunger box 60 also moves in reverse with the spring 166 urging the plunger plate 162 outwardly while it remains abutting the stop plate 163.
  • the highspeed actuator 165 returns to the high-speed switch 57, it actuates the high-speed switch 57 to close it, closing the relay switches 69 and 70 to actuate the motor speed control apparatus 73 into high speed. Consequently, after the frame 11 has moved a very short distance rearwardly away from its forward limit of travel, it immediately resumes its high speed movement toward the opposite end of the table 14.
  • the machine is designed so that it may be selectively employed for either emulateto-face spreading or face-up or face-down spreading by manually opening or closing the face switch 142.
  • the face switch 142 When the face switch 142 is opened, and the motion switch 84 is maintained closed, the machine may continuously operate automatically for face-to-face spreading with the spreader unit 21 co operating with the catcher mechanism 24 at one end and a similar catcher mechanism, not shown, at the opposite end of the table 14.
  • the machine When the face switch 142 is closed, the machine will automatically stop when either of the reversing switches 91 or 92 is actuated by the plunger plate 162 engaging the stop plate 163. In this manner, the single layer of cloth which is spread face-up or face-down may be inspected, cut by any convenient cutting means, and then the manual override switch 146 opened to resume the movement of the frame 11 rearward in its non-spreading direction.
  • both the forward and reverse feed switches 127 and 128 must be closed; whereas, in face-up or face-down spreading, only one of the feed switches 127 or 128 is closed.
  • the machine is provided with not only dynamic brake 125 for decelerating the motor 28 rapidly every time the machine changes from its high speed to its low speed, but is also provided with an electromagnetic brake 45 for braking the wheels 12 to an immediate stop, when the brake circuit 82 is deenergized.
  • One of the most important features of the invention is the ability of the machine 10 to fail-safe in low speed for numerous changes in function of the machine, such as power failure, broken wires, and, most important, the automatic reduction of speed for every reversing motion of the machine. This is particularly important where, for example, if one of the low-speed switch arms 64 or 65, for some reason, should not engage the ramp 65, or the ramp 65 is misplaced or removed.
  • the actuation of either reversing switch 91 or 92 will momentarily open both fail-safe switches 111 and 115 to open the low-speed circuit 56, causing selector switch 70 to return to its low-speed position.
  • the remote control handle 85 is also adapted to hang on the bracket 87 to automatically maintain the motion switch 84 closed for full automatic movement. However, when the operator removes the remote control handle 85 from the bracket 87, the motion control switch 84 must be manually depressed in order to move the frame 11. If the operator for any reason is negligent, or has his attention distracted, or for any other reason, removes his finger from the motion switch 84, it will automatically open the motion circuit 80, deenergizing the motor relay coil 122 so that the armature is immediately disconnected from its power and discharges its energy through the dynamic brake resistor causing the machine 10 to stop in a very short distance.
  • Another safety feature of the machine 10 is that both the start switch 76 and the motion switch 84 must be closed before the motor 28 will be energized.
  • the stop switch 53 is provided for manually opening both the speed circuit 54 as well as the starting circuit 75, which in turn automatically opens motion circuit 80 to dynamically brake the frame 11 to a halt.
  • a cloth spreading machine comprising:
  • a spreader unit mounted on said frame to spread cloth in layers upon said surface as said frame moves over said surface
  • reversing switch means adapted to control said drive means for reversing the travel of said frame at longitudinally spaced reversing stations
  • a catcher mechanism mounted adjacent one of said reversing stations for cooperation with said spreader unit at said reversing station to form a fold in said cloth
  • reversing switch actuator means at said reversing station for actuating said reversing switch means to reverse the travel of said frame
  • a cloth feed roller having a shaft supported for rotary movement on said frame for feeding cloth to said spreader unit
  • overfeed switch means adapted to be actuated substantially simultaneously with the actuation of said reversing switch means to energize said electrical means, in order to momentarily accelerate the cloth feed to said spreader unit when cooperating with said catcher mechanism.

Landscapes

  • Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)

Abstract

An electrically driven and controlled cloth spreading machine including means for reversing the travel of the machine, means for controlling the high and low speeds of the machine, means for causing the machine to fail safe at low speed upon power failure and open circuit conditions caused by different changes in function of the machine. The machine is also provided with various selective controls for manual, semi-automatic and automatic operation of the machine, and for spreading cloth face-to-face, face-up or face-down.

Description

United States Patent [1 1 Benson et al. Dec. 4, 1973 54] ELECTRICALLY CONTROLLED CLOTH 3,401,926 9/1968 Wendelken 270/31 2,737,385 3/1956 Friis-Hansen 270/3] SPREADING MACHINE Inventors: Robert W. Benson; James Ronald Chapman; Robert G. Reed; Hoyt L. Smith, all of Nashville, Tenn.
[73] Assignee: Cutters Machine Company, Inc.,
Nashville, Tenn.
[22] Filed: Feb. 25, 1972 [21] Appl. No.: 229,602
Related U.S. Application Data [62] Division of Ser. No. 857,509, Sept. 12, i969, Pat.
[52] U.S. Cl. 270/31 [51] Int. Cl B65n 29/46 [58] Field of Search 270/31, 30
[56] References Cited UNITED STATES PATENTS 3,663,006 5/1972 Benson et al. 270/31 WER DRIVE AUTO- Primary Examiner-Robert W. Michell Assistant ExaminerL. R. Oremland Attorneyl-larrington A. Lackey [5 7 ABSTRACT An electrically driven and controlled cloth spreading machine including means for reversing the travel of the machine, means for controlling the high and low speeds of the machine, means for causing the machine to fail safe at low speed'upon power failure and open circuit conditions caused by different changes in function of the machine.
The machine is also provided with various selective controls for manual, semi-automatic and automatic operation of the machine, and for spreading cloth face-to-face, face-up or face-down.
3 Claims, 4 Drawing Figures PATENTEDBEB 41m SHEET 1 [IF 2 ELECTRICALLY CONTROLLED CLOTH SPREADING MACHINE This is a division of application Ser. No. 857,509, filed Sept. 12, 1969 now US. Pat. No. 3,663,006.
BACKGROUND OF THE INVENTION This invention relates to a cloth spreading machine, and more particularly to a versatile, electrically operated cloth spreading machine.
Cloth spreading machines, and even electrically operated cloth spreading machines are known in the art. Also, cloth spreading machines have been developed, and are now in operation, which travel at high speed over the major portion of their reciprocable course between a pair of reversing stations and in low speed adjacent the reversing stations for cooperative engagement with the catcher mechanism to form folds in the ends of the layers of cloth. However, in order to minimize damage to the machine and cloth and jerking and irregular folding of the cloth at the reversing stations, various electrical switch controls have been adopted in order to reduce the speed of the machine just prior to its cooperation with the catcher mechanism. It is also known to resume the high speed of the machine as soon as possible after it has reversed its movement and formed the fold in the layer of cloth.
Difficulty has been experienced with speed controls for cloth spreading machines, either because of the reliability of the controls, or because of the lack of skill of the operators of the machine. Thus, on occasions, a spreading machine has been known to enter the catcher mechanism and reversing station at high speeds, and sometimes without reversing.
SUMMARY OF THE INVENTION It is therefore an object of this invention to provide an electrically driven cloth spreading machine provided with various electrical controls to cause the machine to fail safe in low speed.
The spreading machine made in accordance with this invention is provided with an electrical motor drive, a reversible motor circuit, a motor speed control apparatus, and reversing and speed change switches adapted to be actuated at appropriate stations to permit the reduction of the speed of the spreading machine as it approaches its reversing station, to permit reversing of the machine at each end of its travel, and to resume its high speed within a short distance of the reversing station as the machine resumes its spreading operation. The high speed switches are designed to momentarily close to energize a holding relay circuit which will maintain the machine at high speed as long as the holding relay circuit is energized' However, upon any interruption of current to the holding relay circuit, the speed of the machine will automatically be reduced.
A further object of this invention is to provide a timedelay circuit which will automatically brake the machine every time the speed of the machine is reduced from high to low, to reduce the deceleration time, and
therefore decrease the production time, of the ma chine.
This invention further contemplates circuitry which permits selective face-to-face cloth spreading, or facedown or face-up spreading. In either the face-down or the face-up spreading operation, an automatic braking mechanism is provided to stop the machine after each layer of cloth is spread, so the cloth may be cut. The
circuitry also provides means for manually restarting the machine in its reverse direction to the opposite end of the course, without laying cloth, preparatory to laying the next layer of cloth.
The machine made in accordance with this invention also is provided with a remote control handle incororating a starting switch, and a re-starting switch for face-up or face-down spreading, to afford the operator of the machine the opportunity of viewing the spreading operation from the front of the machine while still being in full control of the machine.
The invention also contemplates the provision of an automatic mechanism for over-feeding the cloth web to accommodate the extra cloth demand created by the interaction of the spreading unit with the catcher mechanism.
BRIEF DESCRIPTION OF THE DRAWINGS er-actuated switch mechanism mounted on the front of the machine;
FIG. 3 is an enlarged sectional elevation of the cloth overfeed mechanism; and
FIG. 4 is a schematic circuit diagram of the electrical drive and control system for the machine.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now more particularly to the drawings, FIG. 1 discloses a cloth spreading machine 10 made in accordance with this invention, including a carrier frame 11 supported by wheels 12 and 13 for longitudinal movement along a spreading table 14. A cloth supply roll 15 is supported for free rotary movement upon standards 16 mounted upon the frame 11 for unwinding and feeding a web of cloth 17. In the machine 10, the web 17 is threaded through an edge control device 18, beneath a pivotally mounted cloth tension rod 19 and then over a driven top feed roll 20. The web 17 then depends through a cloth spreader frame or unit 21, having tuck blades or spreader blades, not shown, for spreading the cloth web 17 in layers 22 upon the table 14. A catcher mechanism 24 including a catcher bar 25 is stationed upon the spreading table 14 at one end of the travel or course of the carrier frame 11 to cooperate with the spreader unit 21 in a well known manner to fold the end of each cloth layer 22.
An electrical motor 28 mounted on the frame 11 is operatively connected to drive the left rear wheel, not shown, which is connected by suitable chain and sprocket mechanism, not shown, to transverse drive shaft 29, which in turn is coupled through suitable sprocket end chain mechanism 30 to drive the right rear wheel 12.
The left front wheel behind the right front wheel 13, is drivingly connected to the top feed roll 20 through a transmission system 32, including sprockets and chains, over-driven clutches, and an electromagentic feed clutch 47, in such a manner that the top feed roll 20 is driven in the same direction independently of the front wheels 13.
Referring now to the electrical circuit diagram in FIG. 4, a power supply circuit 35 is connected to any suitable source of electricity, not shown, through the power switch 36, which is also disclosed upon the control panel 37 mounted on the side of the frame 11, as disclosed in FIG. 1.
The supply circuit 35 comprises the primary circuit of transformer 38 which changes the voltage in secondary circuit 39. Connected in parallel to secondary circuit 39 is the edge control circuit 40 for energizing the edge control apparatus 18.
Automatic switch 42 is provided in secondary circuit 39 for supplying electricity to all of the other electrical circuits of the spreading machine 10, except the edge control circuit 40. Thus, as long as the power switch 36 is closed and automatic switch 42 is open, the edge control 18 will continuously operate to align the cloth web 17. Thus, when the cloth supply roll is loaded and the web 17 is threaded to the spreader frame 21, or when the frame 11 is pushed for manual spreading, the web 17 is continuously and automatically aligned.
Connected in series with the secondary circuit 39 is the brake-clutch circuit 43 which feeds current to the DC. supply drive circuit 44 for the electromagnetic brake 45, and to the DC. supply drive circuit 46 for the electromagnetic clutch 47. The brake 45 and the clutch 47 are connected in parallel by brake circuit 51. The electromagnetic brake 45 is disclosed in FIG. 1 for engaging and disengaging the drive shaft 29, which in effect will brake or release the rear wheels 12 for moving the carriage frame 11. The electromagnetic clutch 47 couples the electric motor 28 to the left rear drive wheel in any convenient manner, not shown. The electromagnetic clutch 47 and the electromagnetic brake 45 are energized by the closing of drive switch 48. Thus, when it is desired to manually operate, that is manually move, the spreader frame 11, then the drive switch 48 is opened to dis-engage the clutch 47 from the motor 28 and to de-energize the brake 45 so that the frame 11 may free wheel. Electromagnetic brake 45 may also be de-energized by the opening of switch 49, normally closed, when the brake relay coil 50 is energized.
Connected in parallel to the brake clutch circuit 43 through the normally closed stop switch 53 is the speed circuit 54. The speed circuit 54 comprises a high-speed circuit 55 connected in parallel with the low-speed circuit 56. Mounted in parallel in high-speed circuit 55 are a pair of normally open, momentary, unidirectional, high- speed switches 57 and 58. The highspeed switch 57 is shown in FIG. 2 mounted in the plunger box 60. Connected in series in the low-speed circuit 56 are a pair of normally closed, momentary, unidirectional, low-speed switches 61 and 62, both of which are shown mounted in the low-speed switch box 63 on the side of the carrier frame 1 1. The front low-speed switch 62 is provided with a depending arm 64 which is adapted to engage and be actuated by the actuator ramp 65 as the carrier frame 1 1 moves from left to-right in FIG. 1, that is, in a forward direction towards the catcher mechanism 24. However, when the frame 11 moves in its reverse direction away from the catcher frame 24, the arm 64 merely rides back over the actuator ramp 65 without energizing or de-energizing the switch 62. The switch 61 is provided with the depending arm 66 which operates in reverse upon a ramp similar to 65 at the opposite, that is, the far left, end of the table 14.
The high-speed circuit 55 includes a speed control relay coil 68, which is also connected in series with the low-speed circuit 56 through the holding relay switch 69, controlled by the coil 68. The speed selector switch is also a relay switch controlled by the coil 68 to selectively connect either a low-speed potentiometer 71, or a high-speed potentiometer 72, to the motor speed control apparatus 73 of conventional design.
Thus, when either of the high- speed switches 57 or 58 is momentarily closed, the coil 68 is energized to depress the relay switches 69 and 70 causing the lowspeed circuit 56 to act as a holding relay circuit and connecting the high-speed potentiometer 72 to motor speed control apparatus 73. However, when either of the low-speed switches 61 or 62 is opened, the holding coil 68 is de-energized to open the holding relay 69 and connect the selector switch 70 with the low-speed potentiometer 71.
From this description of the speed circuits 55 and 56, it will be seen that when any of the switches, that is lowspeed switch 62, low-speed switch 61, stop switch 53, aytomatic switch 42, or power switch 36 is opened, the holding coil 68 will be de-energized causing the selector switch 70 to disconnect the high-speed potentiometer 72 and connect the low-speed potentiometer 72 to the speed control apparatus 73, thereby changing the speed of the carriage frame 11 from high to low. The change from high speed to low speed will also be effected if there is any power failure or if the power supply circuit 35, secondary circuit 39, speed circuit 54, or low speed circuit 56, is interrupted or broken in any manner. Thus, an electrical speed control has been designed for causing the machine 10 to fail-safe into low speeds for various changes in function of the electrical circuit.
Connected in series with the stop switch 53 is a starting circuit 75 including a manually operated, start switch 76. When the start switch 76 is depressed, the starting relay coil 77 is energized to close the holding relay switch 78 to maintain the starting circuit 75 energized, even when the manual starting switch 76 is re leased. A second relay switch 79 is connected in the motion circuit 80 to be moved to a closed position upon energization of the starting coil 77.
The motion circuit 80 is supplied with current through themotion supply circuit 81, which also furnishes current to the brake relay circuit 82 to energize the brake relay coil 50 and thereby release the brake 45. A motion switch 84 is adapted to open and close the motion circuit 80, and is in the form of a plunger located in the top of the remote control handle 85. The handle 85 is adapted to be held in the operators hand, and is connected to the control panel 37 through an electrical cable 86, for remote control of the machine 10. As shown in FIG. 1, the operators handle 85 is suspended in a bracket 87 mounted on the side of the carrier frame 11. While the handle 85 is mounted in the bracket 87, the motion switch plunger 84 is maintained depressed to close the motion circuit 80 by a depressing lug 88. The handle 85'may be removed from the bracket 87 so that the operator may start and stop the machine 10 from a remote position.
Also located within the handle 85, as indicated in FIG. 4, is the variable high-speed potentiometer 72 which is connected to the motor speed control apparatus 73 through a lead, not shown, within the cable 86 and through the selector switch 70. The wiper on the high-speed potentiometer 72 is connected to, or forms a part of, the plunger switch 84. Thus, as the plunger switch 84 is depressed, the motion circuit 80 is first closed to start the motor 28, and then the speed of the motor 28 is gradually increased with continued depression of the plunger switch 84, as long as the selector switch 70 is connected to the high-speed potentiometer.
When the remote control handle 85 is hanging in its bracket 87, the depressing lug 88, which is threaded for vertical movement, may be adjusted to maintain the plunger switch 84 depressed in any desired position to obtain motor speeds of various corresponding values, while the selector switch 70 is in high-speed position.
The cable 86 is preferably long enough so that the operator may stand in front of the machine to observe the spreading operation, and still control the starting, stopping and speed of the machine. The remote control handle 85 therefore provides a very versatile cloth spreading machine in which the operator has full control over the motion and speed of the machine at all times while the machine is normally operating at high speed between the ramps 65. As soon as the machine is actuated into low-speed by either ramp opening its corresponding low-speed switch 61 or 62, the operator can no longer control the speed of the machine, but can merely stop the machine, until the corresponding high- speed switch 57 or 58 is closed.
By manipulating the plunger switch 84 while the selector switch is in high speed, the operator may select any maximum speed he desires within the range of the high-speed potentiometer 72. The operator may slow-down the machine 10 at any time, between the ramps 65, to inspect the fabric for flaws, and may increase or decrease the speed of the machine 10, at will, for any purpose.
An auxiliary motion supply circuit 90 is connected in parallel with the motion supply circuit 81, and contains in series the normally closed, momentary, reversing switches 91 and 92. One of these reversing switches 92 is disclosed in FIG. 2 in the plunger box 60. The other reversing switch 91 is located in a similar position in the catcher box 60 at the rear end of the carrier frame 11. The forward reversing switch 92, when actuated is adapted to move to its dashed-line position to close the forward directional circuit 93 which includes in series a forward relay coil 94. In a similar manner, when the rear reversing switch 91 is actuated, it moves to its dashed-line position to close the reverse directional circuit 95, which includes in series the reverse relay coil 96. Both of the directional circuits 93 and 95 may be provided with a manual directional switch 98, which is adapted to remain in the neutral position disclosed in FIG. 4, or be selectively turned to close either the forward directional circuit 93 or the reverse directional circuit 95, at the will of the operator.
The forward coil 94 and the reverse coil 96 are adpated, when alternately energized, to simultaneously move between forward and reverse positions, the motor directional relay switch 99 and the cloth feed directional relay switch 100. Both of these relay switches 99 and 100 are disclosed in their solid-line positions for closing the respective reverse circuits 101 and 103. The relay switches 99 and 100, when in their dashed-line positions, will close their respective forward circuits 102 and 104. When the respective reverse and forward motor relay circuits 101 and 102 are respectively energized from motor directional circuit 135, they will illuminate their respective pilot lights 105 and 106, as well as energize their respective forward and reverse motor relay coils 107 and 108. Energization of the reverse motor relay coil 107 simultaneously closes the reverse input relay switch 109 in the motor input circuit 110, the reverse fail-safe switch. 1 11, and the reverse output relay switch 112 in the motor output circuit 113.
In a similar manner, when the forward motor relay coil 108 is energized, the input circuit is closed by the forward input relay switch 114, the fail-safe switch 115 is closed, and the forward output relay switch 1 16 is closed to close the output circuit 113.
Motor input circuit 1 10 and motor output circuit 1 13 are connected to each other by the armature leads 119 and 123 adapted to be connected to opposite sides of the armature 120 through the armature relay switches 121 and 124 when closed in their dashed-line positions by the energization of the motor relay coil 122. When the motor relay coil 122 is de-energized, the relay switches 121 and 124 are returned to their solid-line positions which connect the armature 120 to the dynamic brake 125, and automatically disconnects the armature 120 from the armature leads 119 and 123. Thus, when the relay switches 121 and 124 are in their de-energized positions, the energy from the armature 120 is discharged through the dynamic brake resistor 125 in order.to brake the motor 28. The input circuit 110 and the output circuit 113 are connected to the motor speed control apparatus 73, and to a DC. source of supply.
The cloth feed reverse relay circuit 103 and forward relay circuit 104 are connected through the respective manual reverse feed switch 127 and forward feed switch 128 to the magnetic cloth feed clutch 130, which in turn is connected through feed circuit 129 to the DC. cloth feed supply 132.
Referring back to the low-speed circuit 56, the failsafe switches 111 and 115, which are selectively closed by the reverse and forward coils 107 and 108 in the motor directional circuity, are connected in parallel to alternately close the low-speed circuit 56. The fail- safe switches 111 and 115 are duplicated in FIG. 4 to more clearly disclose their actuation and their function by avoiding an unnecessarily complicated wiring diagram. Thus, every time either of the reversing switches 91 or 92 is actuated, the low-speed circuit 56 is momentarily interrupted by the shifting of the open and closed positions of the fail- safe switches 111 and 115, to release the holding relay 69 in the event it is being held in the high-speed position. In other words, the switches 111 and 115 cause the circuit to fail safe into low speed upon every reversing movement of the carrier frame 11.
It will be noted that when the holding relay 69 of the low-speed circuit 56 is in its normally de-energized position, it closes a time delay circuit 137. The sequence of the time delay circuit 137 is such that after it is supplied with power through the relay switch 69, it will energize a relay coil 138 at the end of a predetermined period of time, for example, one second. Then the sequencing of the time delay circuit 137 will de-energize the coil 138 after a second pre-determined period, for example one-half second. While the time delay relay coil 138 is energized, it will close the relay switch 139 in the face circuit 140, and will simultaneously open the relay switch 141 in the motion circuit 80. After this brief period (one-half second) of energization of the relay coil 138, it becomes de-energized so that the relay switch 139 and the motion relay switch 141 resume their solid-line positions disclosed in FIG. 4.
However, if the face switch 142 in the face circuit 140 is manually closed, while the time delay relay switch 139 is closed, the face relay coil 143 is energized to close the face holding relay switch 144, and to open, and hold open, the motion supply circuit relay switch 145. The motion supply relay switch 145 will remain open until the manual overide switch 146 in the operators handle 85 is manually opened, to de-energize the holding coil 143.
The purpose of providing the time delay relay switch 141 is to open the'motion circuit 80 a brief enough period to dynamically brake the motor 28 from high speed to low speed. Because of the more rapid deceleration of the frame 11, the low-speed switch ramp 65 may be located closer to the catcher mechanism 24 so that the carrier frame 11 may travel a greater distance at high speed, and thereby improve production by reducing the spreading cycle time.
The manual face switch 142 is opened for face-toface spreading, and is closed for either face-up or facedown spreading. When the face switch 142 is closed to hold open the motion supply circuit 81, then the sole source of power for the motion circuit 80 is through the auxiliary motion supply circuit 90. Accordingly, during face-up or face-down spreading, the motion circuit 80, as well as the brake circuit 82, is de-energized upon the actuation of either of the reversing switches 91 or 92. When either switch 91 or 92 is actuated, the carrier frame 11 is immediately stopped because, not only is the motor 28 dynamically braked, but also the magnetic brake 45 is immediately energized to brake the drive shaft 29 and therefore the rear wheels 12. Whichever reversing switch 91 or 92 is actuated, remains in its open position because the machine stops immediately in the actuated position of the reversing switch. In order to re-start the machine 10, the over-ride switch 146 must be opened manually by the operator to close the relay switch 145 and thereby supply energy through the motion supply circuit 81 to the motion circuit 80 and the brake circuit 82, by-passing the auxiliary motion supply circuit 90.
During face-to-face spreading the face switch 142 remains open so that the motion circuit 80 and brake circuit 82 receive a continuous supply of current through the closed motion supply circuit 81, regardless of the actuation of the reversing switches 91 and 92.
Where a catcher mechanism 24 is used to cooperate with the spreader unit 21 in order to form a fold in the end of a layer of cloth, particularly in face-to-face spreading, the catcher bar 25, while engaging the depending web 17 and folding it over .the tuck blades, not shown, creates an extra demand on the cloth feed, which, if not met, will produce undue tension on the cloth web 17. In order to supply this extra demand of cloth during the very brief period of folding the end of the layer 22, a cloth overfeed device 150 is mounted to control one end of the top roll. The cloth feed device 150 includes a gear or pinion 151 coupled to the cloth feed roll shaft 152 by an overriding clutch, not shown. A vertically reciprocable plunger rack 153 engages the gear 151 in such a manner that when it is thrust upward by the solenoid 154, the top roll is fed forward at a higher rate than its normal feed rate.
As best disclosed in FIG. 3, the plunger rack 153 is pivotally attached by pin 155 to the armature of the solenoid 154, so that it may be manually pivoted rearwardly, as disclosed by the arrows, to disengage the gear 151 and to actuate, and thereby open, the switch 156. Opening the switch 156 will de-energize the magnetic feed clutch 130, when it is desired for any reason to manually dis-engage the cloth feed drive, such as when it is desired to manually turn the top roll 20. The solenoid 154 is energized by either one of the overfeed switches 157 and 158. The overfeed switch 157 is located in the rear plunger box 60, while the other overfeed switch 158 is disclosed in FIG. 2 in the front plunger box 60. v
With reference to FIG. 2, the front plunger box 60 includes the reversing switch 92 located at the rear of the box, and the overfeed switch 158 and the high speed switch 57 located in the front of the box 60. Reciprocably mounted for longitudinal movement through the plunger box 60 are a pair of plunger rods 160 and 161 which carry a plunger plate 162 adapted to engage and be depressed by the stop plate 163 fixed to the table 14 adjacent the catcher mechanism 24. Plunger rods 160 and 161 carry actuator lugs or cams 164 and 165 for selectively actuating the switches 92, 158 and 57. Thus, as the carrier frame 11 moves forward in low speed to cooperate with the catcher mechanism 24, the plunger plate 162 engages the stop plate 163. The plunger rods 160 and 161 are stopped while the plunger box 60 continues to ride along the rods causing one of the actuators 165 to actuate the overfeed switch 158, which opens the feed clutch circuit 129 and simultaneously energizes the overfeed solenoid 154, accelerating the top roll 20 to supply extra cloth to the spreader unit 21. The high-speed actuator 165 merely rides over the high-speed switch 57 without actuation. As the plunger box 60 approaches the plunger plate 162, the actuator 164 will actuate the reversing switch 92 causing the relay switches 99 and 100 to shift to their solid-line positions in FIG. 4, thereby reversing the motor circuit as well as the cloth feed circuit. The carrier frame 11 then begins to move rearward away from the catcher mechanism 24. Since the front wheels 13 reverse their rotation upon the table 14, the transmission 32 between the wheel 13 and the top feed roll 12 is also reversed, but the energization of the feed clutch 130 is also reversed to continue to drive the top feed roll 20 and the cloth web 17 forward.
As the frame 11 begins to move in reverse, the plunger box 60 also moves in reverse with the spring 166 urging the plunger plate 162 outwardly while it remains abutting the stop plate 163. As soon as the highspeed actuator 165 returns to the high-speed switch 57, it actuates the high-speed switch 57 to close it, closing the relay switches 69 and 70 to actuate the motor speed control apparatus 73 into high speed. Consequently, after the frame 11 has moved a very short distance rearwardly away from its forward limit of travel, it immediately resumes its high speed movement toward the opposite end of the table 14.
It is, therefore, apparent that a very complete electrically driven and controlled cloth spreading machine 10 has been developed which may be driven automatically, semi-automatically or even manually. Furthermore, the machine may be driven a maximum distance at high speed, and then decelerated by dynamic braking of the electric motor in a minimum of time and distance to attain a rather constant low speed immediately prior to reaching its reversing station.
The machine is designed so that it may be selectively employed for either facato-face spreading or face-up or face-down spreading by manually opening or closing the face switch 142. When the face switch 142 is opened, and the motion switch 84 is maintained closed, the machine may continuously operate automatically for face-to-face spreading with the spreader unit 21 co operating with the catcher mechanism 24 at one end and a similar catcher mechanism, not shown, at the opposite end of the table 14.
When the face switch 142 is closed, the machine will automatically stop when either of the reversing switches 91 or 92 is actuated by the plunger plate 162 engaging the stop plate 163. In this manner, the single layer of cloth which is spread face-up or face-down may be inspected, cut by any convenient cutting means, and then the manual override switch 146 opened to resume the movement of the frame 11 rearward in its non-spreading direction.
Furthermore, in face-to-face spreading both the forward and reverse feed switches 127 and 128 must be closed; whereas, in face-up or face-down spreading, only one of the feed switches 127 or 128 is closed.
The machine is provided with not only dynamic brake 125 for decelerating the motor 28 rapidly every time the machine changes from its high speed to its low speed, but is also provided with an electromagnetic brake 45 for braking the wheels 12 to an immediate stop, when the brake circuit 82 is deenergized.
One of the most important features of the invention is the ability of the machine 10 to fail-safe in low speed for numerous changes in function of the machine, such as power failure, broken wires, and, most important, the automatic reduction of speed for every reversing motion of the machine. This is particularly important where, for example, if one of the low- speed switch arms 64 or 65, for some reason, should not engage the ramp 65, or the ramp 65 is misplaced or removed. Thus, as the machine 10 moves into the catcher at high speed, the actuation of either reversing switch 91 or 92 will momentarily open both fail- safe switches 111 and 115 to open the low-speed circuit 56, causing selector switch 70 to return to its low-speed position.
The remote control handle 85 is also adapted to hang on the bracket 87 to automatically maintain the motion switch 84 closed for full automatic movement. However, when the operator removes the remote control handle 85 from the bracket 87, the motion control switch 84 must be manually depressed in order to move the frame 11. If the operator for any reason is negligent, or has his attention distracted, or for any other reason, removes his finger from the motion switch 84, it will automatically open the motion circuit 80, deenergizing the motor relay coil 122 so that the armature is immediately disconnected from its power and discharges its energy through the dynamic brake resistor causing the machine 10 to stop in a very short distance.
Another safety feature of the machine 10 is that both the start switch 76 and the motion switch 84 must be closed before the motor 28 will be energized. As an extra precaution, the stop switch 53 is provided for manually opening both the speed circuit 54 as well as the starting circuit 75, which in turn automatically opens motion circuit 80 to dynamically brake the frame 11 to a halt.
What is claimed is:
1. A cloth spreading machine comprising:
a. a frame supported for relative longitudinal reciprocal movement over a cloth laying surface,
b. a spreader unit mounted on said frame to spread cloth in layers upon said surface as said frame moves over said surface,
0. electrically energized motor drive means for moving said frame longitudinally of said surface,
d. reversing switch means adapted to control said drive means for reversing the travel of said frame at longitudinally spaced reversing stations,
e. a catcher mechanism mounted adjacent one of said reversing stations for cooperation with said spreader unit at said reversing station to form a fold in said cloth,
f. reversing switch actuator means at said reversing station for actuating said reversing switch means to reverse the travel of said frame,
g. a cloth feed roller having a shaft supported for rotary movement on said frame for feeding cloth to said spreader unit,
h. means for driving said shaft at a normal cloth feed rate,
i. an operator element tangentially engagable with said shaft for driving said shaft to rotate at a faster rate than said normal cloth feed rate,
j. electrical means for actuating said operator element,
k. overfeed switch means adapted to be actuated substantially simultaneously with the actuation of said reversing switch means to energize said electrical means, in order to momentarily accelerate the cloth feed to said spreader unit when cooperating with said catcher mechanism.
2. The invention according to claim 1 in which said operator element is elongated, and said electrical means is a solenoid having an armature operatively connected to said elongated element.
3. The invention according to claim 2 further comprising a gear fixed to said shaft, and said elongated element comprises a rack engaging said gear.

Claims (3)

1. A cloth spreading machine comprising: a. a frame supported for relative longitudinal reciprocal movement over a cloth laying surface, b. a spreader unit mounted on said frame to spread cloth in layers upon said surface as said frame moves over said surface, c. electrically energized motor drive means for moving said frame longitudinally of said surface, d. reversing switch means adapted to control said drive means for reversing the travel of said frame at longitudinally spaced reversing stations, e. a catcher mechanism mounted adjacent one of said reversing stations for cooperation with said spreader unit at said reversing station to form a fold in said cloth, f. reversing switch actuator means at said reversing station for actuating said reversing switch means to reverse the travel of said frame, g. a cloth feed roller having a shaft supported for rotary movement on said frame for feeding cloth to said spreader unit, h. means for driving said shaft at a normal cloth feed rate, i. an operator element tangentially engagable with said shaft for driving said shaft to rotate at a faster rate than said normal cloth feed rate, j. electrical means for actuating said operator element, k. overfeed switch means adapted to be actuated substantially simultaneously with the actuation of said reversing switch means to energize said electrical means, in order to momentarily accelerate the cloth feed to said spreader unit when cooperating with said catcher mechanism.
2. The invention according to claim 1 in which said operator element is elongated, and said electrical means is a solenoid having an armature operatively connected to said elongated element.
3. The invention according to claim 2 further comprising a gear fixed to said shaft, and said elongated element comprises a rack engaging said gear.
US00229602A 1969-09-12 1972-02-25 Electrically controlled cloth spreading machine Expired - Lifetime US3776542A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85750969A 1969-09-12 1969-09-12
US22960272A 1972-02-25 1972-02-25

Publications (1)

Publication Number Publication Date
US3776542A true US3776542A (en) 1973-12-04

Family

ID=26923446

Family Applications (1)

Application Number Title Priority Date Filing Date
US00229602A Expired - Lifetime US3776542A (en) 1969-09-12 1972-02-25 Electrically controlled cloth spreading machine

Country Status (1)

Country Link
US (1) US3776542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708331A (en) * 1985-04-04 1987-11-24 Societe Anonyme: Letra Systemes Device for layer-stacking web-like materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2737385A (en) * 1952-08-26 1956-03-06 Frus-Hansen Erik Cloth laying up, and cloth spreading machines
US3401926A (en) * 1966-05-09 1968-09-17 Cutting Room Appliances Corp Carriage control means for cloth laying machines
US3663006A (en) * 1969-09-12 1972-05-16 Cutters Machine Co Inc Electrically controlled cloth spreading machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2737385A (en) * 1952-08-26 1956-03-06 Frus-Hansen Erik Cloth laying up, and cloth spreading machines
US3401926A (en) * 1966-05-09 1968-09-17 Cutting Room Appliances Corp Carriage control means for cloth laying machines
US3663006A (en) * 1969-09-12 1972-05-16 Cutters Machine Co Inc Electrically controlled cloth spreading machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708331A (en) * 1985-04-04 1987-11-24 Societe Anonyme: Letra Systemes Device for layer-stacking web-like materials

Similar Documents

Publication Publication Date Title
US3663006A (en) Electrically controlled cloth spreading machine
US2416859A (en) Automatic wirf tying machine
US2684626A (en) Bundle tying machine feeder and the control mechanism
US2458612A (en) Automatic shearing apparatus
US3811669A (en) Electrically controlled cloth spreading machine
US3684273A (en) Cloth feed control for spreading machine
US2959412A (en) Fabric positioning mechanism
US3137981A (en) Multiple magazine for cartoning machine
US3400927A (en) Cloth spreading machine
US3791641A (en) Electrically controlled cloth spreading machine
US3468529A (en) Cloth laying machine having cloth roll supporting and feeding structure
US3776542A (en) Electrically controlled cloth spreading machine
US2882956A (en) Plastic bag making machine
US4339118A (en) Cloth spreading method and apparatus
US3479023A (en) Drive control means for cloth spreading machine
US3735223A (en) High-speed control apparatus for cloth spreading machine
US2148375A (en) Cloth laying machine
US2738935A (en) Mount for web rolls
US2621927A (en) Laundry apparatus for folding flat pieces of material
US1946839A (en) Lathe
US2374255A (en) Control for machine tools
US3727907A (en) Cloth feeding and spreading mechanism for cloth spreading machine
US3694722A (en) Speed reducing apparatus for a cloth spreading machine
US1687928A (en) Automatic cutting device
US3760250A (en) Emergency stop control system for cloth spreading machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITIZENS FIDELITY BANK & TRUST CO.

Free format text: SECURITY INTEREST;ASSIGNOR:CUTTERS EXCHANGE, INC., A CORP. OF TN.;REEL/FRAME:004747/0449

Effective date: 19870323

Owner name: FIRST AMERICAN NATIONAL BANK OF NASHVILLE

Free format text: SECURITY INTEREST;ASSIGNOR:CUTTERS EXCHANGE, INC., A CORP. OF TN.;REEL/FRAME:004747/0449

Effective date: 19870323

Owner name: NASHVILLE CITY BANK AND TRUST CO.

Free format text: SECURITY INTEREST;ASSIGNOR:CUTTERS EXCHANGE, INC., A CORP. OF TN.;REEL/FRAME:004747/0449

Effective date: 19870323

Owner name: COMMERCE UNION BANK

Free format text: SECURITY INTEREST;ASSIGNOR:CUTTERS EXCHANGE, INC., A CORP. OF TN.;REEL/FRAME:004747/0449

Effective date: 19870323

Owner name: THIRD NATIONAL BANK IN NASHVILLE, A NATIONAL BANKI

Free format text: SECURITY INTEREST;ASSIGNOR:CUTTERS EXCHANGE, INC., A CORP. OF TN.;REEL/FRAME:004747/0449

Effective date: 19870323

AS Assignment

Owner name: SABER INDUSTRIES, INC.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CUTTERS, INC.;REEL/FRAME:005075/0474

Effective date: 19890217

Owner name: FIRST AMERICAN NATIONAL BANK, A NATIONAL BANKING A

Free format text: SECURITY INTEREST;ASSIGNOR:SABER INDUSTRIES, INC.;REEL/FRAME:005075/0501

Effective date: 19890217