US3767958A - Electron discharge device having increased heater-cathode breakdown voltage - Google Patents

Electron discharge device having increased heater-cathode breakdown voltage Download PDF

Info

Publication number
US3767958A
US3767958A US00211237A US3767958DA US3767958A US 3767958 A US3767958 A US 3767958A US 00211237 A US00211237 A US 00211237A US 3767958D A US3767958D A US 3767958DA US 3767958 A US3767958 A US 3767958A
Authority
US
United States
Prior art keywords
cathode
heater
sleeve
members
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00211237A
Inventor
W Bingeman
F Grimone
D Kerstetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
GTE Sylvania Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Sylvania Inc filed Critical GTE Sylvania Inc
Application granted granted Critical
Publication of US3767958A publication Critical patent/US3767958A/en
Assigned to NORTH AMERICAN PHILIPS CONSUMER ELECTRONICS CORP. reassignment NORTH AMERICAN PHILIPS CONSUMER ELECTRONICS CORP. ASSIGNS ITS ENTIRE RIGHT TITLE AND INTEREST, UNDER SAID PATENTS AND APPLICATIONS, SUBJECT TO CONDITIONS AND LICENSES EXISTING AS OF JANUARY 21, 1981. (SEE DOCUMENT FOR DETAILS). Assignors: GTE PRODUCTS CORPORATION A DE CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

A heater-cathode breakdown voltage above about 8,000 to 9,000 v. is provided for certain electron discharge devices such as damper tubes employed in color television receivers. The increase is achieved by isolating the heater within a metallic cylinder which in turn is concentrically mounted within a cathode sleeve.

Description

States Patent [1 1 Bingeman et al.
ELECTRON DISCHARGE DEVICE HAVING llNCREASED HEATER-CATHODE BREAKDOWN VOLTAGE Inventors: Wilbur H. Bingeman; Frank H.
Grimone; Donald R. Kerstetter, all of Emporium, Pa.
GTE Sylvania Incorporated, Seneca Falls, NY.
Filed: Dec. 23, 1971 Appl. No.: 211,237
Assignee:
1U.S. Cl. 313/238, 313/240, 313/356 Int. Cl H0lj 1/00, l-101j 19/00, HOlk Field of Search 313/238, 337, 340,
References Cited UNITED STATES PATENTS 2/1933 Bdhm 313/337 1,962,427 6/1934 Claypoole 313/337 X 2,757,308 7/1956 Katzberg 313/337 X 2,757,308 8/1956 Katzberg... 313/337 X 2,870,366 1/1959 Van Tol 313/337 FOREIGN PATENTS OR APPLlCATlONS 1,101,628 3/1961 Germany 313/337 Primary ExaminerRudolph V. Rolinec Assistant ExaminerSaxfield Chatmon, Jr. Attorney-Norman J. OMalley et a1.
[57] ABSTRACT 4 Claims, 9 Drawing Figures ELIEETRON DISCHARGE DEVICE HAVING INCREASED HEATER-CATI-IOIDE BREAKDOWN VOLTAGE BACKGROUND OF THE INVENTION This invention relates to electron discharge devices and more particularly to damper tubes having an increased heater-cathode breakdown voltage. Prior designs of damper tubes have utilized an insulating coil surrounding the heater to provide a vacuum insulator between the cathode and heater. Such an arrangement provides a heater-cathode breakdown voltage above about 6,500 v., which is the rated potential difference between the heater and the cathode. Newly required tubes demand a heater-cathode breakdown voltage in excess of 8,000 v., a condition which cannot be consistently achieved in mass production with the prior design.
OBJECTS AND SUMMARY OF THE INVENTION It is, therefore, an object of the invention to enhance the operation of damper tubes as well as other tubes requiring similar operating conditions.
It is a further object of the invention to increase the heater-cathode breakdown voltage of such tubes.
These objects are accomplished in one aspect of the invention by the provision of an electron discharge device which contains, in an evacuated envelope, an electrode cage comprised of at least an anode, an indirectly heated cathode and a heater therefor. The electrodes are mounted and maintained in their respective positions by upper and lower insulating members, as is conventional in the art. The improvement in the heatercathode breakdown voltage is achieved by positioning the heater within a hollow metallic sleeve which in turn is concentrically mounted within the cathode body. The superior insulating qualities resulting from this structure achieve the desired result.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is an elevational sectional view of an electron discharge device;
FIG. 2 is a perspective view, with parts omitted, of an embodiment of the invention;
FIG. 3 is a plan view of the embodiment of FIG. 2;
FIG. 4 is an elevational sectional view, with parts omitted, of an alternate embodiment of the invention; FIG. 5 is a plan view taken along the line 5-5 of FIG.
FIG. 6 is a plan view of another embodiment of the invention;
FIG. 7 is an elevational sectional view taken along the line 7-7 of FIG. 6;
FIG. 8 is a plan view of yet another embodiment of the invention; and
FIG. 9 is an elevational sectional view, with parts omitted, taken along the line 9-9 of FIG. 8.
DESCRIPTION OF THE PREFERRED EMBODIMENTS For a better understanding of the present invention, together with other and further objects, advantages and capabilities thereof, reference is made to the following disclosure and appended claims together with the above-described drawings.
Referring now to the drawings with greater particularity, there is shown diagrammatically in FIG. 1 an electron discharge device 10 such as a damper tube. The tube 10 comprises an evacuated envelope 12 which contains therein an electrode cage 14 mounted between upper and lower insulating members 16 and 18. The last named members generally are of mica. The electrode cage 14 has an anode 20, an indirectly heated cathode 22 and a heater 24!, only the lower legs of which are visible in FIG. 1. The heater, which can be a conventional spade wound heater of tungsten or similar material having thereon an insulating layer of alumina, is positioned within a hollow metallic sleeve 26 which in turn is concentrically mounted within cathode body 22.
In FIGS. 2 and 3 there is shown means 28 for maintaining the spacing between sleeve 26 and cathode 22. Herein the upper and lower insulating members 16 and 18, only one of which is shown, are provided with a substantially centrally located aperture 30 of a size to frictionally engage the heater containing sleeve 26. The aperture 30 is provided with a plurality of equidistantly spaced, radially extending slots 32, in this instance three although more or less can be used. In this embodiment the ends of cathode 22 are provided with a like number of tabs 34 which are frictionally engaged in slots 32. This arrangement provides adequate support and reduces the possibility of leakage paths developing between sleeve 26 and cathode 22.
An alternate means 28a is shown in FIGS. 4 and 5. Means 28a comprises upper and lower pairs of insulating members of which only upper pair 36 is illustrated. The innermost member 38 of pair 36, i.e., the member which corresponds to member 16, is provided with an aperture 40 of sufficient size to frictionally engage the cathode 22. The outermost member 42 is provided with an aperture 441 to frictionally engage the sleeve 26 and is mounted above member 38 by means of a frame or wall 46 of substantially rigid construction. The top and bottom of the wall 46 are provided with tabs 48 and 50 respectively which engage slots 52 and 54 respectively in 42 52 and 38 to maintain the structure as a unit. Member 38 is further provided with slots 56 which engage tabs 58 on anode 20 for supporting the electrode cage and is generally also provided with elongated openings 60 to assist in ventilating the cage and breaking up leakage paths between the cathode and anode.
Yet another means of maintaining the spacing between sleeve 26 and cathode 22 is illustrated in FIGS. 6 and 7. Means 28b comprises a metallic member 62 having a wall portion 64 which is substantially normal to an insulating member 66 to which it is mounted by means of tabs 68 which extend from the bottom of the wall 64 and cooperate with slots 70 in member 66.
An instanding flange 72 projects from the top of wall 64 and is provided with an aperture 74 for engaging sleeve 26. The aperture is actually a raised boss 76 which forms a collar for sleeve 26 and the top of the boss is provided with tabs 78 for holding sleeve 26 in position. The insulating member 66, which is mounted upon the anode tabs as described above, is provided withan aperture 80 for receiving the cathode 22.
FIGS. 8 and 9 disclose still another means of maintaining the spacing between sleeve 26 and cathode 22. Means 280 comprises an innermost insulating member 82 which is held in position by lugs 58 of anode 20. The member 82 is provided with an aperture 84 for receiving the cathode 22. Positioned above member 82 is a second insulating member 86 which-contains an aperture 88 to receive sleeve 26 and which is also mounted upon lugs 58 of anode 20. The requisite spacing between the members 82 and 86 is achieved by two substantially Z shaped elements 90 of metal or other suitable rigid material which have their central portions 92 conformed in configuration to the lugs 58 and are attached thereto inbetween members 82 and 86.
Thus, it will be seen that the invention described herein has many advantages over the prior art. The inner sleeve which contains the heater achieves heatercathode breakdown voltages in excess of that regularly attainable by prior methods and the novel manner of mounting the sleeve and cathode to maintain the required spacing therebetween is both sturdy and economical.
While there have been shown and described what are at present considered the preferred embodiments of the invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the invention as defined by the appended claims.
We claim:
1. In an electron discharge device having an evacuated envelope and containing an electrode cage mounted between upper and lower insulating members, said electrode cage comprising at least an anode, an indirectly heated cathode, and a heater for said cathode, means improving the heater-cathode breakdown voltage comprising: a hollow metallic sleeve containing said heater, said sleeve being concentrically mounted within a hollow cathode body and spaced therefrom throughout its entire length and presenting a substantially solid surface to the interior wall of said cathode, said sleeve further being electrically isolated from said heater, and means for maintaining said spacing between said heater containing said sleeve and said cathode, said last named means comprising upper and lower insulating members being provided with a substantially centrally located aperture of a size to frictionally engage said heater containing sleeve and said aperture is provided with a plurality of equidistantly spaced, radially extending slots, said cathode body having a similar plurality of tabs at either end thereof and said tabs being frictionally engaged in said slots.
2. In an electron discharge device having an evacuated envelope and containing an electrode cage mounted between upper and lower insulating members, said electrode cage comprising at least an anode, an indirectly heated cathode, and a heater for said cathode, means for improving the heater-cathode breakdown voltage comprising: a hollow metallic sleeve containing said heater, said sleeve being concentrically mounted within a hollow cathode body and spaced therefrom throughout its entire length and presenting a substantially solid surface to the interior wall of said cathode, said sleeve further being electrically isolated from said heater, and means for maintaining said spacing between said heater containing sleeve and said cathode, said last named means comprising pairs of upper and lower insulating members, the innermost of said members being provided with an aperture of sufficient size to frictionally engage said cathode body and the outermost of said members being provided with an aperture of sufficient size to frictionally engage said heater containing sleeve, said outermost members being spaced from said innermost members by means of a rigid wall which engages and secures together said upper and lower members.
3. In an electron discharge device having an evacuated envelope and containing an electrode cage mounted between upper and lower insulating members, said electrode cage comprising at least an anode, an indirectly heated cathode, and a heater for said cathode, means for improving the heater-cathode breakdown voltage comprising: a hollow metallic sleeve containing said heater, said sleeve being concentrically mounted within a hollow cathode body and spaced therefrom throughout its entire length and presenting a substantially solid surface to the interior wall of said cathode, said sleeve further being electrically isolated from said heater, and means for maintaining said spacing between said heater containing sleeve and said cathode, said last named means comprising a metallic member fastened to said insulating member and having a wall normal to said insulating members and an instanding flange parallel to said insulating member, said flange being provided with an aperture to receive said heater containing sleeve and having means for engaging said sleeve and maintaining the same in position and said insulating member being provided with an aperture for receiving said cathode body.
4. In an electron discharge device having an evacuated envelope and containing an electrode cage mounted between upper and lower insulating members, said electrode cage comprising at least an anode, an indirectly heated cathode, and a heater for said cathode, means for improving the heater-cathode breakdown voltage comprising: a hollow metallic sleeve containing said heater, said sleeve being concentrically mounted within a hollow cathode body and spaced therefrom throughout its entire length and presenting a substantially solid surface to the interior wall of said cathode, said sleeve further being electrically isolated from said heater, and means for maintaining said spacing between said heater containing sleeve and said cathode, said upper and lower insulating member being held in a spaced apart manner by the cooperation of slots therein which engage projecting lugs on said anode and said means for maintaining said spacing between said heater containing sleeve and said cathode body which comprises two pairs of Z shaped members, one of each of said pairs being affixed to one of said anode lugs and auxiliary upper and lower insulating members held in place by said lugs and resting upon said Z shaped members, said auxiliary upper and lower insulating members having an aperture to receive said heater containing sleeve and said upper and lower insulating members having an aperture to receive said cathode body.

Claims (4)

1. In an electron discharge device having an evacuated envelope and containing an electrode cage mounted between upper and lower insulating members, said electrode cage comprising at least an anode, an indirectly heated cathode, and a heater for said cathode, means improving the heater-cathode breakdown voltage comprising: a hollow metallic sleeve containing said heater, said sleeve being concentrically mounted within a hollow cathode body and spaced therefrom throughout its entire length and presenting a substantially solid surface to the interior wall of said cathode, said sleeve further being electrically isolated from said heater, and means for maintaining said spacing between said heater containing said sleeve and said cathode, said last named means comprising upper and lower insulating members being provided with a substantially centrally located aperture of a size to frictionally engage said heater containing sleeve and said aperture is provided with a plurality of equidistantly spaced, radially extending slots, said cathode body having a similar plurality of tabs at either end thereof and said tabs being frictionally engaged in said slots.
2. In an electron discharge device having an evacuated envelope and containing an electrode cage mounted between upper and lower insulating members, said electrode cage comprising at least an anode, an indirectly heated cathode, and a heater for said cathode, means for improving the heater-cathode breakdown voltage comprising: a hollow metallic sleeve containing said heater, said sleeve being concentrically mounted within a hollow cathode body and spaced therefrom throughout its entire length and presenting a substantially solid surface to the interior wall of said cathode, said sleeve further being electrically isolated from said heater, and means for maintaining said spacing between said heater containing sleeve and said cathode, said last named means comprising pairs of upper and lower insulating members, the innermost of said members being provided with an aperture of sufficient size to frictionally engage said cathode body and the outermost of said members being provided with an aperture of sufficient size to frictionally engage said heater containing sleeve, said outermost members being spaced from said innermost members by means of a rigid wall which engages and secures together said upper and lower members.
3. In an electron discharge device having an evacuated envelope and containing an electrode cage mounted between upper and lower insulating members, said electrode cage comprising at least an anode, an indirectly heated cathode, and a heater for said cathode, means for improving the heater-cathode breakdown voltage comprising: a hollow metallic sleeve containing said heater, said sleeve being concentrically mounted within a hollow cathode body and spaced therefrom throughout its entire length and presenting a substantially solid surface to the interior wall of said cathode, said sleeve further being electrically isolated from said heater, and means for maintaining said spacing between said heater containing sleeve and said cathode, said last named means comprising a metallic member fastened to said insulating member and having a wall normal to said insulating members and an instanding flange parallel to said insulating member, said flange being provided with an aperture to receive said heater containing sleeve and having means for engaging said sleeve and maintaining the same in position and sAid insulating member being provided with an aperture for receiving said cathode body.
4. In an electron discharge device having an evacuated envelope and containing an electrode cage mounted between upper and lower insulating members, said electrode cage comprising at least an anode, an indirectly heated cathode, and a heater for said cathode, means for improving the heater-cathode breakdown voltage comprising: a hollow metallic sleeve containing said heater, said sleeve being concentrically mounted within a hollow cathode body and spaced therefrom throughout its entire length and presenting a substantially solid surface to the interior wall of said cathode, said sleeve further being electrically isolated from said heater, and means for maintaining said spacing between said heater containing sleeve and said cathode, said upper and lower insulating member being held in a spaced apart manner by the cooperation of slots therein which engage projecting lugs on said anode and said means for maintaining said spacing between said heater containing sleeve and said cathode body which comprises two pairs of Z shaped members, one of each of said pairs being affixed to one of said anode lugs and auxiliary upper and lower insulating members held in place by said lugs and resting upon said Z shaped members, said auxiliary upper and lower insulating members having an aperture to receive said heater containing sleeve and said upper and lower insulating members having an aperture to receive said cathode body.
US00211237A 1971-12-23 1971-12-23 Electron discharge device having increased heater-cathode breakdown voltage Expired - Lifetime US3767958A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21123771A 1971-12-23 1971-12-23

Publications (1)

Publication Number Publication Date
US3767958A true US3767958A (en) 1973-10-23

Family

ID=22786089

Family Applications (1)

Application Number Title Priority Date Filing Date
US00211237A Expired - Lifetime US3767958A (en) 1971-12-23 1971-12-23 Electron discharge device having increased heater-cathode breakdown voltage

Country Status (1)

Country Link
US (1) US3767958A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1897229A (en) * 1927-12-06 1933-02-14 Telefunken Gmbh Indirectly heated cathode
US1962427A (en) * 1924-08-16 1934-06-12 Rca Corp Thermionic translating device and system
US2757308A (en) * 1954-01-28 1956-07-31 Gera Corp Emissive cathode
US2870366A (en) * 1951-10-13 1959-01-20 Philips Corp Electric discharge tube of the kind comprising a cathode of the indirectly heated type
DE1101628B (en) * 1956-08-22 1961-03-09 Egyesuelt Izzolampa Cathode system for diodes used in televisions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1962427A (en) * 1924-08-16 1934-06-12 Rca Corp Thermionic translating device and system
US1897229A (en) * 1927-12-06 1933-02-14 Telefunken Gmbh Indirectly heated cathode
US2870366A (en) * 1951-10-13 1959-01-20 Philips Corp Electric discharge tube of the kind comprising a cathode of the indirectly heated type
US2757308A (en) * 1954-01-28 1956-07-31 Gera Corp Emissive cathode
DE1101628B (en) * 1956-08-22 1961-03-09 Egyesuelt Izzolampa Cathode system for diodes used in televisions

Similar Documents

Publication Publication Date Title
US4297612A (en) Electron gun structure
US2399003A (en) Electric discharge device
US3974416A (en) Multiple electrode support members with low coefficient of expansion
US2727177A (en) Electrostatic lens system
US2638559A (en) Electrostatic lens for cathode-ray tubes
US3767958A (en) Electron discharge device having increased heater-cathode breakdown voltage
US2082851A (en) Electron discharge device
US2452620A (en) Electrode support in television tubes
US3883767A (en) Heater for fast warmup cathode
US1866715A (en) Assembly of elements in electron devices
US4125793A (en) Photomultiplier with dynode support structure
US3027479A (en) Electron guns
US3626231A (en) Thermal shunt for a cathode structure
US2096466A (en) Cathode ray tube
US2030362A (en) Space discharge device
US3732450A (en) Electron gun assembly having cathodes insulatively mounted in metallic plate
US5202606A (en) Cathode-ray tube with focussing structure and getter means
US2159747A (en) Glow discharge device
US1931874A (en) Electron discharge device
US2148588A (en) Cathode ray tube
US2473358A (en) Cathode coating for electron discharge devices
US3517242A (en) Potential gradiant stabilized cathode-ray tube
US2289588A (en) Electron discharge tube
US2148538A (en) Electron discharge device
US2118002A (en) Electron discharge tube

Legal Events

Date Code Title Description
AS Assignment

Owner name: NORTH AMERICAN PHILIPS CONSUMER ELECTRONICS CORP.,

Free format text: ASSIGNS ITS ENTIRE RIGHT TITLE AND INTEREST, UNDER SAID PATENTS AND APPLICATIONS, SUBJECT TO CONDITIONS AND LICENSES EXISTING AS OF JANUARY 21, 1981.;ASSIGNOR:GTE PRODUCTS CORPORATION A DE CORP.;REEL/FRAME:003992/0284

Effective date: 19810708

Owner name: NORTH AMERICAN PHILIPS CONSUMER ELECTRONICS CORP.

Free format text: ASSIGNS ITS ENTIRE RIGHT TITLE AND INTEREST, UNDER SAID PATENTS AND APPLICATIONS, SUBJECT TO CONDITIONS AND LICENSES EXISTING AS OF JANUARY 21, 1981.;ASSIGNOR:GTE PRODUCTS CORPORATION A DE CORP.;REEL/FRAME:003992/0284

Effective date: 19810708