US3769327A - N-(p-alkenyloxybenzylidene)-p-aminophenylacetates - Google Patents

N-(p-alkenyloxybenzylidene)-p-aminophenylacetates Download PDF

Info

Publication number
US3769327A
US3769327A US00150218A US3769327DA US3769327A US 3769327 A US3769327 A US 3769327A US 00150218 A US00150218 A US 00150218A US 3769327D A US3769327D A US 3769327DA US 3769327 A US3769327 A US 3769327A
Authority
US
United States
Prior art keywords
liquid
dielectric
discharge
percent
para
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00150218A
Inventor
H Dietrich
E Steiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techneglas LLC
Original Assignee
Owens Illinois Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Illinois Inc filed Critical Owens Illinois Inc
Application granted granted Critical
Publication of US3769327A publication Critical patent/US3769327A/en
Assigned to OWENS-ILLINOIS TELEVISION PRODUCTS INC. reassignment OWENS-ILLINOIS TELEVISION PRODUCTS INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: OWENS-ILLINOIS, INC., A CORP. OF OHIO
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/22Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and nitrogen atoms as chain links, e.g. Schiff bases

Definitions

  • x is an integer of 0 to 10.
  • the compounds are prepared by the reaction of para-acetoxyaniline and paran-alkenyloxybenzaldehyde.
  • x is an integer of 0 to 10, preferably 0 to 5, by the reaction of para-acetoxyaniline,
  • the para-n-alkenyloxybenzaldehydes of this invention are prepared by a first reaction of para-hydroxybenzalde hyde and potassium hydroxide in a dimethyl formamidebenzene (1:1) solvent mixture, refluxing at about 100 C. to remove the water of reaction azeotropically, and react-j ing the product of the first reaction with an appropriate alkenyl halide. The solution is then heated to reflux for about 4 to 6 hours. After the solvents are removed in vacuum, the products are separated from the inorganic residues by a water immiscible solvent followed by fractionation to recover the required para-n-alkenyloxybenzaldehyde.
  • Schiff bases are prepared by refluxing equimolar quantities of the p-substituted benzaldehyde and aniline in anhydrous ethanol for about 4 to 6 hours. The solvent and water are removed and the residue recrystallized several times from ethanol until the transition temperatures remain constant. The crude yields ranged from 70 to The infra-red spectra show a strong band at 1629 cm.- corresponding to the carbon nitrogen double bond in Scange base compounds. Other absorptions are compatible with the expected structures.
  • Transition temperatures are determined on a Leitz Ortholux polarizing microscope using a Mettler FP-2 heating stage.
  • N(p-allyloxybenzylidene)p-aminophenylacetate (where x is 0 in the basic structure) was prepared in accordance with this invention.
  • the structure was analyzed at 73.18 percent by weight carbon, 5.83 percent by Weight hydrogen, and 4.80 percent by Weight nitrogen compared with calculated theoretical analysis values of 73.20 percent by weight carbon, 5.80 percent by weight hdyrogen, and 4.74 percent by weight nitrogen.
  • the compound changed from the crystalline to the smectic phase at about 84.6 C., from smectic to nematic at about 1l0.8 C., and from nematic to isotropic at about 111.4 C.
  • N(p crotyloxybenzylidene)p aminophenylacetate (Where x is 1 the basic structure) was prepared in accordance with this invention.
  • the structure was analyzed at 73.52 percent by weight carbon, 6.18 percent by Weight hydrogen, and 4.83 percent by weight nitrogen compared with calculated theoretical analysis values of 73.77 percent by Weight carbon, 6.19 percent by weight hydrogen, and 4.53 percent by weight nitrogen.
  • the compound changed from the crystalline to the nematic phase at about 127.0 C. and from nematic to isotropic at about 134.5 C.
  • liquid-crystal compounds prepared in accordance with this invention may be utilized in display devices, especially of the electronic type.
  • Such devices typically comprise a thin layer of liquid crystals sandwiched between two sheets of glass. Normally, the thin layer of liquid-crystal material is clear, but when an electric field is applied to it, some portions or regions of the material-become turbulent so as to scatter light. By controlling the size and shape of the turbulent regions, images can be formed. Primarily, this efliect is ob tained by use of liquid-crystal mate-rials of the nematic type.
  • a liquid-crystal material is sandwiched as a dielectric in a parallel plate capacitor with one electrode transparent and the other electrode either transparent or reflecting.
  • the liquid is kept between the electrodes by capillary action, since electrode spacings are of the order of /2 mil.
  • An applied D0. or low-frequency (less than Hz.) field of more than 30,000 volts per centimeter changes the cell from transparent to turbulent in a few milliseconds.
  • the opaque effect may remain even after the field is removed. In other words, an optical signal may be maintained with no applied power.
  • the cell can be turned clear again by applying a higher frequency (greater than 700 Hz.) signal. The sample remains clear after the signal is removed.
  • liquid-crystal compounds in a charge storage display/memory device, especially multiple gas discharge display/memory panels which have an electrical memory and which are capable of producing a visual display or representation of data such as numerals, letters, television display, radar displays, binar words, etc. 5
  • Multiple gas discharge display and/ or memory panels 0 the type with which the present invention is especially concerned are characterized by an ionizable gaseous medium, usually a mixture of at least two gases at an appropriate gas pressure, in a thin gas chamber or space between a pair of opposed dielectric charge storage members which are backed by conductor (electrode) members, the conductor members backing each dielectric member being transversely oriented to define a plurality of discrete discharge volumes and constituting a discharge unit.
  • the discharge units are additionally defined by surrounding or confining physical structure such as by cells or apertures in perforated glass plates and the like so as to be physically isolated relative to other units.
  • charges produced upon ionization of the gas of a selected discharge unit, when proper alternating operating potentials are applied to selected conductors thereof, are collected upon the surfaces of the dielectric at specifically defined locations and constitute an electrical field opposing the electrical field which created them so as to terminate the discharge for the remainder of the half cycle and aid in the initiation of a discharge on a succeeding opposite half cycle of applied voltage, such charges as are stored constituting an electrical memory.
  • the dielectric layers prevent the passage of any conductive current from the conductor members to the gaseous medium and also serve as collecting surfaces for ionized gaseous medium charges (electrons, ions) during the alternate half cycles of the AC. operating potentials, such charges collecting first on one elemental or discrete dielectric surface area and then on an opposing elemental or discrete dielectric surface area on alternate half cycles to constitute an electrical memory.
  • a continuous volume of ionizable gas is confined between a pair of dielectric surfaces backed by conductor arrays forming matrix elements.
  • the dielectric layers are photoemissive.
  • the cross conductor arrays may be orthogonally related (but any other configuration of conductor arrays may be used) to define a plurality of opposed pairs of charge storage areas on the surfaces of the dielectric bounding or confining the gas.
  • the number of elemental discharge volumes will be the product H C and the number of elemental or discrete areas will be twice the number of elemental discharge volume.
  • the conductor arrays may be shaped otherwise. Accordingly, while the preferred conductor arrangement is of the crossed grid type as shown herein, it is likewise apparent that where an infinite variety of two dimensional display patterns are not necessary, as where specific standardized visual shapes (e.g., numerals, letters, words, etc.) are to be formed and image resolution is not critical, the conductors may be shaped accordingly.
  • the gas is one which produces light (if visual display is an objective) and a copious supply of charges (ions and electrons) during discharge.
  • the gas pressure and the electric field are sufiicient to laterally confine charges generated on dis charge within elemental or discrete volumes of gas between opposed pairs of elemental or discrete dielectric areas within the perimeter of such areas, especially in a panel containing non-isolated units.
  • the space between the dielectric surfaces occupied by the gas is such as to permit photons generated on discharge in a selected discrete or elemental volume of gas to pass freely through the gas space and strike surface areas of dielectric remote from the selected discrete volumes, such remote, photon struck dielectric surface areas thereby emitting electrons so as to condition other and more remote elemental volumes for discharges at a uniform applied potential.
  • the allowable distance or spacing between the dielectric surfaces depends, inter alia, on the frequency of the alternating current supply, the distance typically being greater for lower frequencies.
  • liquid crystaL may be prepared and/or utilized alone or in combination with other liquid-crystal compositions of the same or different family, e.g. such as a mixture of 2 or more compositions. This may be especially desirable since mixtures of compounds may have lower transition temperatures than the individual compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

THERE IS DISCLOSED THE PREPARATION OF LIQUID-CRYSTAL COMPOUNDS OF THE STRUCTURE:

(4-(CH3-COO-)PHENYL)-N=CH-(1,4-PHENYLENE)-O-CH2-CH=CH-

(CH2)X-H

WHERE X IS AN INTEGER OF 0 TO 10. THE COMPOUNDS ARE PREPARED BY THE REACTION OF PARA-ACETOXYANILINE AND PARAN-ALKENYHLOXYBENZALDEHYDE.

Description

of) t United 3,769,321 atented Oct. 30, 1973 The following equations are representative of the re- 3,769,327 action of para-acetoxyaniline and para-n-alkenyloxy- 'N-(p-ALKENYLOXYBENZYLIDENE)-p= benzaldehyde:
AMINOPHENYLACETATES Hei'nz J; Dietrich and'Edward L. Steiger, Toledo, Ohio, assignors to Owens-Illinois, Inc. No Drawing. Filed June 4, 1971, Ser. No. 150,218 Int. Cl. C07c 92/26 US. C1 260-479 R 3 Claims ABSTRACT OF THE DISCLOSURE There is disclosed the preparation of liquid-crystal compounds of the structure:
0 u cm .ort=cncuio@cn=rz@o lion:
where x is an integer of 0 to 10. The compounds are prepared by the reaction of para-acetoxyaniline and paran-alkenyloxybenzaldehyde.
where x is an integer of 0 to 10, preferably 0 to 5, by the reaction of para-acetoxyaniline,
and para-n-alkenyloxybenzaldehyde,
where x is as defined above.
The para-n-alkenyloxybenzaldehydes of this invention are prepared by a first reaction of para-hydroxybenzalde hyde and potassium hydroxide in a dimethyl formamidebenzene (1:1) solvent mixture, refluxing at about 100 C. to remove the water of reaction azeotropically, and react-j ing the product of the first reaction with an appropriate alkenyl halide. The solution is then heated to reflux for about 4 to 6 hours. After the solvents are removed in vacuum, the products are separated from the inorganic residues by a water immiscible solvent followed by fractionation to recover the required para-n-alkenyloxybenzaldehyde.
The following equations are representative:
1 U HOCHO KOH KOCHO The appropriate alkenyl halides are commercially avail able. Also the para-acetoxyaniline, also known as para amino phenyl acetate, is commercially available. Both may be typically used Without further purification.
Schiff bases are prepared by refluxing equimolar quantities of the p-substituted benzaldehyde and aniline in anhydrous ethanol for about 4 to 6 hours. The solvent and water are removed and the residue recrystallized several times from ethanol until the transition temperatures remain constant. The crude yields ranged from 70 to The infra-red spectra show a strong band at 1629 cm.- corresponding to the carbon nitrogen double bond in Schilf base compounds. Other absorptions are compatible with the expected structures.
Transition temperatures are determined on a Leitz Ortholux polarizing microscope using a Mettler FP-2 heating stage.
N(p-allyloxybenzylidene)p-aminophenylacetate (where x is 0 in the basic structure) was prepared in accordance with this invention. The structure was analyzed at 73.18 percent by weight carbon, 5.83 percent by Weight hydrogen, and 4.80 percent by Weight nitrogen compared with calculated theoretical analysis values of 73.20 percent by weight carbon, 5.80 percent by weight hdyrogen, and 4.74 percent by weight nitrogen. The compound changed from the crystalline to the smectic phase at about 84.6 C., from smectic to nematic at about 1l0.8 C., and from nematic to isotropic at about 111.4 C.
N(p crotyloxybenzylidene)p aminophenylacetate (Where x is 1 the basic structure) was prepared in accordance with this invention. The structure was analyzed at 73.52 percent by weight carbon, 6.18 percent by Weight hydrogen, and 4.83 percent by weight nitrogen compared with calculated theoretical analysis values of 73.77 percent by Weight carbon, 6.19 percent by weight hydrogen, and 4.53 percent by weight nitrogen. The compound changed from the crystalline to the nematic phase at about 127.0 C. and from nematic to isotropic at about 134.5 C.
The liquid-crystal compounds prepared in accordance with this invention may be utilized in display devices, especially of the electronic type.
Such devices typically comprise a thin layer of liquid crystals sandwiched between two sheets of glass. Normally, the thin layer of liquid-crystal material is clear, but when an electric field is applied to it, some portions or regions of the material-become turbulent so as to scatter light. By controlling the size and shape of the turbulent regions, images can be formed. Primarily, this efliect is ob tained by use of liquid-crystal mate-rials of the nematic type.
In one particular embodiment, a liquid-crystal material is sandwiched as a dielectric in a parallel plate capacitor with one electrode transparent and the other electrode either transparent or reflecting. The liquid is kept between the electrodes by capillary action, since electrode spacings are of the order of /2 mil. An applied D0. or low-frequency (less than Hz.) field of more than 30,000 volts per centimeter changes the cell from transparent to turbulent in a few milliseconds. Depending upon the liquid-crystal composition, the opaque effect may remain even after the field is removed. In other words, an optical signal may be maintained with no applied power. The cell can be turned clear again by applying a higher frequency (greater than 700 Hz.) signal. The sample remains clear after the signal is removed.
Additional embodiments of liquid-crystal electro-optical devices are disclosed and illustrated in U.S. Letters Patents 3,401,262 and 3,410,999; Proceedings of the IEEE, vol. 56? No.12, December 1968; pp. 2146-2149; The Glass Industry, August 1968, pp. 423-425; Chemical and Engineering News, Sept. 30, 1968, pp. 32 and 33; Physics Today, July 1970, pp. 30-36; Electronics, July 6, 1970, pp. 64-70; U.S. Leters Patent 3,322,485 to Williams. I
It is also contemplated using the liquid-crystal compounds in a charge storage display/memory device, especially multiple gas discharge display/memory panels which have an electrical memory and which are capable of producing a visual display or representation of data such as numerals, letters, television display, radar displays, binar words, etc. 5
Multiple gas discharge display and/ or memory panels 0 the type with which the present invention is especially concerned are characterized by an ionizable gaseous medium, usually a mixture of at least two gases at an appropriate gas pressure, in a thin gas chamber or space between a pair of opposed dielectric charge storage members which are backed by conductor (electrode) members, the conductor members backing each dielectric member being transversely oriented to define a plurality of discrete discharge volumes and constituting a discharge unit. In some prior art panels the discharge units are additionally defined by surrounding or confining physical structure such as by cells or apertures in perforated glass plates and the like so as to be physically isolated relative to other units. In either case, with or without the confining physical structure, charges (electrons, ions) produced upon ionization of the gas of a selected discharge unit, when proper alternating operating potentials are applied to selected conductors thereof, are collected upon the surfaces of the dielectric at specifically defined locations and constitute an electrical field opposing the electrical field which created them so as to terminate the discharge for the remainder of the half cycle and aid in the initiation of a discharge on a succeeding opposite half cycle of applied voltage, such charges as are stored constituting an electrical memory.
Thus, the dielectric layers prevent the passage of any conductive current from the conductor members to the gaseous medium and also serve as collecting surfaces for ionized gaseous medium charges (electrons, ions) during the alternate half cycles of the AC. operating potentials, such charges collecting first on one elemental or discrete dielectric surface area and then on an opposing elemental or discrete dielectric surface area on alternate half cycles to constitute an electrical memory.
An example of a panel structure containing non-physically isolated or open discharge units is disclosed in U.S. Letters Patent 3,499,167 issued to Theodore C. Baker et al.
An example of a panel containing physically isolated units is disclosed in the article by D. L. Bitzer and H. G. Slottow entitled The Plasma Display PanelA Digitally Addressable Display With Inherent Memory, Proceeding of the Fall Joint Computer Conference, IEEE, San Francisco, Calif, November 1966, pp. 541-547. Also reference is made to U.S. Letters Patent 3,559,190.
In the operation of the panel, a continuous volume of ionizable gas is confined between a pair of dielectric surfaces backed by conductor arrays forming matrix elements. Typically one or more of the dielectric layers are photoemissive. The cross conductor arrays may be orthogonally related (but any other configuration of conductor arrays may be used) to define a plurality of opposed pairs of charge storage areas on the surfaces of the dielectric bounding or confining the gas. Thus, for a conductor matrix having H rows and C columns the number of elemental discharge volumes will be the product H C and the number of elemental or discrete areas will be twice the number of elemental discharge volume.
In addition to the matrix configuration, the conductor arrays may be shaped otherwise. Accordingly, while the preferred conductor arrangement is of the crossed grid type as shown herein, it is likewise apparent that where an infinite variety of two dimensional display patterns are not necessary, as where specific standardized visual shapes (e.g., numerals, letters, words, etc.) are to be formed and image resolution is not critical, the conductors may be shaped accordingly.
The gas is one which produces light (if visual display is an objective) and a copious supply of charges (ions and electrons) during discharge. In an open cell Baker et al. type panel, the gas pressure and the electric field are sufiicient to laterally confine charges generated on dis charge within elemental or discrete volumes of gas between opposed pairs of elemental or discrete dielectric areas within the perimeter of such areas, especially in a panel containing non-isolated units.
As described in the Baker et al. patent, the space between the dielectric surfaces occupied by the gas is such as to permit photons generated on discharge in a selected discrete or elemental volume of gas to pass freely through the gas space and strike surface areas of dielectric remote from the selected discrete volumes, such remote, photon struck dielectric surface areas thereby emitting electrons so as to condition other and more remote elemental volumes for discharges at a uniform applied potential.
With respect to the memory function of a given. discharge panel, the allowable distance or spacing between the dielectric surfaces depends, inter alia, on the frequency of the alternating current supply, the distance typically being greater for lower frequencies.
In the practice of this invention, it is contemplated that a particular liquid crystaLmay be prepared and/or utilized alone or in combination with other liquid-crystal compositions of the same or different family, e.g. such as a mixture of 2 or more compositions. This may be especially desirable since mixtures of compounds may have lower transition temperatures than the individual compounds.
1. As a composition of matter, a compound having the chemical structure 0 i H(CHi)XCH=CHCHiO@CH=N@O bout where x is an integer of Ojto 10.
2. The invention of claim 1 wherein x is 0, and the compound is a liquid-crystal composition which changes from the crystalline to the smectic phase at about 84.6 C., from smectic to nematic at about 110.8 C., and from nematic to isotropic at about 111.4 C.
3. The invention of claim 1 wherein x is 1, and the compound is a liquid-crystal composition which changes from the crystalline to the nematic phase at about 127.0 C. and from nematic to isotropic at about 134.5 C.
References Cited UNITED STATES PATENTS 3,540,796 11/ 1970 Goldmacher et al. 260479 JAMES A. PATTEN, PrimaryExaminer US. Cl. XR. 260-600; 350-
US00150218A 1971-06-04 1971-06-04 N-(p-alkenyloxybenzylidene)-p-aminophenylacetates Expired - Lifetime US3769327A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15021871A 1971-06-04 1971-06-04

Publications (1)

Publication Number Publication Date
US3769327A true US3769327A (en) 1973-10-30

Family

ID=22533555

Family Applications (1)

Application Number Title Priority Date Filing Date
US00150218A Expired - Lifetime US3769327A (en) 1971-06-04 1971-06-04 N-(p-alkenyloxybenzylidene)-p-aminophenylacetates

Country Status (1)

Country Link
US (1) US3769327A (en)

Similar Documents

Publication Publication Date Title
US4063131A (en) Slow rise time write pulse for gas discharge device
US4087805A (en) Slow rise time write pulse for gas discharge device
US3603836A (en) Conductor configurations for discharge panels
US3801861A (en) Drive waveform for gas discharge display/memory panel
US3886393A (en) Gas mixture for gas discharge device
US3904915A (en) Gas mixture for gas discharge device
US4045200A (en) Method of forming glass substrates with pre-attached sealing media
US3896327A (en) Monolithic gas discharge display device
CA1145809A (en) Gaseous discharge device with lower operating voltages
US3769327A (en) N-(p-alkenyloxybenzylidene)-p-aminophenylacetates
US3998510A (en) Method of using invisible spacers for electro-optical display device manufacture
US3751467A (en) Preparation of liquid-crystal compounds
US3863089A (en) Gas discharge display and memory panel with magnesium oxide coatings
US3769313A (en) N - (p-n-alkoxycarbonyloxybenzylidene)-p'-aminophenylacetate liquid crystal compounds
US3742054A (en) Mesomorphic composition of matter
US3742053A (en) Mesomorphic preparation
US3743681A (en) Preparation of liquid-crystal compounds
US4005064A (en) Liquid crystal or mesomorphic 4-methoxyalkoxy-4'-alkyl azoxybenzene compounds
US3925697A (en) Helium-xenon gas mixture for gas discharge device
US3769314A (en) N - (p-n-alkoxycarbonyloxybenzylidene)-p'-n-butoxyaniline liquid-crystal compounds
US3742067A (en) Alkyl-stilbene liquid-crystal compounds
US3784513A (en) N-(p-alkanoyloxybenzylidene)-p'-n-butylaniline
US4081712A (en) Addition of helium to gaseous medium of gas discharge device
US4000124A (en) Novel liquid-crystal compounds
US3903445A (en) Display/memory panel having increased memory margin

Legal Events

Date Code Title Description
AS Assignment

Owner name: OWENS-ILLINOIS TELEVISION PRODUCTS INC.,OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS-ILLINOIS, INC., A CORP. OF OHIO;REEL/FRAME:004772/0648

Effective date: 19870323

Owner name: OWENS-ILLINOIS TELEVISION PRODUCTS INC., SEAGATE,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:OWENS-ILLINOIS, INC., A CORP. OF OHIO;REEL/FRAME:004772/0648

Effective date: 19870323