US3776457A - Fail-safe device for thermostatic valves - Google Patents

Fail-safe device for thermostatic valves Download PDF

Info

Publication number
US3776457A
US3776457A US00185665A US3776457DA US3776457A US 3776457 A US3776457 A US 3776457A US 00185665 A US00185665 A US 00185665A US 3776457D A US3776457D A US 3776457DA US 3776457 A US3776457 A US 3776457A
Authority
US
United States
Prior art keywords
plug
valve
temperature
aperture
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00185665A
Inventor
P Cardi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3776457A publication Critical patent/US3776457A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/02Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
    • G05D23/021Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste
    • G05D23/022Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste the sensing element being placed within a regulating fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/16Fail safe using melting materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/1624Destructible or deformable element controlled
    • Y10T137/1797Heat destructible or fusible
    • Y10T137/1812In fluid flow path

Definitions

  • A- primary object of my invention is accordingly to provide a failsafe by-pass for such valves in the event of valve malfunction and a further object isto prevent damage to engines through overheating as a result of valve malfunction.
  • thermostatically controlled valves of the type described are at some colder temperature closed with a high pressure difference across the valve (namely, when the engine is starting up), and are at some hotter temperature open with a small pressure difference across the valve (namely, when the engine is warmed up).
  • Neither pressure nor temperature alone can, therefore, beused as a criterion for the malfunction of the valve.
  • the malfunctioning valve is characterized by the occurrence of high pressure at the hotter temperature. Accordingly,
  • my invention features a support structure with an'aperture providing a by-pass passage around a thermostatically controlled valve, and a plug fitting within and blocking the by-pass passage and having a retaining structure of temperature softening material, stiff while at the colder temperature to retain the plug in the aperture against the thrust of the high pressure and softer while at the hotter temperature to permit the plug to be removed from the orifice by the thrust of the high pressure although retaining the plug in the aperture against the thrust of the lower pressure.
  • the aperture is an elongated slot in a thin wall and the retaining structure is a flange integral with the plug, tapering inthickness from one end of the slot to the other,anchored on its thicker end and having reinforcing ribs extending across the plug.
  • FIG. 1 is a schematic diagram showing the flow channels in a cooling system employing the invention.
  • FIG. 2 shows an embodiment of the invention as it is installed adjacent to the thermostatic valve of the system of FIG. 1.
  • FIG. 1 where pump 10 drives cooling fluid through engine block 12 whence it circulates in part through channel 14 and thermostatically controlled valve 16' (supposing the fluid to be hot and valve 16 consequently open) to channel 18 and thence to radiator 20 from which the fluid returns by channel 22 to pump 10.
  • Channel 21 provides a direct return to pump 10 when valve 16 is closed.
  • Fail-safe device 24 is connected in parallel with valve 16.
  • thin-wall support structure 30 supports valve 16 between channel 14 and channel 18.
  • Valve 16 (shown open in FIG. 3 as it would normally be in the hotter temperature condition) provides an annular passage 32 through which coolant flows from channel 14 to channel 18.
  • thermostatically controlled valves of the type shown is well known and need not be further described here.
  • Structure 30 has an elongated slot aperture 36 (shown in additional detail in FIG. 5) providing a bypass passage around valve 16.
  • Plug 40 which is advantageously made of polyethylene fits within aperture 36, thereby blocking it to the flow of cooling fluid.
  • Plug 40 has an integral flange 42 made of a temperature softening material such as polyethylene which serves as a re taining structure holding plug 40 in place in aperture 36 against the thrust of pressure acting from channel 14 towards channel 18.
  • Flange 42 is tapered in thickness from one end to the other as shown particularly in FIG. 4 and is anchored to structure 30 at its thicker end 44 by rivet 46.
  • Flange 42 is advantageously reinforced by ribs 48 extending across plug 40'widthwise.
  • valve 16 In normal operation with the engine block 12 and cooling fluid at a colder temperature as during start-up, passage 32 of valve 16 would be closed and the action of pump 10 would produce a certain pressure drop between channel 14 and channel 18, although there would be no flow to radiator 20.
  • the polyethylene material of which flange 42 is composed would be stiff and strong and would retain plug 40 in aperture 36 against the thrust of the pressure differential from channel 14 to channel 18.
  • thermostatic valve 16 After running for a while, engine block 12 and the cooling fluid would become hot and the material of flange 42 would at the hotter temperature become softer and weaker, but, supposing normal operation, thermostatic valve 16 would have opened passage 32 to permit flow to radiator 20 with the result that the pressure drop from channel 14 to channel 18 would be small.
  • Flange 42 even though softer and weaker at this hotter temperature, would retain plug 40 in aperture 36 against the reduced thrust of the now small pressure difference. If however through malfunction, valve 16 should close passage 32 while the cooling fluid is at the hotter temperature, the pressure difference from chanagainst the thrust of this higher pressure. The thinner portion 43 of flange 42 would give-way and plug 40 would be thrust out of aperture 36 into channel 18. Rivet 46 would, however, retain the plug-flange structure and prevent it from circulating through the cooling system. The now open aperture 36 would permit a flow of cooling fluid to the radiator and back to the engine block, thus preventing damage from excessive heating.
  • the valve opens at about 190 F
  • the plug is polyethylene, 1.5 in. long (around the curve) and 5/32 in. wide.
  • the flange is H32 in. wide, and tapers from 3/32 in. thick at its thicker end to one-sixteenth in. at its thinner end.
  • the three reinforcing ribs are H16 in. thick.
  • the flange when cold (say 120 F) retains the plug against a 5 psi pressure differential and softens and releases it against such a pressure at a temperature of 225 F.
  • the invention can be readily adapted to other pressures and release temperatures by changing the dimensions and shape of the retaining structure and choosing materials softening at higher or lower temperatures as appropriate.
  • the data and methods for such adaptations will be well known to those skilled in the art and need not be further elucidated here.
  • a fail-safe device to prevent damage if said valve through malfunction should become closed when said cooling fluid is at said hotter temperature
  • a thin-walled support structure with an elongated slot-like aperture providing a bypass passage around said valve, plug fitting within and blocking said by-pass passage, and having a retaining structure of temperature softening material stiff while at said colder temperature to retain said plug in said aperture against the thrust of said high pressure and softer while at said hotter temperature to retain said plug in said aperture against the thrust of said lower pressure and permit said plug to be removed from said aperture by the thrust of said higher pressure
  • said retaining structure being integral with said plug and tapering in thickness from one end of said slot to the other.

Abstract

A fail-safe device for thermostatic valves featuring a support structure with an aperture providing a by-pass passage around the valve, and a plug fitting within and blocking the by-pass passage and having a retaining structure of temperature softening material, stiff while at a colder temperature to retain the plug in the aperture and softer while at a hotter temperature to permit the plug to be removed from the orifice if the valve is closed although retaining the plug in the aperture when the valve is open.

Description

i v United States Patent 1 [111 3,77
Cardi 1 t, 1973 [54] FAIL-SAFE DEVICE FOR THERMO STATIC 1,692,773 11/1928 Friedman 137/74 X VALVES [76] Inventor: Paul Cardi, 1375 Park Ave., Primww Examiner-William Wayner Cranston, 2 2 Attorney-Robert E. Hillman [22] Filed: Oct. 1, 1971 211 App]. No.: 185,665 [57] ABSTRACT A failsafe device for thermostatic valves featuring a support structure with an aperture providing a by-pass 2363256113332 passage around the valve and a plug fitting within and [58] we. 0. 5 34 93 blocking the by pass passage and having a retaining I structure of temperature softening material, stiff while at a colder temperature to retain the plug in the aper- 4 ture and softer while at a hotter temperature to permit [56] References Cited the plug to be removed from the orifice if the valve is UNITED STATES PATENTS closed although retaining the plug in the aperture 3,498,537 3/1970 Wong 236/34 when the valve is open. 2,895,677 7/1959 Drapeau 236/34 2,985,180 5/1961 Grayson 137/74 6 Claims, 5 Drawing Figures PATENTED DEC 75 FIG I BLOCK ENGINE 2| RADIATOR FIG 4 FAIL-SAFE DEVICE FOR THERMOSTATIC VALVES BACKGROUND OF THE INVENTION The cooling of automobile engines is frequently accomplished by a forced circulation system in which a cooling fluid is pumped from an engine block where .it has picked up heat, through a radiator where it loses its heat, and thence back to the engine block. In order to accomplish rapid warm up of the engine block on starting, these systems frequently control the flow of cooling fluid to the radiator by a thermostatic valve-While the cooling fluid is cold the valve remains closed and prevents flow through the radiator, but in response to an increased temperature in the cooling fluid the valve.
opens and permits=flow through the radiator and back to the engine block. Such thermostatic valves occasionally through malfunction. remain .or become closed even when the cooling fluid is hot with the result that the engine block overheats and is damaged. A- primary object of my invention is accordingly to provide a failsafe by-pass for such valves in the event of valve malfunction and a further object isto prevent damage to engines through overheating as a result of valve malfunction.
SUMMARY OF THE INVENTION I have recognized that in their normal operation thermostatically controlled valves of the type described are at some colder temperature closed with a high pressure difference across the valve (namely, when the engine is starting up), and are at some hotter temperature open with a small pressure difference across the valve (namely, when the engine is warmed up). Neither pressure nor temperature alone can, therefore, beused as a criterion for the malfunction of the valve. The malfunctioning valve is characterized by the occurrence of high pressure at the hotter temperature. Accordingly,
my invention features a support structure with an'aperture providing a by-pass passage around a thermostatically controlled valve, and a plug fitting within and blocking the by-pass passage and having a retaining structure of temperature softening material, stiff while at the colder temperature to retain the plug in the aperture against the thrust of the high pressure and softer while at the hotter temperature to permit the plug to be removed from the orifice by the thrust of the high pressure although retaining the plug in the aperture against the thrust of the lower pressure.
In a preferred embodiment the aperture is an elongated slot in a thin wall and the retaining structure is a flange integral with the plug, tapering inthickness from one end of the slot to the other,anchored on its thicker end and having reinforcing ribs extending across the plug.
BRIEF DESCRIPTION OF THE DRAWINGS Other objects and features will appear from the following description of the preferred embodiment of the invention taken together with the attached drawings thereof in which: I
FIG. 1 is a schematic diagram showing the flow channels in a cooling system employing the invention.
FIG. 2 shows an embodiment of the invention as it is installed adjacent to the thermostatic valve of the system of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment will be described referring first to FIG. 1 where pump 10 drives cooling fluid through engine block 12 whence it circulates in part through channel 14 and thermostatically controlled valve 16' (supposing the fluid to be hot and valve 16 consequently open) to channel 18 and thence to radiator 20 from which the fluid returns by channel 22 to pump 10. Channel 21 provides a direct return to pump 10 when valve 16 is closed. Fail-safe device 24 is connected in parallel with valve 16. Turning now to FIGS. 2 and 3, thin-wall support structure 30 supports valve 16 between channel 14 and channel 18. Valve 16 (shown open in FIG. 3 as it would normally be in the hotter temperature condition) provides an annular passage 32 through which coolant flows from channel 14 to channel 18. The construction and operation of thermostatically controlled valves of the type shown is well known and need not be further described here.
Structure 30 has an elongated slot aperture 36 (shown in additional detail in FIG. 5) providing a bypass passage around valve 16. Plug 40 which is advantageously made of polyethylene fits within aperture 36, thereby blocking it to the flow of cooling fluid. Plug 40 has an integral flange 42 made of a temperature softening material such as polyethylene which serves as a re taining structure holding plug 40 in place in aperture 36 against the thrust of pressure acting from channel 14 towards channel 18. Flange 42 is tapered in thickness from one end to the other as shown particularly in FIG. 4 and is anchored to structure 30 at its thicker end 44 by rivet 46. Flange 42 is advantageously reinforced by ribs 48 extending across plug 40'widthwise.
In normal operation with the engine block 12 and cooling fluid at a colder temperature as during start-up, passage 32 of valve 16 would be closed and the action of pump 10 would produce a certain pressure drop between channel 14 and channel 18, although there would be no flow to radiator 20. At the colder temperature supposed, the polyethylene material of which flange 42 is composed would be stiff and strong and would retain plug 40 in aperture 36 against the thrust of the pressure differential from channel 14 to channel 18. After running for a while, engine block 12 and the cooling fluid would become hot and the material of flange 42 would at the hotter temperature become softer and weaker, but, supposing normal operation, thermostatic valve 16 would have opened passage 32 to permit flow to radiator 20 with the result that the pressure drop from channel 14 to channel 18 would be small. Flange 42, even though softer and weaker at this hotter temperature, would retain plug 40 in aperture 36 against the reduced thrust of the now small pressure difference. If however through malfunction, valve 16 should close passage 32 while the cooling fluid is at the hotter temperature, the pressure difference from chanagainst the thrust of this higher pressure. The thinner portion 43 of flange 42 would give-way and plug 40 would be thrust out of aperture 36 into channel 18. Rivet 46 would, however, retain the plug-flange structure and prevent it from circulating through the cooling system. The now open aperture 36 would permit a flow of cooling fluid to the radiator and back to the engine block, thus preventing damage from excessive heating.
in the preferred embodiment described, the valve opens at about 190 F, the plug is polyethylene, 1.5 in. long (around the curve) and 5/32 in. wide. The flange is H32 in. wide, and tapers from 3/32 in. thick at its thicker end to one-sixteenth in. at its thinner end. The three reinforcing ribs are H16 in. thick. The flange when cold (say 120 F) retains the plug against a 5 psi pressure differential and softens and releases it against such a pressure at a temperature of 225 F.
The invention can be readily adapted to other pressures and release temperatures by changing the dimensions and shape of the retaining structure and choosing materials softening at higher or lower temperatures as appropriate. The data and methods for such adaptations will be well known to those skilled in the art and need not be further elucidated here.
I claim:
1. in a cooling system with a pump for circulating cooling fluid and a thermostatically controlled valve for regulating the flow of said cooling fluid, said system operating normally to have when said fluid is at a first,
colder temperature said valve closed to block flow of said fluid through a passage with a high pressure across said valve, and when said cooling fluid is at a second, hotter temperature to have said valve open to permit flow of said fluid through said passage with a lower pressure across said valve, a fail-safe device to prevent damage if said valve through malfunction should become closed when said cooling fluid is at said hotter temperature comprising:
a thin-walled support structure with an elongated slot-like aperture providing a bypass passage around said valve, plug fitting within and blocking said by-pass passage, and having a retaining structure of temperature softening material stiff while at said colder temperature to retain said plug in said aperture against the thrust of said high pressure and softer while at said hotter temperature to retain said plug in said aperture against the thrust of said lower pressure and permit said plug to be removed from said aperture by the thrust of said higher pressure,
said retaining structure being integral with said plug and tapering in thickness from one end of said slot to the other.
2. The device of claim 1, wherein said flange is anchored to said support structure at its thicker end.
3. The device of claim 2, wherein said flange has reinforcing ribs extending across said plug widthwise.
4. The device of claim 1, wherein said material is an organic plastic.
5. The device of claim 4, wherein said organic plastic is polyethylene.
6. The device of claim 3, wherein said plug is 1.5 in. long and 5/32 in. wide, wherein the flange is H32 in. wide and tapers from 3/32 in. thick at its thicker end to one-sixteenth in. at its thinner end, wherein there are three reinforcing ribs each 3/16 in. thick and wherein said plug and flange are made of polyethylene.

Claims (6)

1. In a cooling system with a pump for circulating cooling fluid and a thermostatically controlled valve for regulating the flow of said cooling fluid, said system operating normally to have when said fluid is at a first, colder temperature said valve closed to block flow of said fluid through a passage with a high pressure across said valve, and when said cooling fluid is at a second, hotter temperature to have said valve open to permit flow of said fluid through said passage with a lower pressure across said valve, a fail-safe device to prevent damage if said valve through malfunction should become closed when said cooling fluid is at said hotter temperature comprising: a thin-walled support structure with an elongated slot-like aperture providing a bypass passage around said valve, a plug fitting within and blocking said by-pass passage, and having a retaining structure of temperature softening material stiff while at said colder temperature to retain said plug in said aperture against the thrust of said high pressure and softer while at said hotter temperature to retain said plug in said aperture against the thrust of said lower pressure and permit said plug to be removed from said aperture by the thrust of said higher pressure, said retaining structure being integral with said plug and tapering in thickness from one end of said slot to the other.
2. The device of claim 1, wherein said flange is anchored to said support structure at its thicker end.
3. The device of claim 2, wherein said flange has reinforcing ribs extending across said plug widthwise.
4. The device of claim 1, wherein said material is an organic plastic.
5. The device of claim 4, wherein said organic plastic is polyethylene.
6. The device of claim 3, wherein said plug is 1.5 in. long and 5/32 in. wide, wherein the flange is 1/32 in. wide and tapers from 3/32 in. thick at its thicker end to one-sixteenth in. at its thinner end, wherein there are three reinforcing ribs each 3/16 in. thick and wherein said plug and flange are made of polyethylene.
US00185665A 1971-10-01 1971-10-01 Fail-safe device for thermostatic valves Expired - Lifetime US3776457A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US18566571A 1971-10-01 1971-10-01

Publications (1)

Publication Number Publication Date
US3776457A true US3776457A (en) 1973-12-04

Family

ID=22681949

Family Applications (1)

Application Number Title Priority Date Filing Date
US00185665A Expired - Lifetime US3776457A (en) 1971-10-01 1971-10-01 Fail-safe device for thermostatic valves

Country Status (1)

Country Link
US (1) US3776457A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186872A (en) * 1976-04-22 1980-02-05 Bland William M Jr Alternate path cooling system for liquid cooled devices such as engines
US4245782A (en) * 1979-06-06 1981-01-20 George Brown Fusible linkage aquatic device that will override the failure of a defective thermostat or the like within a motor
US4353501A (en) * 1979-11-14 1982-10-12 George Brown Fusible aquatic device that will override the failure of a defective thermostat or the like within a motor
US4393889A (en) * 1981-03-17 1983-07-19 Acf Industries, Incorporated Fire-safe valve structure
FR2529254A1 (en) * 1982-06-24 1983-12-30 Brown George Fail safe thermostat for engine cooling system - has holes in shut off element blanked by alloy which melts on thermostat failure to prevent overheating
US4453668A (en) * 1982-11-10 1984-06-12 Caltherm Corporation Fail-safe thermostatic valve
US4457329A (en) * 1981-12-04 1984-07-03 Air Products And Chemicals, Inc. Safety pressure regulator
US4981260A (en) * 1989-10-23 1991-01-01 Automotive Products Company Failsafe thermostat for water-cooled engines
FR2667354A1 (en) * 1990-09-28 1992-04-03 Jaeger Thermostatic valve for the cooling circuit of a motor vehicle internal-combustion engine
FR2668853A1 (en) * 1990-11-05 1992-05-07 Vernet Procedes SAFETY DEVICE FOR THERMOSTAT ACTUATED BY A DILATABLE WAX CAPSULE.
US5140951A (en) * 1991-10-07 1992-08-25 Carr Luther J Pressure release thermostat
US5207744A (en) * 1992-03-30 1993-05-04 Heafner Morris T Thermostat apparatus
US5503329A (en) * 1994-11-25 1996-04-02 Saladino; Paul D. Automotive thermostat
US5992755A (en) * 1997-04-11 1999-11-30 Kuze; Yoshikazu Thermostat for an automotive engine cooling system
US20100212612A1 (en) * 2007-05-25 2010-08-26 Frederic Vacca Module For The Cooling Circuit Of An Engine In An Automobile
EP2634388A1 (en) * 2012-02-28 2013-09-04 Mikuni Corporation Cooling water control valve apparatus
US10363651B2 (en) * 2015-09-28 2019-07-30 Caterpillar Inc. Hammer assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1692773A (en) * 1924-09-30 1928-11-20 Cleveland Heater Co Relief valve
US2895677A (en) * 1956-12-14 1959-07-21 Dole Valve Co Pressure compensated waterline thermostat
US2985180A (en) * 1958-01-27 1961-05-23 Gen Controls Co Drain valve
US3498537A (en) * 1968-08-26 1970-03-03 Standard Thomson Corp Fail-safe thermostatic fluid valve structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1692773A (en) * 1924-09-30 1928-11-20 Cleveland Heater Co Relief valve
US2895677A (en) * 1956-12-14 1959-07-21 Dole Valve Co Pressure compensated waterline thermostat
US2985180A (en) * 1958-01-27 1961-05-23 Gen Controls Co Drain valve
US3498537A (en) * 1968-08-26 1970-03-03 Standard Thomson Corp Fail-safe thermostatic fluid valve structure

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186872A (en) * 1976-04-22 1980-02-05 Bland William M Jr Alternate path cooling system for liquid cooled devices such as engines
US4245782A (en) * 1979-06-06 1981-01-20 George Brown Fusible linkage aquatic device that will override the failure of a defective thermostat or the like within a motor
US4353501A (en) * 1979-11-14 1982-10-12 George Brown Fusible aquatic device that will override the failure of a defective thermostat or the like within a motor
US4393889A (en) * 1981-03-17 1983-07-19 Acf Industries, Incorporated Fire-safe valve structure
US4457329A (en) * 1981-12-04 1984-07-03 Air Products And Chemicals, Inc. Safety pressure regulator
FR2529254A1 (en) * 1982-06-24 1983-12-30 Brown George Fail safe thermostat for engine cooling system - has holes in shut off element blanked by alloy which melts on thermostat failure to prevent overheating
US4453668A (en) * 1982-11-10 1984-06-12 Caltherm Corporation Fail-safe thermostatic valve
US4981260A (en) * 1989-10-23 1991-01-01 Automotive Products Company Failsafe thermostat for water-cooled engines
FR2667354A1 (en) * 1990-09-28 1992-04-03 Jaeger Thermostatic valve for the cooling circuit of a motor vehicle internal-combustion engine
EP0485254A1 (en) * 1990-11-05 1992-05-13 Vernet Wax expansion powered thermostat with a safety device
FR2668853A1 (en) * 1990-11-05 1992-05-07 Vernet Procedes SAFETY DEVICE FOR THERMOSTAT ACTUATED BY A DILATABLE WAX CAPSULE.
US5188287A (en) * 1990-11-05 1993-02-23 Procedes Vernet Thermostat actuated by an expanding wax capsule and incorporating a safety device
US5140951A (en) * 1991-10-07 1992-08-25 Carr Luther J Pressure release thermostat
US5207744A (en) * 1992-03-30 1993-05-04 Heafner Morris T Thermostat apparatus
US5503329A (en) * 1994-11-25 1996-04-02 Saladino; Paul D. Automotive thermostat
US5992755A (en) * 1997-04-11 1999-11-30 Kuze; Yoshikazu Thermostat for an automotive engine cooling system
US20100212612A1 (en) * 2007-05-25 2010-08-26 Frederic Vacca Module For The Cooling Circuit Of An Engine In An Automobile
US8695542B2 (en) * 2007-05-25 2014-04-15 Valeo Systemes Thermiques Module for the cooling circuit of an engine in an automobile
EP2634388A1 (en) * 2012-02-28 2013-09-04 Mikuni Corporation Cooling water control valve apparatus
US10363651B2 (en) * 2015-09-28 2019-07-30 Caterpillar Inc. Hammer assembly

Similar Documents

Publication Publication Date Title
US3776457A (en) Fail-safe device for thermostatic valves
US4288031A (en) Thermostatic control valve
JP2757323B2 (en) Thermostat operated by inflatable wax capsule with safety device
US4666081A (en) Programmable thermostat and system therefor
KR101018538B1 (en) Vehicle cooling system
KR101013961B1 (en) Circulation Circuit of Cooling Water For Engine
EP3194810B1 (en) Transmission heat exchange system
US4394960A (en) Heating apparatus for a passenger compartment of a motor vehicle
KR0139481B1 (en) Automotive engine cooling system
US4060195A (en) Solar heating control system
US4260103A (en) Heating system for a railway car for utilizing waste heat from an engine
US2706085A (en) Thermostatic regulating device for the liquid cooling system of a combustion engine
US1406922A (en) Cooling system
US3380466A (en) Thermostatic by-pass valves
US6883470B2 (en) Engine cooling system
US2871836A (en) Engine cooling system with radiator by-pass
US1168623A (en) Temperature-controlling apparatus for internal-combustion engines.
US2176331A (en) Circulatory cooling system for internal combustion engines
US10920654B2 (en) Connector
JPS63183216A (en) Coolant temperature control device for internal combustion engine
US3120926A (en) Control arrangement for cooling water circulatory systems
KR0146178B1 (en) A thermostat of overheating protection for an automotive
EP3444461A1 (en) Thermostat for cooling system of an internal combustion engine for vehicles
US3067817A (en) Automatically regulated radiator type cooling system
US3092322A (en) By-pass valve thermostat