US3773652A - Jet fuel manufacture - Google Patents

Jet fuel manufacture Download PDF

Info

Publication number
US3773652A
US3773652A US00080481A US3773652DA US3773652A US 3773652 A US3773652 A US 3773652A US 00080481 A US00080481 A US 00080481A US 3773652D A US3773652D A US 3773652DA US 3773652 A US3773652 A US 3773652A
Authority
US
United States
Prior art keywords
toluene
methylcyclohexane
jet fuel
low temperature
hydroalkylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00080481A
Inventor
K Dille
G Saines
A Arkell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Development Corp
Original Assignee
Texaco Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Development Corp filed Critical Texaco Development Corp
Application granted granted Critical
Publication of US3773652A publication Critical patent/US3773652A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons

Definitions

  • ABSTRACT Jet fuels which have both a high heat content and an acceptable low temperature viscosity are prepared by the hydroalkylation of mononuclear aromatic hydrocarbon fractions. Benzene, toluene, and Udex extract, and mixtures thereof, are the preferred starting materials. These are hydroalkylated by reaction at about 30250 C. under super-atmospheric pressures of about 20-70 atmospheres of hydrogen, thus producing hydroalkylates containing cycloalkyl-substituted benzenes, methylcyclohexyl-substituted toluenes and the like.
  • the preferred catalyst is finely divided nickel on a support containing both a zeolite and a silica-alumina cracking catalyst.
  • This invention relates to a method for the production ofjet fuels of high heat content from mononuclear aromatic hydrocarbons such as benzene, alkylbenzenes such as toluene, ethylbenzene and the like, and dialkylbenzenes such as the various xylenes, including mixtures thereof such as those obtained in Udex extracts.
  • mononuclear aromatic hydrocarbons such as benzene, alkylbenzenes such as toluene, ethylbenzene and the like
  • dialkylbenzenes such as the various xylenes, including mixtures thereof such as those obtained in Udex extracts.
  • a principal object of the invention is to convert these aromatic hydrocarbons into jet fuels by hydroalkylation processes.
  • a further object is the production of jet fuels, having both a high heat content and an accept able low temperature viscosity, by reducing-cycloalkylsubstituted mononuclear aromatic hydrocarbons to a mixture of cycloalkyl-substituted cyclohexanes.
  • a still further object of the invention is the provision of new jet fuels wherein the principal heat-producing ingredients are cyclohexyl-substituted benzenes, methylcyclohexyl-substituted toluenes and other mononuclear aromatic hydrocarbon derivatives and their reduction products such as dicyclohexylsubstituted cyclohexanes, polycyclohexyl cyclohexanes and mixtures thereof together with sufficient methylcyclohexane to impart a desired low temperature viscosity.
  • the principal heat-producing ingredients are cyclohexyl-substituted benzenes, methylcyclohexyl-substituted toluenes and other mononuclear aromatic hydrocarbon derivatives and their reduction products such as dicyclohexylsubstituted cyclohexanes, polycyclohexyl cyclohexanes and mixtures thereof together with sufficient methylcyclohe
  • the turbojet engine operates by the combustion of fuel between an air compressor and a turbine, thereby increasing the volume and temperature of the air so that the work of compression can be taken out of the gases by the turbine with enough energy remaining to impart the high final kinetic energy and speed to the jet that is needed for propulsion.
  • a fuel having a high heat content as measured by its heat of total combustion, is needed.
  • a fuel having an acceptable low temperature viscosity is needed because of the low temperatures which may be encountered during storage and high altitude use.
  • jet fuels having both of these properties can be obtained by processes based on the hydroalkylation of mononuclear aromatic hydrocarbons such as benzene, toluene, higher alkylbenzenes, xylenes and the like, including particularly mixtures of these hydrocarbons such as are obtained-by extracting aromatic petroleum fractions with suitable solvents.
  • these hydrocarbons or hydrocarbon mixtures are hydroalkylated, thereby producing mixtures containing cycloalkylsubstituted mononuclear aromatic hydrocarbons, followed by partial or complete reduction to the corresponding cycloalkyl-substituted cyclohexanes or alkylcyclohexanes.
  • jet fuels having varying but controlled ratios of heat content to lowtemperature viscosity can be obtained by fractionating the reduction products so obtained, or by stripping volatile ingredients such as methylcyclohexane therefrom.
  • cycloalkyl aromatic compounds by hydroalkylation is a known procedure. It is carried out by reacting mononuclear aromatic hydrocarbons such as benzene, toluene and mixtures thereof with hydrogen in the presence of a mixed catalyst which contains both an alkylation component and a hydrogenation component.
  • mononuclear aromatic hydrocarbons such as benzene, toluene and mixtures thereof
  • a mixed catalyst which contains both an alkylation component and a hydrogenation component.
  • Typical catalysts and reaction condictions are described in U. S. Pat. Nos. 3,274,276and 3,317,61 l, and any of the catalysts and reaction conditions described in these patents may be used in practicing our present invention.
  • the hydroalkylation is preferably carried out at temperatures below about 450 F. and preferably within the range of about 110 to 400 F. and pressures of hydrogen of about 20-70 atmospheres.
  • the subsequent reduction of the hydroalkylate may be obtained by continuing the reaction with the same or other hydrogenation catalyst at'about 300 to 1,000 p.s.i. and temperatures below 450 F. until the uptake of hydrogen is substantially complete.
  • pressures of hydrogen of about 4-50 to 550 p.s.i. are preferred in order to lessen the reaction time.
  • the resulting reaction mixture is then preferably distilled at atmospheric or subatmospheric pressures to strip off unreacted or partially reacted starting materials and by-products of relatively low heat content.
  • the process of our invention can be adapted to produce jet fuels of either type from relatively inexpensive starting materials such as benzene, tolunee, and alkylbenzene mixtures obtained by the solvent extraction of aromatic hydrocarbon fractions.
  • starting materials such as benzene, tolunee, and alkylbenzene mixtures obtained by the solvent extraction of aromatic hydrocarbon fractions.
  • a particularly useful source of such mixtures is Udex extract, obtained by the selective extraction of aromatics from various feed stocks by ab- 1 sorption in aqueous diethylene glycol solutions, and the use of such extracts as starting materials constitutes a particualr specific feature of the invention.
  • the preferred practice of our invention consists in treating toluene or toluene-containing mixtures such as Udex extract to a 3-stage process.
  • toluene or toluene-containing mixtures such as Udex extract
  • the first stage the toluene is hydroalkylated as described above to a product containing methylcycloalkyl-substituted toluenes, which are usually mixed with unconverted toluenes since the hydroalkylation is seldom carried to completion.
  • this product mixture is reduced by hydrogenation to form the corresponding methylcycloalkylsubstituted methylcyclohexanes along with methylcyclohexane from the toluene reduction.
  • a part or all of the methylcyclohexane is removed by distillation in order to adjust the jet fuel product to the desired final viscosity and B.T.U. content.
  • most of the unconverted toluene from the first stage can be stripped ofi for recycle to the hydroalkylation unit.
  • Jet fuel blends with energy contents in the 136,000 B.T.U. per gallon range are obtained by either of these procedures, and viscosities as low as 50-75 poises at minus 65 C. are obtainable by the presence of about percent to about 50 percent of methylcyclohexane in the product.
  • Such blends may contain dicyclohexylbenzene, tricyclohexylbenzene, dicyclohexyl cyclohexane or higher polycyclohexyl cyclohexanes, but usually mixtures of two or more of these compounds are present in ratios that will vary with the extent of hydroalkylation and of reduction used in the process.
  • the invention will be further described and illustrated by the following examples.
  • the catalyst used in these examples consisted of about 6 percent by weight of finely divided nickel distended on about 94 percent of a hydrocarbon-cracking catalyst support which was a substantially aklaki metal-free mixture of about 22 percent by weight of a modified zeolite Y, about 58 percent of silica and about 20 percent of alumina.
  • the modified zeolite portion of the cracking component has uniform pore openings of from 6-15 Angstrom units, has a silica-alumina ratio of at least 2.5, e.g. 3-10, and has a reduced alkali metal content.
  • the modified zeolite is prepared by subjecting synthetic zeolite Y to ion exchange by contacting the zeolite several times with fresh solutions of an ammonium compound at temperatures ranging between about 100 and 250 F. until it appears that the ion exchange is substantially complete. The ion exchanged zeolite is then washed to remove solubilized alkali metal and dried at a temperature sufficiently high to drive off ammonia.
  • the ion exchanged zeolite is then calcined at a temperature of about 1,000 F. for several housrs. After cooling, the ion-exchanged calcined zeolite is subjected to additional ion exchange by contact several times with fresh solutions of an ammonium compound and again washed and dried. This treatment results in a further reduction in the alkali metal content of the zeolite to less than 1 percent and usually to about 0.5 percent.
  • the silica-alumina portion of the support is a composite of alkali metal-free silica'and alumina of the well-known type used in petroleum cracking and described, for example, in U. S. Pat. No. 2,469,314. It is frequently prepared by acidifying an aqueous sodium silicate solution with aqueous 25% sulfuric acid, washing the resulting hydrated silica free from alkali metal salts, suspending it in aluminum sulfate solution, precipitating with ammonia, filtering and washing.
  • the filter cake is preferably mixed with a sufficient quantity of the modified zeolite to obtain 22 percent by weight of zeolite after drying and the mixture is dried and calcined. It is then impregnated with 6 percent of nickel by adding nickel nitrate solution, drying and heating in the presence of hydrogen.
  • EXAMPLE 1 ylated at 375 F. and about 500 p.s.i.g. hydrogen pressure. After 1.5 hours a 31 percent conversion was obtained with 79 percent of the hydroalkylate being mixed isomeric methylcyclohexyltoluenes.
  • reaction mixture was fractionated by distillation at 1 torr; i.e., at l millimeter of mercury pressure.
  • Runs were also made at 370380 F. and 500 p.s.i.g. with o-xylene, m-xylene and p-xylene, using the same catalyst in an amount of 1 1% on the weight of the hydrocarbon. Hydroalkylation and reduction were obtained with all three of the starting materials but the hydrogen uptake rate was greater with the meta and para xylene than with orthoxylene.
  • jet fuels which have higher aromatic ratios are better suited for military use due to their higher density while lower density fuels for commercial aircraft are obtained by hydrogenation of the aromatic ring which may be followed by light end stripping if desired.
  • hydroalkylation products of benzene, toluene and Udex extract and their reduction products were evaluated as jet fuel ingredients, in comparison with methylcyclohexane and i-propyldicyclohexyl, by determining their heats of combustion andtheir viscosities at minus 65 F.
  • the results with benzene hydroalkylation products are shown in the following table.
  • the sample was mixed with 5.3 percent of its weight of catalyst and hydroalkylated at 370380 F. using 500 p.s.i.g. of hydrogen pressure.
  • the rate of hydrogen uptake was slightly less than that of pure toluene but was greater than for the xylenes of Example 3. Distillation gave the following results.
  • the dicyclohexylbenzenes reported in this table were made by hydroalkylation of benzene mixed with 5 perjet fuels having both high heat contents and acceptable viscosities at low temperatures can be obtained by blending a mixture of polycyclohexylcyclohexanes with about 20 percent to about 50 percent of their weight of methylcyclohexane.
  • Table IV shows that increasing the number of cyclohexyl groups on benzene (compare 1,2 and increases the heat of combustion on both a weight and volume basis.
  • increasing the number of cyclohexylgroups on cyclohexane (compare 6, 7 and 9) causes the heat of combustion on a weight basis to decrease and on a volume basis to increase.
  • the trisubstituted compounds have relatively high heat of combustion values of over 146,000 BTUs/gal., but the dicyclohexylbenzenes are better suited for military purposes because of their higher density.
  • Test Nos. 3 and 4 show that their low temperature viscosities can be brought into the desired range by blending them with minor proportions of methylcyclohexane.
  • Table V shows the results with products of Examples 1, 2 and 4 with isopropyldicyelohexyl as a basis of comparison.
  • Test Density, number Compound or mixture Source B.t.u./1b. g./cc.
  • i-Propyldicyclohexyl. 18, 430 1- Methylcyclohexyltoluenes. Ex. 1(0), cut 2.. 17, 658 .9311 2 Higher subst. products. Ex. 1(0), out 4,5 17, 643 .9314 3 Higher subst. products Ex. 1(c), residue... 17,606 .9721 4- Me-eyclohexyl-me-cyclohexane Ex. 2, cut 2 1B, 363 8837 ll. Di-subst.-me-cyclohexane Ex. 2, residue 18, .9291 6. 17, 71B 9321 Mixture from Udex extract run Ex. 4, cut 3 plus residue...
  • tricyclohexanes have a higher heat content (141,500 BTU/gal.) than the structurally similar and commercially available isopropyldicyelohexyl (136,500 BTU/gal.)
  • Tricyclohexanes blended with 22 wt. percent methylcyclohexane have a heat content almost the same as isopropyldicyclohexyl and the blend product of toluene that can be obtained in practicing the process of our present invention.
  • toluene can be converted into mixtures that, from the standpoint of energy content, viscosity, cost and ease of manufacture, are outstanding as jet fuels. This is done by a three-stage process wherein 1 toluene is hydroalkylated to a product containing methylcycloalkyl-substituted toluenes, usually in admixture with unconverted toluene, (2) this product mixture is reduced by hydrogenation to form the corresponding methylcycloalkyl-substituted methylcyclohexanes along with methylcyclohexane from toluene reduction; and (3) a part or all of the methylcyclohexane is removed by distillation in order to adjust the jet fuel product to the desired final viscosity and BTU content. Alternatively, most of the unconverted toluene from the first stage can be stripped off for recycle to the hydroalkylation unit. This procedure eliminates the production of excess methylcyclo
  • Jet fuel blends with energy contents in the 136,000 BTU per gallon range, including the higher energy polysubstituted products, 139,700 BTU/gaL, from the hydroalkylation-reduction stages, with'visgosities less than poises at -65F. and with a substantial cost advantage over existing jet fuels are obtained by this procedure.
  • the process also has the flexibility of providing jet fuel blends with a range of energy-viscosity properties that can be controlled simply by varying the amount of methylcyclohexane removed from the mixture of reduction products.
  • a method of producing a jet fuel having both a high heat content and an acceptable low temperature viscosity which comprises a. hydroalkylating a charge hydrocarbon mononuclear aromatic hydrocarbon composition containing as reactant at least one component selected from the group consisting of benzene, toluene, xylenes, and ethylbenzene by reacting said reactant at 1 10 F-450 F and pressure of -70 atmospheres in the presence of hydrogen and hydroalkylating catalyst to produce a hydrocarbon hydroalkylate containing a cycloalkyl-substituted mononuclear aromatic hydrocarbon;
  • a method of producing a jet fuel having both a high heat content and an acceptable low temperature viscosity which comprises hydroalkylating a charge hydrocarbon composition containing toluene by reacting said toluene at 1 10 F-450 F and pressure of 20-70 atmospheres in the presence of hydrogen and hydroalkylating catalyst at hydroalkylation conditions to produce a hydrocarbon hydroalkylate containing methylcyclohexyl toluenes and unreacted toluene;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Jet fuels which have both a high heat content and an acceptable low temperature viscosity are prepared by the hydroalkylation of mononuclear aromatic hydrocarbon fractions. Benzene, toluene, and Udex extract, and mixtures thereof, are the preferred starting materials. These are hydroalkylated by reaction at about 30*250* C. under super-atmospheric pressures of about 20-70 atmospheres of hydrogen, thus producing hydroalkylates containing cycloalkyl-substituted benzenes, methylcyclohexyl-substituted toluenes and the like. These are further reduced to the corresponding cycloalkyl-substituted cyclohexanes, together with methylcyclohexyl methylcyclohexanes and methylcyclohexane when toluene is used, and the reduction products are adjusted to a final desired heat content and low temperature viscosity by stripping off or adding methylcyclohexane. The preferred catalyst is finely divided nickel on a support containing both a zeolite and a silica-alumina cracking catalyst.

Description

United States Patent [191 Dille et al.
[ JET FUEL MANUFACTURE [73] Assignee: Texaco Development Corporation, New York, N.Y.
[22] Filed: Oct. 13, 1970 [21] Appl. No.: 80,481
[52] US. Cl. 208/49, 208/15, 260/666 P, 260/666 PY, 260/667 [51] Int. Cl. C07c 5/10 [58] Field of Search 208/15, 49; 260/666 P, 666 PY, 667
[56] References Cited UNITED STATES PATENTS 3,161,016 12/1964 Smith et a1. 260/666 P 3,533,938 10/1970 Leas 208/15 3,105,351 10/1963 Stahly 260/666 P 3,113,425 12/1963 Smith et a1. 260/666 P 3,128,597 4/1964 Smith et a1. 260/666 P 3,183,278 5/1965 Koch 260/677 3,274,276 9/1966 Louvar 260/671 3,317,611 5/1967 Louvar et a1. 260/671 3,412,165 11/1968 Slaugh et al. 260/667 OTHER PUBLICATIONS Appleby et a1. Symposium On Jet Fuels, Preprint of [451 Nov. 20, 1973- the American Chemical Society, Division of Petroleum Chemistry, New York, N.Y., Vol. 5, No. 4, Sept. 1960 pages C-31 to 0-38.
Primary Examiner-Herbert Levine AttorneyTh omas H. Whaley, Carl 6. Reis and Robert A. Kulason [5 7 ABSTRACT Jet fuels which have both a high heat content and an acceptable low temperature viscosity are prepared by the hydroalkylation of mononuclear aromatic hydrocarbon fractions. Benzene, toluene, and Udex extract, and mixtures thereof, are the preferred starting materials. These are hydroalkylated by reaction at about 30250 C. under super-atmospheric pressures of about 20-70 atmospheres of hydrogen, thus producing hydroalkylates containing cycloalkyl-substituted benzenes, methylcyclohexyl-substituted toluenes and the like. These are further reduced to the corresponding cycloalkyl-substituted cyclohexanes, together with methylcyclohexyl methylcyclohexanes and rnethylcyclohexane when toluene is used, and the reduction products are adjusted to a final desired heat content and low temperature viscosity by stripping off or adding methylcyclohexane. The preferred catalyst is finely divided nickel on a support containing both a zeolite and a silica-alumina cracking catalyst.
3 Claims, No Drawings JET FUEL MANUFACTURE This invention relates to a method for the production ofjet fuels of high heat content from mononuclear aromatic hydrocarbons such as benzene, alkylbenzenes such as toluene, ethylbenzene and the like, and dialkylbenzenes such as the various xylenes, including mixtures thereof such as those obtained in Udex extracts.
A principal object of the invention is to convert these aromatic hydrocarbons into jet fuels by hydroalkylation processes. A further object is the production of jet fuels, having both a high heat content and an accept able low temperature viscosity, by reducing-cycloalkylsubstituted mononuclear aromatic hydrocarbons to a mixture of cycloalkyl-substituted cyclohexanes.
A still further object of the invention is the provision of new jet fuels wherein the principal heat-producing ingredients are cyclohexyl-substituted benzenes, methylcyclohexyl-substituted toluenes and other mononuclear aromatic hydrocarbon derivatives and their reduction products such as dicyclohexylsubstituted cyclohexanes, polycyclohexyl cyclohexanes and mixtures thereof together with sufficient methylcyclohexane to impart a desired low temperature viscosity.
Additional objects of the invention will become apparent from the following description of the principles thereof when taken with the attached examples and the appended claims. I
It is well known that'the turbojet engine operates by the combustion of fuel between an air compressor and a turbine, thereby increasing the volume and temperature of the air so that the work of compression can be taken out of the gases by the turbine with enough energy remaining to impart the high final kinetic energy and speed to the jet that is needed for propulsion. For this purpose a fuel having a high heat content, as measured by its heat of total combustion, is needed. In ad dition, a fuel having an acceptable low temperature viscosity is needed because of the low temperatures which may be encountered during storage and high altitude use.
We have found that jet fuels having both of these properties can be obtained by processes based on the hydroalkylation of mononuclear aromatic hydrocarbons such as benzene, toluene, higher alkylbenzenes, xylenes and the like, including particularly mixtures of these hydrocarbons such as are obtained-by extracting aromatic petroleum fractions with suitable solvents. In the preferred practice of our invention these hydrocarbons or hydrocarbon mixtures are hydroalkylated, thereby producing mixtures containing cycloalkylsubstituted mononuclear aromatic hydrocarbons, followed by partial or complete reduction to the corresponding cycloalkyl-substituted cyclohexanes or alkylcyclohexanes. We have found that jet fuels having varying but controlled ratios of heat content to lowtemperature viscosity can be obtained by fractionating the reduction products so obtained, or by stripping volatile ingredients such as methylcyclohexane therefrom.
The production of cycloalkyl aromatic compounds by hydroalkylation is a known procedure. It is carried out by reacting mononuclear aromatic hydrocarbons such as benzene, toluene and mixtures thereof with hydrogen in the presence of a mixed catalyst which contains both an alkylation component and a hydrogenation component. Typical catalysts and reaction condictions are described in U. S. Pat. Nos. 3,274,276and 3,317,61 l, and any of the catalysts and reaction conditions described in these patents may be used in practicing our present invention. We have found, however, that good results are obtainable by carrying out the hydroalkylation in the presence ofa finely divided nickel catalyst supported on a substantially alkali metal-free mixture of a zeolite, frornwhich substantially all of the alkali metal has been removed, together with a silicaalumina cracking catalyst of the type now'employed for the vapor phase cracking of petroleum hydrocarbons into gasoline. This catalyst has the advantage that it can also function as a hydrogenation catalyst in the second stage of our process wherein the hydroalkylate is reduced by further reaction with hydrogen. Alternatively, a more efficient hydrogenation catalyst, such as Ni on alumina, may be used during second stage reduction.
In the preferred practice of our invention the hydroalkylation is preferably carried out at temperatures below about 450 F. and preferably within the range of about 110 to 400 F. and pressures of hydrogen of about 20-70 atmospheres. The subsequent reduction of the hydroalkylate may be obtained by continuing the reaction with the same or other hydrogenation catalyst at'about 300 to 1,000 p.s.i. and temperatures below 450 F. until the uptake of hydrogen is substantially complete. As a practical matter pressures of hydrogen of about 4-50 to 550 p.s.i. are preferred in order to lessen the reaction time. The resulting reaction mixture is then preferably distilled at atmospheric or subatmospheric pressures to strip off unreacted or partially reacted starting materials and by-products of relatively low heat content.
Wehave found, as a result of the tests shown in the following specific examples, that the heat of combustion on both a weight and a volume basis is increased by increasing the number of cyclohexyl substituents on phenyl and also on tolyl and other alkylphenyl groups. In contrast to this, the heat of combustion on a volume basis is increased with an increase in the number of cyclohexyl groups attached to cyclohexane and alkyl cyclohexanes, but on a weight basis the heat of combustion is decreased. In both cases, however, the polysubstituted compounds have relatively high heat of combustion values. These discoveries are important in the production of jet fuels for specific end uses, such as for military planes on the one hand and commercial planes on the other hand. In military jet fuels the heat content'is preferably based on the volume of the fuel, because most military applications are volume limited. In commercial jet airplanes the fuel value is 'evaluated on a weight basis, since space is not so important, and
therefore a high heat of combustion on a weight basis is preferred. It is an important advantage that the process of our invention can be adapted to produce jet fuels of either type from relatively inexpensive starting materials such as benzene, tolunee, and alkylbenzene mixtures obtained by the solvent extraction of aromatic hydrocarbon fractions. A particularly useful source of such mixtures is Udex extract, obtained by the selective extraction of aromatics from various feed stocks by ab- 1 sorption in aqueous diethylene glycol solutions, and the use of such extracts as starting materials constitutes a particualr specific feature of the invention.
In its most practical aspect, therefore, the preferred practice of our invention consists in treating toluene or toluene-containing mixtures such as Udex extract to a 3-stage process. In the first stage the toluene is hydroalkylated as described above to a product containing methylcycloalkyl-substituted toluenes, which are usually mixed with unconverted toluenes since the hydroalkylation is seldom carried to completion. In the second stage this product mixture is reduced by hydrogenation to form the corresponding methylcycloalkylsubstituted methylcyclohexanes along with methylcyclohexane from the toluene reduction. In the third stage a part or all of the methylcyclohexane is removed by distillation in order to adjust the jet fuel product to the desired final viscosity and B.T.U. content. Alternatively, most of the unconverted toluene from the first stage can be stripped ofi for recycle to the hydroalkylation unit. Using this procedure there is no excess methylcyclohexane produced during second stage reduction. Jet fuel blends with energy contents in the 136,000 B.T.U. per gallon range are obtained by either of these procedures, and viscosities as low as 50-75 poises at minus 65 C. are obtainable by the presence of about percent to about 50 percent of methylcyclohexane in the product. Such blends may contain dicyclohexylbenzene, tricyclohexylbenzene, dicyclohexyl cyclohexane or higher polycyclohexyl cyclohexanes, but usually mixtures of two or more of these compounds are present in ratios that will vary with the extent of hydroalkylation and of reduction used in the process.
The invention will be further described and illustrated by the following examples. The catalyst used in these examples consisted of about 6 percent by weight of finely divided nickel distended on about 94 percent of a hydrocarbon-cracking catalyst support which was a substantially aklaki metal-free mixture of about 22 percent by weight of a modified zeolite Y, about 58 percent of silica and about 20 percent of alumina.
The modified zeolite portion of the cracking component has uniform pore openings of from 6-15 Angstrom units, has a silica-alumina ratio of at least 2.5, e.g. 3-10, and has a reduced alkali metal content. The modified zeolite is prepared by subjecting synthetic zeolite Y to ion exchange by contacting the zeolite several times with fresh solutions of an ammonium compound at temperatures ranging between about 100 and 250 F. until it appears that the ion exchange is substantially complete. The ion exchanged zeolite is then washed to remove solubilized alkali metal and dried at a temperature sufficiently high to drive off ammonia.
This converts the zeolite Y to the hydrogen form and reduces the alkali metal content to about 2-4 weight per cent. The ion exchanged zeolite is then calcined at a temperature of about 1,000 F. for several housrs. After cooling, the ion-exchanged calcined zeolite is subjected to additional ion exchange by contact several times with fresh solutions of an ammonium compound and again washed and dried. This treatment results in a further reduction in the alkali metal content of the zeolite to less than 1 percent and usually to about 0.5 percent. It would appear that after the first calcination, it is possible to engage in further ion exchange with the removal of additional alkali-metal ions not removable in the initial ion exchange. Calcination at e.g. 100-1,200 F. may take place here or it may be postponed until after the incorporation of the amorphous inorganic oxide and impregnation with the hydrogenating component at which time the composite should be calcined. Whether calcination is postponed or re- 4 peated, the final calcination temperature should not exceed 1,200 F.
The silica-alumina portion of the support is a composite of alkali metal-free silica'and alumina of the well-known type used in petroleum cracking and described, for example, in U. S. Pat. No. 2,469,314. It is frequently prepared by acidifying an aqueous sodium silicate solution with aqueous 25% sulfuric acid, washing the resulting hydrated silica free from alkali metal salts, suspending it in aluminum sulfate solution, precipitating with ammonia, filtering and washing. The filter cake is preferably mixed with a sufficient quantity of the modified zeolite to obtain 22 percent by weight of zeolite after drying and the mixture is dried and calcined. It is then impregnated with 6 percent of nickel by adding nickel nitrate solution, drying and heating in the presence of hydrogen.
EXAMPLE 1 ylated at 375 F. and about 500 p.s.i.g. hydrogen pressure. After 1.5 hours a 31 percent conversion was obtained with 79 percent of the hydroalkylate being mixed isomeric methylcyclohexyltoluenes.
b. In a second run, 4.5 grams of the catalyst were suspended in 47 grams of toluene in a c.c. rocking autoclave and hydroalkylation was continued under the same reaction conditions for 5 hours at which point the toluene conversion was over 90 percent.
The reaction mixture was fractionated by distillation at 1 torr; i.e., at l millimeter of mercury pressure. A total of 17.3 grams of methylcyclohexane and unconverted toluene was first removed. A second cut, taken at 4850 C., consisted of 1 1.9 grams of mixed methylcyclohexyltoluenes. A third cut weighing 2.1 grams distilled over at l20-l27 C. and contained polysubstituted compounds as the principal ingredients.
c. Following these preliminary investigations a larger scale run was made with 460 grams of toluene in a 1-liter rocking autoclave at 370380 F. and 500 p.s.i.g. pressure using 22.5 grams of the same catalyst. This run was carried out to high conversion and the product was distilled under the conditions and with the results shown in the following table.
TABLE I Distillation Cut Wt. Press. Temp. C. No. Grams Products Atm. 1 199 Toluene & traces of MC'Ha 20 Torr 2 103 Mixed MCHTs 8 Torr 121-123 3 42 Mixed MCHT's 1 Torr 106-108 4,5 7 and higher Residue 22 substitution products 1. MCI-Ia Methylcyclohexane; MCHTs Methylcyclohexyltoluenes EXAMPLE 2 idue weighing 14 grams and containing higher substitution products.
EXAMPLE 3 Using the same catalyst, reaction conditions and rocking autoclave as in Example 2, 390 grams of benzene was hydroalkylated and reduced to give the following main distillation fractions.
TABLE ll Cut Temp. Pressure Products (C.) (torr) l 78 Atm. cyclohexane 2 83 4.0 dicyclohexane 4 123 0.5 dicyclohexylcyclohexane res. polycyclohexylcyclohexanes These materials, as well as some of those from the toluene series were reserved for subsequent tests.
Runs were also made at 370380 F. and 500 p.s.i.g. with o-xylene, m-xylene and p-xylene, using the same catalyst in an amount of 1 1% on the weight of the hydrocarbon. Hydroalkylation and reduction were obtained with all three of the starting materials but the hydrogen uptake rate was greater with the meta and para xylene than with orthoxylene.
EXAMPLE 4 TABLE [11 Cut Temp. Pressure Products (C.) (torr) 1,2 96-175 Atm Starting mixture and corresponding reduction products.
3 I25 8' mono-substitution products residue EXAMPLE 5 I Production of Jet Fuels We'have found that jet fuels which have both a high heat content and an acceptable low temperature viscosity can be prepared by the hydroalkylation and reduction procedures illustrated in Example 1-4. By varying the composition of the mononuclear aromatic hydrocarbons and their mixtures from benzene to alkylated benzene s, and by controlling the degree of cycloalkylation and subsequent, hydrogenation of the remaining aromatic ring, it is possible to control the aromatic to naphthenic ratio.
This control allows the synthesis of fuels having properties which adapt them for specific end uses. Thus, for
example, jet fuels which have higher aromatic ratios are better suited for military use due to their higher density while lower density fuels for commercial aircraft are obtained by hydrogenation of the aromatic ring which may be followed by light end stripping if desired.
The hydroalkylation products of benzene, toluene and Udex extract and their reduction products were evaluated as jet fuel ingredients, in comparison with methylcyclohexane and i-propyldicyclohexyl, by determining their heats of combustion andtheir viscosities at minus 65 F. The results with benzene hydroalkylation products are shown in the following table.
TABLE IV '1 t D 1: F 2? 95 ens Y v 5005 number Compound, mixture or blend B.t.u./lb gJcc' B.t.u./ga1. pois e i-Propyldicyclohexyl 18, 430 Methylcyelohexane 569 7688 1 Cyclohexylbenzene (OHB) 17, 504 9473 2- Di-CHB's 17, 736 9719 3 Dl-CHBs 1 plus 20 weight percent MCHa 17, 905 .9217 4 Di-CHBs 2 plus 25 weight percent MCHa 17,929 9189 5 Tri-CHBs ,844 .9848 6 Dicyclohexane 18, 478 .8838 7 Dieyclohexyleyclohexane 18, 312 9277 8- Dlcyclohexyleyclohexane plus 22 weight percent MCHa 18, 299 8918 9 Polycyclohexylcyclohexanes 18, 218 9629 10 Polycyclohexyleyelohexanes plus weight percent MCHa- 18, 538 .8788 11. 18, 28 .8570
Polycyclohexylcyclohexanes plus weight percent MOHE 1 Methylcyclohexane (MCHa). r aw1211B?- 1 from butanes and contained -95 percent aromatics,
mostly toluene and higher alkylated benzenes. Gas chromatographic analysis showed that it contained at least six different compounds and, after hydroalkyla- 6 tion, the product mixture'contained at least ten components in the monosubstitution region.
The sample was mixed with 5.3 percent of its weight of catalyst and hydroalkylated at 370380 F. using 500 p.s.i.g. of hydrogen pressure. The rate of hydrogen uptake was slightly less than that of pure toluene but was greater than for the xylenes of Example 3. Distillation gave the following results.
The dicyclohexylbenzenes reported in this table were made by hydroalkylation of benzene mixed with 5 perjet fuels having both high heat contents and acceptable viscosities at low temperatures can be obtained by blending a mixture of polycyclohexylcyclohexanes with about 20 percent to about 50 percent of their weight of methylcyclohexane.
Table IV shows that increasing the number of cyclohexyl groups on benzene (compare 1,2 and increases the heat of combustion on both a weight and volume basis. In contrast to this, increasing the number of cyclohexylgroups on cyclohexane (compare 6, 7 and 9) causes the heat of combustion on a weight basis to decrease and on a volume basis to increase. in both cases, the trisubstituted compounds have relatively high heat of combustion values of over 146,000 BTUs/gal., but the dicyclohexylbenzenes are better suited for military purposes because of their higher density. Test Nos. 3 and 4 show that their low temperature viscosities can be brought into the desired range by blending them with minor proportions of methylcyclohexane.
Table V shows the results with products of Examples 1, 2 and 4 with isopropyldicyelohexyl as a basis of comparison.
has distinct viscosity and cost advantages over the latter compound.
The foregoing tables show that the hydroalkylation products of mononuclear aromatic hydrocarbons have heats of combustion in the 135,000 to 146,000 BTU/- gal. range, but their flow properties at minus 65 F. require improvement if they are to be used for military purposes. According to Air Force specifications, the desired viscosity for ajet fuel is 5 poise at 65 F. However, it is evident that higher viscosities would'be acceptable if the fuel had an unusually high heat value or very low cost. Shelldyne, for example, has a viscosity of 170 poise at 65 F., high heat value of 150,000 BTU/- gal.,- and an unrealistically high cost of $42.00/gal. Using the 170 poise value as a guide, two polymer standards were obtained which had viscosities of 163 and 58 poise at room temperature. The'Blends shown in Table IV were made in order to meet or improve on the Shelldyne viscosity without too great a loss in heat content. Methyl cyclohexane (MCI-1) was used as the diluent both because the Air Force has expressed an interest in MCH from the standpoint of cost, availability, and heat-sink capacity and because it is a reduction TABLE V,
Test Density, number Compound or mixture Source B.t.u./1b. g./cc.
i-Propyldicyclohexyl. 18, 430 1- Methylcyclohexyltoluenes. Ex. 1(0), cut 2.. 17, 658 .9311 2 Higher subst. products. Ex. 1(0), out 4,5 17, 643 .9314 3 Higher subst. products Ex. 1(c), residue... 17,606 .9721 4- Me-eyclohexyl-me-cyclohexane Ex. 2, cut 2 1B, 363 8837 ll. Di-subst.-me-cyclohexane Ex. 2, residue 18, .9291 6. 17, 71B 9321 Mixture from Udex extract run Ex. 4, cut 3 plus residue...
Although the heat contents of the blends shown in Table IV have been decreased, compared to the parent materials, they are still in the range of 131,000 BTU/- gal. to 137,500 BTU/gal. A comparison of the most promising blends with materials being considered by the Air Force is shown in the following summary:
Note that the tricyclohexanes have a higher heat content (141,500 BTU/gal.) than the structurally similar and commercially available isopropyldicyelohexyl (136,500 BTU/gal.) Tricyclohexanes blended with 22 wt. percent methylcyclohexane have a heat content almost the same as isopropyldicyclohexyl and the blend product of toluene that can be obtained in practicing the process of our present invention.
EXAMPLE 6 i We have found that toluene can be converted into mixtures that, from the standpoint of energy content, viscosity, cost and ease of manufacture, are outstanding as jet fuels. This is done by a three-stage process wherein 1 toluene is hydroalkylated to a product containing methylcycloalkyl-substituted toluenes, usually in admixture with unconverted toluene, (2) this product mixture is reduced by hydrogenation to form the corresponding methylcycloalkyl-substituted methylcyclohexanes along with methylcyclohexane from toluene reduction; and (3) a part or all of the methylcyclohexane is removed by distillation in order to adjust the jet fuel product to the desired final viscosity and BTU content. Alternatively, most of the unconverted toluene from the first stage can be stripped off for recycle to the hydroalkylation unit. This procedure eliminates the production of excess methylcyclohexane during second stage reduction.
' Jet fuel blends with energy contents in the 136,000 BTU per gallon range, including the higher energy polysubstituted products, 139,700 BTU/gaL, from the hydroalkylation-reduction stages, with'visgosities less than poises at -65F. and with a substantial cost advantage over existing jet fuels are obtained by this procedure. The process also has the flexibility of providing jet fuel blends with a range of energy-viscosity properties that can be controlled simply by varying the amount of methylcyclohexane removed from the mixture of reduction products. I
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in carrying out the above method and in the composition set forth without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.
What we claim is:
l. A method of producing a jet fuel having both a high heat content and an acceptable low temperature viscosity which comprises a. hydroalkylating a charge hydrocarbon mononuclear aromatic hydrocarbon composition containing as reactant at least one component selected from the group consisting of benzene, toluene, xylenes, and ethylbenzene by reacting said reactant at 1 10 F-450 F and pressure of -70 atmospheres in the presence of hydrogen and hydroalkylating catalyst to produce a hydrocarbon hydroalkylate containing a cycloalkyl-substituted mononuclear aromatic hydrocarbon;
b. reducing said cycloalkyl-substituted mononuclear aromatic hydrocarbon in said hydroalkylate at temperature below 450 F and at pressure of 300-1000 psi thereby forming a reduced hydroalkylate containing as by-product reduced charge mononuclear aromatic hydrocarbon which has been reduced to mononuclear cyclohexanes; and
c. separating at least a portion of the by-product mononuclear cyclohexanes from said reduced hydroalkylate thereby forming as product a jet fuel characterized by a high heat content and an accep'table low temperature viscosity.
2. A method of producing a jet fuel having both a high heat content and an acceptable low temperature viscosity which comprises hydroalkylating a charge hydrocarbon composition containing toluene by reacting said toluene at 1 10 F-450 F and pressure of 20-70 atmospheres in the presence of hydrogen and hydroalkylating catalyst at hydroalkylation conditions to produce a hydrocarbon hydroalkylate containing methylcyclohexyl toluenes and unreacted toluene;
reducing said hydroalkylate at temperature below 450 F and at pressure of 300-1000 psi thereby forming a reduced hydroalkylate containing methylcyclohexyl-methyl cyclohexanes and byproduct methyl cyclohexanes; and
separating at least a portion of said by-product methyl cyclohexanes from said reduced hydroalkylate thereby forming as product a jet fuel characterized by a high heat content and an acceptable low temperature viscosity.
3. A method of producing a jet fuel as claimed in claim 2 wherein said separation is effected to yield a product jet fuel containing about 20-50 percent of methylcyclohexane.
I @7353?" UNITED STATES PATENT OFFICE QjCERTIFICATE OF CORRECTION Patent No. 3 5;; Dated Inventor(s) KENNETHL. DILLE, GEORGE S. SAINES and ALFRED ARKELL It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
[73] "Texaco Development cozz'poratxlon" should read -'-'Iexaco, Inc.--
Col. 1, line 67 "condicshould read --condi- Col. 7, lines 6-48 The chemical formula should be in the lefthand column under "Shelldime" Col. 7, line 54 The phrase "All less than" should be the right hand column above the entry Signed and sealed this 11th day of June 19711..
(SEAL) Attest:-
WARD M.FLETCHER JR. c. MARSHALL DANN usting Officer Commissioner- .of Patents

Claims (2)

  1. 2. A method of producing a jet fuel having both a high heat content and an acceptable low temperature viscosity which comprises hydroalkylating a charge hydrocarbon composition containing toluene by reacting said toluene at 110* F-450* F and pressure of 20-70 atmospheres in the presence of hydrogen and hydroalkylating catalyst at hydroalkylation conditions to produce a hydrocarbon hydroalkylate containing methyl-cyclohexyl toluenes and unreacted toluene; reducing said hydroalkylate at temperature below 450* F and at pressure of 300-1000 psi thereby forming a reduced hydroalkylate containing methylcyclohexyl-methyl cyclohexanes and by-product methyl cyclohexanes; and separating at least a portion of said by-product methyl cyclohexanes from said reduced hydroalkylate thereby forming as product a jet fuel characterized by a high heat content and an acceptable low temperature viscosity.
  2. 3. A method of producing a jet fuel as claimed in claim 2 wherein said separation is effected to yield a product jet fuel containing about 20-50 percent of methylcyclohexane.
US00080481A 1970-10-13 1970-10-13 Jet fuel manufacture Expired - Lifetime US3773652A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8048170A 1970-10-13 1970-10-13

Publications (1)

Publication Number Publication Date
US3773652A true US3773652A (en) 1973-11-20

Family

ID=22157656

Family Applications (1)

Application Number Title Priority Date Filing Date
US00080481A Expired - Lifetime US3773652A (en) 1970-10-13 1970-10-13 Jet fuel manufacture

Country Status (1)

Country Link
US (1) US3773652A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189232A (en) * 1991-06-27 1993-02-23 University Of Utah Method of making jet fuel compositions via a dehydrocondensation reaction process
US5292978A (en) * 1989-07-26 1994-03-08 Michelin Recherche Et Technique Selective cycloalkylation of naphthalene on zeolites
US20050023188A1 (en) * 2003-08-01 2005-02-03 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
US20050027148A1 (en) * 2003-08-01 2005-02-03 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292978A (en) * 1989-07-26 1994-03-08 Michelin Recherche Et Technique Selective cycloalkylation of naphthalene on zeolites
US5189232A (en) * 1991-06-27 1993-02-23 University Of Utah Method of making jet fuel compositions via a dehydrocondensation reaction process
US20050023188A1 (en) * 2003-08-01 2005-02-03 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
US20050027148A1 (en) * 2003-08-01 2005-02-03 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
US7560603B2 (en) * 2003-08-01 2009-07-14 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
US7683224B2 (en) * 2003-08-01 2010-03-23 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines

Similar Documents

Publication Publication Date Title
US3962362A (en) Method for preparing polyphenyls
US3890218A (en) Upgrading aliphatic naphthas to higher octane gasoline
EP0288622B1 (en) Process for the isomerization of paraffinic hydrocarbons
KR100228997B1 (en) Process for producing aromatic hydrocarbon
US3965205A (en) Conversion of low octane hydrocarbons to high octane gasoline
US2403757A (en) Process of isomerizing dialkyl benzenes
AU2012357512B2 (en) Catalyst for preparing paraxylene by mutual conversion of methyl alcohol and/or dimethyl ether and C4 liquefied gas, and preparation method and application therefor
US3761389A (en) Process of converting aliphatics to aromatics
CA2033715C (en) Catalyst and process for dehydrogenation and dehydrocyclization
US3843740A (en) Production of aromatics
Ismagilov et al. Methane conversion to valuable chemicals over nanostructured Mo/ZSM-5 catalysts
JPS59227976A (en) Conversion of methanol, dimethyl ether or both to olefins
CA1203524A (en) Modified zeolite catalyst composition and process for alkylating toluene with methanol to form styrene
US3953537A (en) Disproportionating C2 -C6 paraffins over zeolites
US3773652A (en) Jet fuel manufacture
CA1173865A (en) Process
JP4240339B2 (en) Process for producing aromatic hydrocarbons
EP0273091A1 (en) Process for isomerizing xylene
US3813330A (en) Process for aromatizing olefins in the presence of easily cracked paraffins
US3791958A (en) Jet fuel manufacture
Fujimoto et al. On the role of gallium for the aromatization of lower paraffins with Ga-promoted ZSM-5 catalysts
US4139550A (en) Aromatics from synthesis gas
Walker Jr et al. The ultraviolet absorption spectra of some terpene hydrocarbons
US2408146A (en) Dehydrogenation of hydrocarbons
US3728410A (en) Hydrocarbon conversion