US3773507A - Electrophotographic reversal development process employing a pre-toner - Google Patents

Electrophotographic reversal development process employing a pre-toner Download PDF

Info

Publication number
US3773507A
US3773507A US00159455A US3773507DA US3773507A US 3773507 A US3773507 A US 3773507A US 00159455 A US00159455 A US 00159455A US 3773507D A US3773507D A US 3773507DA US 3773507 A US3773507 A US 3773507A
Authority
US
United States
Prior art keywords
toner
charge
coating
latent image
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00159455A
Inventor
M Sato
O Fukushima
S Honjo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Application granted granted Critical
Publication of US3773507A publication Critical patent/US3773507A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/22Processes involving a combination of more than one step according to groups G03G13/02 - G03G13/20

Definitions

  • Kanagawa, Japan 57 ABSTRACT [22] Filed: July 2, 1971 pp No 159 455 A reversal development process which comprises, after uniformly charging a photoconductive insulating coating with a charge of one polarity, applying a finely [30] Foreign Application Priority Data divided pre-toner having a white or off-white appear- July 13, 1970 Japan 45/60875 anee and a Charge of the Same P y as that of the uniform charge whereby the pre-toner deposits at the 52 US. (:1. 96/1 R, 96/1 so, 96/1 LY, charge-deficient areas in the eeeting, then subjecting 1 17/175 252/62 1 the thus treated coating to image exposure to form an 51 Int. Cl.
  • An optically positive toner image results by uniformly charging an electrofax sheet material in a subdued light, then exposing said charged material to an optically negative image of light and shadow to form an electrostatic latent image, and then by developing the latent image by the application of toner having the same polarity of charge as that of the latent image.
  • the photoconductive coating is made of a homogeneous mixture comprising a finely divided powder photoconductor and a resinous binder
  • the coating has microscopic irregularities which will not be present in an organic photoconductive layer or amorphous selenium layer having a uniform structure in molecular order. Such irregularities cause local electrical breakdown when the coating is subjected to corona charging, and at such areas where the impinged corona ions undergo breakdown discharge the charged density will be nearly zero or greatly lower than the surroundings.
  • pin hole areas in the coating will be developed as black spots in a white background in reversal development in which toner predominantly deposits at lower charge density areas.
  • the invention provides a reversal development method which overcomes the above-cited shortcomings, and is characterized by that a photoconductive insulating coating is imparted an electrostatic charge of one polarity, supplied with finely divided powder of the same color as that of the photoconductive insulating coating and of the same polarity whereby the powder particles deposit at the charge deficient pin hole areas in the charged coating, then subjected to image exposure to form an electrostatic latent image, and finally developed with colored finely divided marking powder also having the same polarity of charge as that of the latent image.
  • the white or off-white powder will be referred to as pre-toner while the marking powder as toner.
  • the essential feature of the present invention resides in that pre-toner is allowed to deposit or mask the charge-deficient spots formed during charging of the coating in order that such spots will no longer attract toner in the subsequent image development. It should be emphasized that in the present inventions the pretoner is applied onto the coating prior to the image exposure.
  • pre-toner after image exposure is far .less effective for the present purpose.
  • the reason is as follows; prior to image exposure deposition of pretoner will proceed only at the charge deficient spots while, on the other hand, application of pre-toner after image exposure will result in deposition of the pretoner not only at the charge-deficient spots but also at areas where charge density changes abruptly. This will make it impossible to produce a toner image of desirable quality since the toner will deposit with a reduced deposition density at those areas.
  • Suitable particles for pre-toner in the present invention include colorless or pale colored, finely divided natural or synthetic polymers, white or off-white pigments, mixtures of polymer and pigment particles, or similar pigments encapsulated with polymeric materials, etc.
  • Suitable polymers are ethyl cellulose, nitrocellulose, triacetylcellulose, diacetylcellulose, polyvinylacetate, polyvinylalcohol, gelatin polymethylmethacrylate, polyvinylchloride, polycarbonate, etc.
  • examples of pigments are barium sulfate, calcium carbonate, kaolin, aluminum hydroxide, zinc oxide, titanium dioxide, zinc sulfide, lead white, etc.
  • compositions of toner those well known for those skilled in the art by already disclosed literatures or patent may be applicable for the present invention, including those for dry development comprising carbon black and resinous material or those for liquid development comprising pigment particles associated with resinous materials absorbed on the surface of the particles.
  • the present invention is effective when combined with or applied on a photoconductive coating comprising a finely divided photoconductor and resinous binder, it is also applicable to a homogeneous layer comprising organic photoconductor or amorphous selenium.
  • a photoconductive insulating coating was provided by vacuum depositing amorphous selenium on an aluminum plate. This coating exhibited pin-hole like charge-deficient spots in repeated use.
  • the plate was charged by corona to +1000 volts, and then immersed in a dispersion comprising kerosene as dispersant in which a small quantity of linseed oil was dissolved as a dispersing-agent and finely divided ethylcellulose of l to 10 micron diameter which had a positive polarity of charge. After about a 10 second immersion, the plate was pulled out and then subjected to an image exposure utilizing a negative transparency.
  • the exposed plate was then developed with a liquid developer which had been prepared by dispering a blended mixture of carbon black and ethyl cellulose in kerosene in which was dissolved a small quantity of linseed oil.
  • the particle diameter of the pigmented-resin toner fell in the range between 1 and.l0 microns.
  • the plate was drawn from the developer and superimposed ith a sheet of ordinary paper while the surface of the plate was still wet.
  • the assemble was subjected to negative corona from the back surface of the paper. Then the sheet was separated onwhich there was obtained a positive print free of pin hole spots.
  • a white photoconductive insulating coating was prepared on paper support by coating a blended mixture of photoconductive zinc oxide and insulating binder. The coating was negatively charged to about 500 volts by corona. Prior to image exposure a mixture comprising 0.5 to 1 mm diameter glass beads overcoated with a thin film of ethyl cellulose and pre-toner of 5 to 20 micron diameter vinylchloride and vinyl acetate copolymer which were adhered electrostatically to the surface of the beads was cascaded onto the surface of the coating.
  • the coating was subjected to image exposure utilizing a negative transparency.
  • Developement was carried out by cascading developer mixture comprising the glass beads carrier described above and a pigmented resin comprising polystyrene and carbon black having a diameter of about 10 to 30 microns.
  • the resulting image was free of pin-hole spots in the background area.
  • Example ll Another sheet of the electrophotographic paper in Example ll was charged 400 volts in subdued light, and then immersed in the following pre-toner dispersion of for 10 seconds:
  • Zinc oxide powder (particle diameter 0.05 to 0.5 microns) l parts Linseed oil 10 parts Resin varnish parts Kerosene 1000 parts Cyclohexanc 200 parts Carbon black (particle diameter 0.0]
  • pre-toner application can not only expel pin-hole spots but also serve to prevent undesirable adhesion of toner due to forces other than electrostatic.
  • the present invention may be practiced by liquid or dry development.
  • the present invention is more advantageously carried out by the former method of development which can provide electrophotographic prints of quite high quality having tonal rendition wherein black pin-hole spots in the highlight or background areas will fatally affect the image quality.
  • pre-toner on the photoconductive coating care must be taken not to greatly decrease the surface charge density, or else one will fail to obtain a toner image with sufficient contrast and density by the subsequent development operation.
  • the electrical resistance of the dispersion liquid should be high enough and the liquid should have a poor affinity for the resinous hinder or resinous ingredient in the photoconductive coating.
  • Preferable solvents may be isoparaffinic, which have poor dissolving power for many resinous materials, but more active solvents such as straight chain hydrocarbons, alicyclic hydrocarbons, decalin, or tetralin, and further, aromatic hydrocarbons, or mixtures of aliphatic and aromatic hydrocarbons may also be used if the resinous ingredient is cured.
  • the carrier particles should not be electrically conductive.
  • powder cloud development involves no problem of charge leakage due to pre-toner application.
  • Carrier particles for brush or cascade development which are suitable for use in the application of pretoner include glass beads, natural silica sands, diamond beads, ferromagnetic iron powder, and ferromagnetic alloy powder, all of which are surface coated with insulating resinous materials.
  • pre-toner should perform similarly as the underlying photoconductive coating.
  • a suitable example of a pre-toner is dye-sensitized zinc oxide encapsulated by insulating resin.
  • an electrically insulating pre-toner is desirable for the following reason: The charge on the pretoner will be neutralized after deposition, draining to the ground through the insulating coating, in which case colored toner will again deposit on the pre-toner in the subsequent development and no improvement of image quality results. Fortunately, however, this is not so serious a problem since the pin-hole areas where electrical breakdown has occurred become insulating again immediately after charging.
  • pretoner and toner one may employ dry and/or liquid methods.
  • a reversal development process which comprises; after uniformly charging a photoconductive insulating coating with a charge of one polarity, applying a finely divided, photoconductive, pre-toner having the same color as that of said photoconductive insulating coating and a charge of the same polarity as that of said uniform charge whereby the pre-toner deposits at the charge-deficient areas in the coating, then subjecting the thus treated coating to image exposure to form an electrostatic latent image; and finally developing said latent image by applying a finely divided toner differently colored from said pre-toner, said toner having a charge of the same polarity as that of said latent image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)
  • Developing For Electrophotography (AREA)

Abstract

A reversal development process which comprises, after uniformly charging a photoconductive insulating coating with a charge of one polarity, applying a finely divided pre-toner having a white or off-white appearance and a charge of the same polarity as that of the uniform charge whereby the pre-toner deposits at the charge-deficient areas in the coating, then subjecting the thus treated coating to image exposure to form an electro-static latent image, and finally developing the latent image by applying a finely divided toner differently colored from the pre-toner, the toner having a charge of the same polarity as that of the latent image.

Description

United States Patent Sato et al. Nov. 20, 1973 ELECTROPHOTOGRAPHIC REVERSAL DEVELOPMENT PROCESS EMPLOYING A Primary Exa iner-Norman G. Torchin PRE TONER Assistant Examiner-John R. Miller [75] Inventors: Masamichi Sato; Osarnu Fukushima; Atmmey cerald Ferguson Satoru Honjo, all of Saitama, Japan [73] Assignee: Fuji Photo Film Co., Ltd.,
Kanagawa, Japan 57 ABSTRACT [22] Filed: July 2, 1971 pp No 159 455 A reversal development process which comprises, after uniformly charging a photoconductive insulating coating with a charge of one polarity, applying a finely [30] Foreign Application Priority Data divided pre-toner having a white or off-white appear- July 13, 1970 Japan 45/60875 anee and a Charge of the Same P y as that of the uniform charge whereby the pre-toner deposits at the 52 US. (:1. 96/1 R, 96/1 so, 96/1 LY, charge-deficient areas in the eeeting, then subjecting 1 17/175 252/62 1 the thus treated coating to image exposure to form an 51 Int. Cl. G03g 13/00, 003 13/02 eleetre-Stetie latent image, and finally developing the [58] Field of Search 96/1, 1 s1), 1 LY; latent image y pp y a finely divided toner differ- 117/175 ently colored from the pre-toner, the toner having a charge of the same polarity as that of the latent image.
[56] References Cited 2 Claims, No Drawings ELECTROPI-IOTOGRAPHIC REVERSAL DEVELOPMENT PROCESS EMPLOYING A PRE-TONER BRIEF DESCRIPTION OF THE INVENTION This invention relates to a reversal development method in electrophotography, and more particularly to one which can provide electrophotographic prints with reduced background or black spots which are referred to as pin hole spots.
An optically positive toner image results by uniformly charging an electrofax sheet material in a subdued light, then exposing said charged material to an optically negative image of light and shadow to form an electrostatic latent image, and then by developing the latent image by the application of toner having the same polarity of charge as that of the latent image.
In the case where the photoconductive coating is made of a homogeneous mixture comprising a finely divided powder photoconductor and a resinous binder, the coating has microscopic irregularities which will not be present in an organic photoconductive layer or amorphous selenium layer having a uniform structure in molecular order. Such irregularities cause local electrical breakdown when the coating is subjected to corona charging, and at such areas where the impinged corona ions undergo breakdown discharge the charged density will be nearly zero or greatly lower than the surroundings.
Such pin hole areas in the coating will be developed as black spots in a white background in reversal development in which toner predominantly deposits at lower charge density areas.
Such black spots detrimentally affect on the image quality since they are conspicuous in the highlight regions of a resulting electrophotographic print.
The invention provides a reversal development method which overcomes the above-cited shortcomings, and is characterized by that a photoconductive insulating coating is imparted an electrostatic charge of one polarity, supplied with finely divided powder of the same color as that of the photoconductive insulating coating and of the same polarity whereby the powder particles deposit at the charge deficient pin hole areas in the charged coating, then subjected to image exposure to form an electrostatic latent image, and finally developed with colored finely divided marking powder also having the same polarity of charge as that of the latent image. The white or off-white powder will be referred to as pre-toner while the marking powder as toner.
The essential feature of the present invention resides in that pre-toner is allowed to deposit or mask the charge-deficient spots formed during charging of the coating in order that such spots will no longer attract toner in the subsequent image development. It should be emphasized that in the present inventions the pretoner is applied onto the coating prior to the image exposure.
Application of pre-toner after image exposure is far .less effective for the present purpose. The reason is as follows; prior to image exposure deposition of pretoner will proceed only at the charge deficient spots while, on the other hand, application of pre-toner after image exposure will result in deposition of the pretoner not only at the charge-deficient spots but also at areas where charge density changes abruptly. This will make it impossible to produce a toner image of desirable quality since the toner will deposit with a reduced deposition density at those areas.
Suitable particles for pre-toner in the present invention include colorless or pale colored, finely divided natural or synthetic polymers, white or off-white pigments, mixtures of polymer and pigment particles, or similar pigments encapsulated with polymeric materials, etc. Suitable polymers are ethyl cellulose, nitrocellulose, triacetylcellulose, diacetylcellulose, polyvinylacetate, polyvinylalcohol, gelatin polymethylmethacrylate, polyvinylchloride, polycarbonate, etc., while examples of pigments are barium sulfate, calcium carbonate, kaolin, aluminum hydroxide, zinc oxide, titanium dioxide, zinc sulfide, lead white, etc.
As for the compositions of toner, those well known for those skilled in the art by already disclosed literatures or patent may be applicable for the present invention, including those for dry development comprising carbon black and resinous material or those for liquid development comprising pigment particles associated with resinous materials absorbed on the surface of the particles.
Though the present invention is effective when combined with or applied on a photoconductive coating comprising a finely divided photoconductor and resinous binder, it is also applicable to a homogeneous layer comprising organic photoconductor or amorphous selenium.
EXAMPLE I.
A photoconductive insulating coating was provided by vacuum depositing amorphous selenium on an aluminum plate. This coating exhibited pin-hole like charge-deficient spots in repeated use.
Such spots became noticeable when the coating was charged to a high potential.
The plate was charged by corona to +1000 volts, and then immersed in a dispersion comprising kerosene as dispersant in which a small quantity of linseed oil was dissolved as a dispersing-agent and finely divided ethylcellulose of l to 10 micron diameter which had a positive polarity of charge. After about a 10 second immersion, the plate was pulled out and then subjected to an image exposure utilizing a negative transparency.
The exposed plate was then developed with a liquid developer which had been prepared by dispering a blended mixture of carbon black and ethyl cellulose in kerosene in which was dissolved a small quantity of linseed oil. The particle diameter of the pigmented-resin toner fell in the range between 1 and.l0 microns.
Since the toner had a positive charge, reversal development resulted.
The plate was drawn from the developer and superimposed ith a sheet of ordinary paper while the surface of the plate was still wet. The assemble was subjected to negative corona from the back surface of the paper. Then the sheet was separated onwhich there was obtained a positive print free of pin hole spots.
EXAMPLE II.
A white photoconductive insulating coating was prepared on paper support by coating a blended mixture of photoconductive zinc oxide and insulating binder. The coating was negatively charged to about 500 volts by corona. Prior to image exposure a mixture comprising 0.5 to 1 mm diameter glass beads overcoated with a thin film of ethyl cellulose and pre-toner of 5 to 20 micron diameter vinylchloride and vinyl acetate copolymer which were adhered electrostatically to the surface of the beads was cascaded onto the surface of the coating.
Then the coating was subjected to image exposure utilizing a negative transparency. Developement was carried out by cascading developer mixture comprising the glass beads carrier described above and a pigmented resin comprising polystyrene and carbon black having a diameter of about 10 to 30 microns.
The resulting image was free of pin-hole spots in the background area.
On the contrary, a developed image obtained in the same procedures except the pre-toner application was accompanied with a great number of pin-hole spots.
EXAMPLE Ill.
Another sheet of the electrophotographic paper in Example ll was charged 400 volts in subdued light, and then immersed in the following pre-toner dispersion of for 10 seconds:
Zinc oxide powder (particle diameter 0.05 to 0.5 microns) l parts Linseed oil 10 parts Resin varnish parts Kerosene 1000 parts Cyclohexanc 200 parts Carbon black (particle diameter 0.0]
to 0.1 micron parts Nitrocellulose 20 parts Resin varnish 20 parts Butyl acetate 20 parts These ingredients were blended in a ball mill jar for 50 hours, and 10 mls of the resulting mixture was dispersed in a mixture comprising 800 ml of kerosene and 200 ml of decalin under the application of ultrasonic energy.
According to this example, pre-toner application can not only expel pin-hole spots but also serve to prevent undesirable adhesion of toner due to forces other than electrostatic.
As have been described above, the present invention may be practiced by liquid or dry development. However, the present invention is more advantageously carried out by the former method of development which can provide electrophotographic prints of quite high quality having tonal rendition wherein black pin-hole spots in the highlight or background areas will fatally affect the image quality. In the application of pre-toner on the photoconductive coating, care must be taken not to greatly decrease the surface charge density, or else one will fail to obtain a toner image with sufficient contrast and density by the subsequent development operation. When the pre-toner application is carried out by liquid development, the electrical resistance of the dispersion liquid should be high enough and the liquid should have a poor affinity for the resinous hinder or resinous ingredient in the photoconductive coating.
Preferable solvents may be isoparaffinic, which have poor dissolving power for many resinous materials, but more active solvents such as straight chain hydrocarbons, alicyclic hydrocarbons, decalin, or tetralin, and further, aromatic hydrocarbons, or mixtures of aliphatic and aromatic hydrocarbons may also be used if the resinous ingredient is cured.
In the case where dry development such as magnetic brush or cascade development is employed whereby the carrier particles contact with the surface of the photoconductive coating, the carrier particles should not be electrically conductive.
On the other hand, powder cloud development involves no problem of charge leakage due to pre-toner application.
Carrier particles for brush or cascade development which are suitable for use in the application of pretoner include glass beads, natural silica sands, diamond beads, ferromagnetic iron powder, and ferromagnetic alloy powder, all of which are surface coated with insulating resinous materials.
When the present method is applied to multi-colored image formation by over-printing technique wherein charging, image exposure, and development are carried out more than twice on a single photoconductive material, pre-toner should perform similarly as the underlying photoconductive coating.
A suitable example of a pre-toner is dye-sensitized zinc oxide encapsulated by insulating resin. Generally speaking, an electrically insulating pre-toner is desirable for the following reason: The charge on the pretoner will be neutralized after deposition, draining to the ground through the insulating coating, in which case colored toner will again deposit on the pre-toner in the subsequent development and no improvement of image quality results. Fortunately, however, this is not so serious a problem since the pin-hole areas where electrical breakdown has occurred become insulating again immediately after charging.
Regarding the application of pretoner and toner, one may employ dry and/or liquid methods.
What is claimed is:
l. A reversal development process which comprises; after uniformly charging a photoconductive insulating coating with a charge of one polarity, applying a finely divided, photoconductive, pre-toner having the same color as that of said photoconductive insulating coating and a charge of the same polarity as that of said uniform charge whereby the pre-toner deposits at the charge-deficient areas in the coating, then subjecting the thus treated coating to image exposure to form an electrostatic latent image; and finally developing said latent image by applying a finely divided toner differently colored from said pre-toner, said toner having a charge of the same polarity as that of said latent image.
2. A reversal development process as in claim 1 where said photoconductive pre-toner has a white or off-white appearance.

Claims (1)

  1. 2. A reversal development process as in claim 1 where said photoconductive pre-toner has a white or off-white appearance.
US00159455A 1970-07-13 1971-07-02 Electrophotographic reversal development process employing a pre-toner Expired - Lifetime US3773507A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45060875A JPS495465B1 (en) 1970-07-13 1970-07-13

Publications (1)

Publication Number Publication Date
US3773507A true US3773507A (en) 1973-11-20

Family

ID=13154975

Family Applications (1)

Application Number Title Priority Date Filing Date
US00159455A Expired - Lifetime US3773507A (en) 1970-07-13 1971-07-02 Electrophotographic reversal development process employing a pre-toner

Country Status (7)

Country Link
US (1) US3773507A (en)
JP (1) JPS495465B1 (en)
BE (1) BE769893A (en)
CA (1) CA947812A (en)
FR (1) FR2100351A5 (en)
GB (1) GB1340947A (en)
NL (1) NL7109372A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901698A (en) * 1971-12-10 1975-08-26 Rank Xerox Ltd Method of reversal development using two electrostatic developers
US3928655A (en) * 1973-03-05 1975-12-23 Fuji Photo Film Co Ltd Electrostatic powder coating method
US4031021A (en) * 1974-03-25 1977-06-21 Deming Philip H Magnetic toner compositions
US4828950A (en) * 1987-12-28 1989-05-09 Eastman Kodak Company Method for making multi-color reproductions on plain bond paper
US4897331A (en) * 1987-06-03 1990-01-30 Minolta Camera Kabushiki Kaisha Reversal image forming method
US4975348A (en) * 1987-06-03 1990-12-04 Minolta Camera Kabushiki Kaisha Image highlighting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391578U (en) * 1976-12-24 1978-07-26

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512965A (en) * 1963-07-12 1970-05-19 Australia Res Lab Electroprinting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512965A (en) * 1963-07-12 1970-05-19 Australia Res Lab Electroprinting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901698A (en) * 1971-12-10 1975-08-26 Rank Xerox Ltd Method of reversal development using two electrostatic developers
US3928655A (en) * 1973-03-05 1975-12-23 Fuji Photo Film Co Ltd Electrostatic powder coating method
US4031021A (en) * 1974-03-25 1977-06-21 Deming Philip H Magnetic toner compositions
US4897331A (en) * 1987-06-03 1990-01-30 Minolta Camera Kabushiki Kaisha Reversal image forming method
US4975348A (en) * 1987-06-03 1990-12-04 Minolta Camera Kabushiki Kaisha Image highlighting method
US4828950A (en) * 1987-12-28 1989-05-09 Eastman Kodak Company Method for making multi-color reproductions on plain bond paper

Also Published As

Publication number Publication date
GB1340947A (en) 1973-12-19
DE2134981B2 (en) 1976-04-15
FR2100351A5 (en) 1972-03-17
BE769893A (en) 1971-11-16
CA947812A (en) 1974-05-21
JPS495465B1 (en) 1974-02-07
DE2134981A1 (en) 1972-01-20
NL7109372A (en) 1972-01-17

Similar Documents

Publication Publication Date Title
US3909258A (en) Electrographic development process
US3394001A (en) Electrophotographic sensitive material containing electron-donor dye layers
US2937944A (en) Xerographic light-sensitive member and process therefor
US4013462A (en) Migration imaging system
US3975195A (en) Migration imaging system
US3719481A (en) Electrostatographic imaging process
US3773507A (en) Electrophotographic reversal development process employing a pre-toner
US4018602A (en) Method for in situ fabrication of photoconductive composite
US3901698A (en) Method of reversal development using two electrostatic developers
US3850830A (en) Liquid developer containing extender body particles
US3808026A (en) Liquid development of electrostatic latent image
US3723110A (en) Electrophotographic process
US3445225A (en) Electrophotographic imaging process
US4007042A (en) Migration imaging method
US3668126A (en) Method of producing electrophotographic liquid developers having very fine coloring material
US3891990A (en) Imaging process using donor material
US3096260A (en) Two-step electrophotography
US3917880A (en) Electrophoretic imaging system
US4634646A (en) Method for the formation of electrophotographic images
US4281050A (en) Migration imaging system
US3671282A (en) Method of making an imaging member
US5356741A (en) Control of the acid/base environment in photoconductive elements
US3505231A (en) Liquid developer for xerography
US3998634A (en) Powder electrophotographic method
US4076528A (en) Xerographic binder plate