US3766748A - Vehicle air conditioning system with suction accumulator - Google Patents

Vehicle air conditioning system with suction accumulator Download PDF

Info

Publication number
US3766748A
US3766748A US00841032A US3766748DA US3766748A US 3766748 A US3766748 A US 3766748A US 00841032 A US00841032 A US 00841032A US 3766748D A US3766748D A US 3766748DA US 3766748 A US3766748 A US 3766748A
Authority
US
United States
Prior art keywords
evaporator
casing
compressor
outlet
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00841032A
Inventor
E Bottum
R Kozinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Old Carco LLC
Original Assignee
Chrysler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chrysler Corp filed Critical Chrysler Corp
Application granted granted Critical
Publication of US3766748A publication Critical patent/US3766748A/en
Assigned to FIDELITY UNION TRUST COMPANY, TRUSTEE reassignment FIDELITY UNION TRUST COMPANY, TRUSTEE MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: CHRYSLER CORPORATION
Assigned to CHRYSLER CORPORATION reassignment CHRYSLER CORPORATION ASSIGNORS HEREBY REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID INVENTIONS AND RELEASE THEIR SECURITY INTEREST. (SEE DOCUMENT FOR DETAILS). Assignors: ARNEBECK, WILLIAM, INDIVIDUAL TRUSTEE, FIDELITY UNION BANK
Assigned to CHRYSLER CORPORATION reassignment CHRYSLER CORPORATION PARTES REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID PATENTS ALSO RELEASE THEIR SECURITY INTEREST. (SEE RECORD FOR DETAIL) Assignors: MANUFACTURERS NATIONAL BANK OF DETROIL (CORPORATE TRUSTEE) AND BLACK DONALD E., (INDIVIDUAL TRUSTEE)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00342Heat exchangers for air-conditioning devices of the liquid-liquid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Definitions

  • Capillary tube refrigerant expansion means are provided between the condenser and evaporator.
  • a suction accumulator is provided between the evaporator and compressor so that the system will be effective when the compressor operates at variable speeds, the condenser is subjected to variable ambient temperatures and the evaporator is subjected to a variable load.
  • a capillary tube as the expansion device if a suction accumulator is provided between the evaporator and the compressor.
  • the use of a capillarytube is advantageous in the reduction in cost as the result of elimination of parts. Additionally, the capillary tube is more dependable than an expansion valve because it has no moving parts and therefore does not require adjustment or in other respects get out of order. The.
  • capillary tube also results in feeding the evaporator coil more uniformly because there is no opening and closing as in the case of a valve-As a result, the evaporator coil may be maintained full at all times and may, in fact, even spill over into the suction accumulator.
  • the capillary tube is preferably mounted within a protective outer tube of larger diameter.
  • the inlet to the capillary tube may be connected to the high pressure side of the system with the outlet within the protective tube.
  • the outlet of the capillary tube may be connected to' the low pressure side of the system with the inlet to the capillary tube being within the protective tube.
  • FIG. 1 is a schematic view of one embodiment of a vehicle air conditioning system in accordance with the present invention.
  • FIG. 2 is a schematic view of a second embodiment of a vehicle air conditioning system in accordance with the present invention.
  • the vehicle air conditioning system 10 comprises a condenser 12, compressor 14, and evaporator 16.
  • the outlet of the compressor l4' is connected to the inlet of the-condenser 12 by a line. 18.
  • a discharge muffler 20 is provided in line 18 to minimize the noise problem on the high pressure side of the system.
  • the outlet of "the condenser 12 is connected to the inlet of a drier 22 via line 23.
  • the drier 22 is of the usual type and may contain, for example, silica-gel, for the removal of moisturefrom the refrigerant.
  • the outlet of the drier 22 is connected to the inlet of a strainer 28 via line 30.
  • the strainer 28. comprise s atubular container 32 which is provided with a cup-- shaped inlet screen 34 to filter foreign particlesfrom the refrigerant.
  • a sight glass 29 is providedin line 30.
  • a capillary tubev 36 isdirectly connected to the outet 38 of the container 32.
  • the capillary tube is essentially an expansion device.
  • the length of the tube 36 depends upon the size of the particular condenser 12 used in the system and the particular type of refrigerant used.
  • the inner diameter of the tube 36 is very small and the length'may vary greatly from a few inches up to several feet depending uponthe overall capacity of the system.
  • the capillary tube. offers, a restricted passage, the resistance to the refrigerant flow is sufficient to build up a high enough headpressure toproduce some condensation of refrigerant gas.
  • Operating balance. is obtained by properly proportioning the size and length of the tube to the particular system on which it is used.
  • the capillary tube 36 is received within a protectivetube 40 of considerably greater diameter than the capillary tube.
  • One end 41 of the tube 40 is directly mounted on the outlet of the strainer 28.'The other end 42 of the tube 40 is connected to a refrigerant line 44 which in turn leads to the inlet of the evaporator 16.
  • the tube 40 becomes filled with the refrigerant which exits from the capillary tube 36.
  • the refrigerant contained within the tube 40 may be considered to be at the low pressure side of the system because it has passed through the capillary tube 36.
  • As liquid refrigerant flows through the capillary tube 36 the pressure is reduced and there is some conversion of liquid to gas.
  • At the outlet of the capillary there usually will be a discharge of both gaseous and liquid refrigerant.
  • a single capillary tube is illustrated. However, a greater reduction of pressure from the capillary may be made by providing several shorter capillaries each feeding one pass of the evaporator coil 16.
  • the outlet of the evaporator 16 is connected to the inlet of the suction accumulator 46 via line 48.
  • the suction accumulator 46 comprises a casing 50 having an inlet tube 52 which extends through the upper end and terminates within the casing in the upper portion thereof.
  • An outlet tube 54 also extends through the upper end of the casing 50.
  • the outlet tube 54 is in the shape of a U-tube.
  • One leg 56 of the tube 54 extends from the upper end of the casing downwardly to a point adjacent the lower end of the casing.
  • the tube is then provided with a bend 58 and the second leg 60 extends upwardly and terminates in an open end adjacent to the upper end of the casing.
  • a small metering opening 62 is provided in the tube bend 58 for the passage .of metered amounts of liquid refrigerant from the casing into the tube 54.
  • cold refrigerant gas having some liquid refrigerant entrained therein enters the accumulator through the inlet tube 52.
  • the incoming gases which move at a relatively high velocity, are directed downwardly and are free to expand.
  • the refrigerant gases are drawn into the open end of the U- tube 54, pass through both legs thereof and exit from the accumulator.
  • the outlet of the accumulator 46 is connected to the inlet of the compressor 14 via line 66.
  • a pressure regulator valve 24 is provided in line 66.
  • the compressor which creates a suction, draws the gaseous refrigerant through the accumulator at a relatively rapid rate.
  • Liquid refrigerant which enters the accumulator through the inlet tube 52 drops to the bottom of the accumulator and is subsequently drawn through the small opening 62 in the tube bend 58 and then through the leg 56 at a metered rate.
  • the liquid which is drawn through the opening 62 is entrained in the stream of gaseous refrigerant and is drawn through the leg 60 and thence to the compressor of the system.
  • the opening 62 acts as a restriction and causes liquid refrigerant to be metered into the compressor at a controlled rate.
  • the accumulator thus acts to prevent large amounts of liquid refrigerant from suddenly entering the compressor. Such sudden surges of liquid may result in seriously damaging thecompressor.
  • the suction accumulator 46 also permits variation in the refrigerant charge throughout the cycle and thus efficient operation of the system at different speeds and ambient temperature conditions.
  • the suction accumulator may also contain a desiccant which would eliminate the need for a separate drier 22.
  • the construction of the accumulator 46 results in the accumulator acting as a muffler. Thus, the usual muffler provided in the suction lines may be eliminated.
  • the accumulator 46 is placed in heat exchange relationship with the water of the vehicle heater 68.
  • the outlet of the heater 68 is connected to the inlet of a jacket 72 via line 76.
  • An on-off valve 74 is provided in this line.
  • the jacket 72 encloses the lower portion of the suction accumulator 46.
  • the outlet of the jacket 72 is connected to the inlet of the heater 68 via line 78.
  • the function of the evaporator pressure regulator valve 24 is to partially close when the pressure in the evaporator 16 begins to decrease. When the valve 24 partially closes, it causes the evaporator pressure to remain at a minimum predetermined pressure which is selected so that the corresponding temperature thereof will not permit the evaporator to freeze.
  • Freon-12 is the refrigerant most often used in vehicle air conditioning systems. This refrigerant will boil at 21.7 degrees F. below zero at atmospheric pressure. In viewof the fact that water freezes at 32 degrees F., the temperature in the evaporator must be controlled so that water-collecting on the core surface will not freeze and block air flow through the unit.
  • the evaporator pressure regulator valve is used to provide the necessary refrigerant pressure control to aid in preventing evaporator freeze-up and to aid in maintaining efficiency of the system.
  • the system may be designed for use without the 'valve 24. However, the use of this valve is desirable to provide greater stability and protection against evaporator freeze-up and to eliminate the possible necessity of another control element in the system.
  • Cool refrigerant gas is drawn from the accumulator 46 into the compressor 14 (which is drivenjby the vehicle engine) and pumped therefrom to the condenser 12 under high pressure.
  • This high pressure gas will also have a high temperature as the result of being subjected to compression.
  • the condenser As the gas passes through the condenser, it loses heat to the ambient atmosphere, the condenser usually being located at the forward portion of the vehicle in front of the automotive radiator to result in air passing thereover. The gas is thus condensed to a liquid.
  • the liquid passes from the condenser 12 through the drier 22 and strainer 28 into the capillary tube 36.
  • Passage of the liquid through the capillary tube 36 results in reducing the pressure thereof and in partial conversion of a liquid to a gas.
  • the refrigerant exits from the capillary tube 36 into the protective tube 40. There is sufficient flow to normally flood the tube 40.
  • the tube 40 protects the capillary tube 36 from physical damage and also protects this tube from sudden temperature changes such as a hot blast or air from the vehicle engine which might influence its performance.
  • the refrigerant then passes into the evaporator l6, maintaining the evaporator in the most desired flooded condition throughout the cycle of operation. This is opposed to a system wherein an expansion valve is used. In such a system, the evaporator is not always maintained in the desired flooded condition because of hunting and seeking of the expansion valve.
  • the refrigerant vaporizes within the evaporator. Normally, a motor driven fan is provided to blow air over the evaporator for cooling purposes within the vehicle.
  • Refrigerant gas exits from the evaporator into the suction accumulator 46.
  • This gas may have liquid refrigerant entrained therein and, in fact, liquid refrigerant may spill over lightly from the evaporatorbefore vaporization into the suction accumulator because of the high condition of flooding which the capillary tube 36 maintains.
  • the gas is removed from the accumulator 46 immediately by the U-tube 54. Liquid refrigerant is retained in the accumulator for the time necessary for it' to be metered through the metering opening 62. There is always a metering of refrigerant through the opening 62 regardless of temperature or pressure conditions within the system. Return of refrigerant to the compressor 14 does not depend upon, for example,
  • the system thus describedin cludes many counterbalancing factors which permits it tobe operated over a widerange of compressor speeds, ambient temperatureconditions and load conditions.
  • the capillary tube will satisfactorily control refrigerant flow from very low speeds to very high speeds.
  • liquid may tend to back up in the condenser but is available because of the largevolume of the suction accumulator- Consequently, the liquid will be further sub-cooled than is normal andwill flow more rapidly through the capillary resulting in maintaining refrigerant flow throughout the system at the desired controlled rate.
  • Another factoraffecting the operation of the system at higher speeds is that the compressor volumetric efficiency falls off considerably thus providing an additional counterbalancing factor.
  • the evaporator pressure regulator also will reduce refrigerant flow as it controls minimum evaporator pressure.
  • FIG. 2 illustrates another embodiment of the vehicle refrigeration system.
  • the system 80 comprises a compressor 82, condenser 84 and evaporator 86.
  • the outlet of the compressor 82 is connected to the inlet of the condenser 84 via line 88.
  • a discharge muffler 90 is provided in this line.
  • the outlet of the evaporator 86 is connected to the compressor 82 via line 92.
  • An evaporator pressure regulator valve 94 is provided in this line as is a suction accumulator 96.
  • a jacket 98 is provided end 120 of the capillary tube is connected toa line 122 which is then directed to the inlet of the evaporator. :As
  • a line 100 leads from the outlet of the condenser 84 to the inlet of the jacket 98.
  • a line 102 leads from the outlet of the jacket 98 to a strainer 104.
  • Liquid refrigerant circulates through the jacket 98 in heat exchange relationship with the suction accumulator 96. This heat exchange relationship assists in preventing flooding of liquid refrigerant to the compressor in that it aids in vaporizing the refrigerant therewithin so that less will pass through the metering opening 106 in the U-tube 108 and be directed to the compressor. Additionally, this heat exchange relationship permits the evaporator 86 to be run in a variable load super-heat condition.
  • the capacity of the evaporator will be increased to provide superior performance.
  • the liquid exiting from the condenser is sub-cooled prior to entering the capillary tube 110.
  • a heat exchange coil connected to the condenser outlet may be provided within the suction accumulator 96.
  • a tube may be brazed around the outside of the suction accumulator and be' connected to the outlet of the condenser.
  • a desiccant 1 12 is provided within the jacket 98 to remove moisture from the refrigerant. This eliminates the need for a separate drier at the inlet to the capillary tube 110.
  • the strainer 104 screens out foreign matter and prevents it from entering the capillary tube 110.
  • a sight glass 114 is provided just prior to the strainer to permit visual examination of the condition of the fluid therewithin.
  • a protective tube 116 is connected between the outlet of the strainer 104 and the inlet to the evaporator 86.
  • the tube 116 receives refrigerant directly from the strainer.
  • the inlet end 118 of the capillary tube '110 is not connected directly to the strainer outlet as previously described in connection with FIG. 1.
  • the outlet a consequence, the refrigerant contained in the capillarytube will be at a pressure somewhatdifferent than that of the liquid withinthe capillary tube 36. This arrangement does not affect the basic operation of the system. However, depending upon the overall characteristics of the refrigeration system, in some instances,
  • a vehicle air conditioning system for anengine driven vehicle which includes a-vehicle cooling system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The vehicle air conditioning system comprises the usual compressor, evaporator and condenser connected together in operative relationship. Capillary tube refrigerant expansion means are provided between the condenser and evaporator. A suction accumulator is provided between the evaporator and compressor so that the system will be effective when the compressor operates at variable speeds, the condenser is subjected to variable ambient temperatures and the evaporator is subjected to a variable load.

Description

United States Patent 1 Bottum et a1.
[ 1 Oct. 23, 1973 1 VEHICLE AIR CONDITIONING SYSTEM WITH SUCTION ACCUMULATOR [75] lnventor siiidwardw fiiitfiinifiiright'on,
Mich; Richard C. Kozinski, Highland Park, Mich.
[731 Assignee: Chrysler Corporation, Highland Park, Mich, by said Kozinski; Refrigeration Research Inc., Brighton, Mich., by said Bottom 22 Filed: July 11, 1969 21 Appl. No.: 841,032
[52] US. Cl. 62/243, 62/503 [51] Int. Cl. F25b 43/00 [58] Field of Search 62/503, 217, 511
[56] References Cited I UNITED STATES PATENTS 2,155,516 4/1929 Tull 62/217 X 7/1953 Cumming 62/511 2,990,698 7/1961 Crotser 62/503 3,012,414 12/1961 La Porte..... 62/503 X 3,105,367 10/1963 Osborn 62/511 3,212,289 10/1965 Bottum 62/503 X Primary Examiner-Meyer Perlin Attorney-Whittemore, Hulbert & Belknap "[57] m AiisTRAEr The vehicle air conditioning system comprises the usual compressor, evaporator and condenser connected together in operative relationship. Capillary tube refrigerant expansion means are provided between the condenser and evaporator. A suction accumulator is provided between the evaporator and compressor so that the system will be effective when the compressor operates at variable speeds, the condenser is subjected to variable ambient temperatures and the evaporator is subjected to a variable load.
1 Claim, 2 Drawing Figures DISCHARGE MUFFLER PRESSURE 10 REGULATOR Q [Q A COMPRESSOR VEHICLE AIR CONDITIONING SYSTEM WITH SUCTION ACCUMULATOR BACKGROUND OF THE INVENTION It has been common practice in automotive air conditioning systems to utilize an expansion valve, either of the thermostatic or automatic type, to provide expansion means for the liquid refrigerant from the high pressure side of the system to the low pressure side. Such expansion valve structures have several disadvantages. Firstly, they are relatively expensive. Additiona ly, because of the fact that such valves are manufactured of several moving parts, a maintenance cost is always present. Thermostatic expansion valves have a particular drawback in tending to hunt. This results in the evaporator coil not being uniformly filled. This latter condition is particularly true when an evaporator pressure regulating valve is used on the suction side of the evaporator. Such expansion valves also require the use of other components such as a liquid receiver between the condenser and evaporator. In some systems a muffler is used between the evaporator and compressor which adds to the overall cost of the system.
It has been previously suggested that the expansion valve be replaced with a capillary tube whichwould provide the desired expansion means. However, because of the conditions under which vehicle air conditioning systems are operated, it has not been practical in the past to use a capillary tube. The compressor of the vehicle system is driven by the vehicle engine which may operate at high or low speeds. Various devices maybe used to provide a uniform speed for the compressor. However, such devices have not been completely satisfactory. Further, vehicle air conditioning systems must operate under variable ambient temperature and pressure conditions, either caused by change in location of the vehicle (as the vehicle, for example,
1 is driven from a hot, low altitude location up a mountain to a cooler, higher altitude location). In accordance with the present invention, it has bee found that it is possible to use a capillary tube as the expansion device if a suction accumulator is provided between the evaporator and the compressor. The use of a capillarytube is advantageous in the reduction in cost as the result of elimination of parts. Additionally, the capillary tube is more dependable than an expansion valve because it has no moving parts and therefore does not require adjustment or in other respects get out of order. The. capillary tube also results in feeding the evaporator coil more uniformly because there is no opening and closing as in the case of a valve-As a result, the evaporator coil may be maintained full at all times and may, in fact, even spill over into the suction accumulator. 1
The use of a capillary tube instead of 'an expansion valve is advantageous in that the load on the vehicle en-- SUMMARY OF THE INVENTION A vehicle air conditioning system is provided. The
vof the casing. A metering opening is provided in the bend of the tube to meter liquid refrigerant from the casing into the gas flowing through the U-shaped tube. The capillary tube is preferably mounted within a protective outer tube of larger diameter. The inlet to the capillary tube may be connected to the high pressure side of the system with the outlet within the protective tube. Alternately, the outlet of the capillary tube may be connected to' the low pressure side of the system with the inlet to the capillary tube being within the protective tube.
- IN THE DRAWINGS FIG. 1 is a schematic view of one embodiment of a vehicle air conditioning system in accordance with the present invention; and
FIG. 2 is a schematic view of a second embodiment of a vehicle air conditioning system in accordance with the present invention. I
Referring to FIG. 1, it will be noted that'the vehicle air conditioning system 10 comprises a condenser 12, compressor 14, and evaporator 16. The outlet of the compressor l4'is connected to the inlet of the-condenser 12 by a line. 18. A discharge muffler 20 is provided in line 18 to minimize the noise problem on the high pressure side of the system.
The outlet of "the condenser 12 is connected to the inlet of a drier 22 via line 23. The drier 22 is of the usual type and may contain, for example, silica-gel, for the removal of moisturefrom the refrigerant.
The outlet of the drier 22 is connected to the inlet of a strainer 28 via line 30.- The strainer 28.comprise s atubular container 32 which is provided with a cup-- shaped inlet screen 34 to filter foreign particlesfrom the refrigerant. A sight glass 29 is providedin line 30.
A capillary tubev 36 isdirectly connected to the outet 38 of the container 32. The capillary tube is essentially an expansion device. The length of the tube 36 depends upon the size of the particular condenser 12 used in the system and the particular type of refrigerant used. The inner diameter of the tube 36 is very small and the length'may vary greatly from a few inches up to several feet depending uponthe overall capacity of the system.
Because the capillary tube. offers, a restricted passage, the resistance to the refrigerant flow is sufficient to build up a high enough headpressure toproduce some condensation of refrigerant gas. Operating balance. is obtained by properly proportioning the size and length of the tube to the particular system on which it is used.
The capillary tube 36 is received within a protectivetube 40 of considerably greater diameter than the capillary tube. One end 41 of the tube 40 is directly mounted on the outlet of the strainer 28.'The other end 42 of the tube 40 is connected to a refrigerant line 44 which in turn leads to the inlet of the evaporator 16.
The tube 40, of course, becomes filled with the refrigerant which exits from the capillary tube 36. The refrigerant contained within the tube 40 may be considered to be at the low pressure side of the system because it has passed through the capillary tube 36. As liquid refrigerant flows through the capillary tube 36, the pressure is reduced and there is some conversion of liquid to gas. At the outlet of the capillary, there usually will be a discharge of both gaseous and liquid refrigerant. A single capillary tube is illustrated. However, a greater reduction of pressure from the capillary may be made by providing several shorter capillaries each feeding one pass of the evaporator coil 16.
The outlet of the evaporator 16 is connected to the inlet of the suction accumulator 46 via line 48. The suction accumulator 46 comprises a casing 50 having an inlet tube 52 which extends through the upper end and terminates within the casing in the upper portion thereof. An outlet tube 54 also extends through the upper end of the casing 50. The outlet tube 54 is in the shape of a U-tube. One leg 56 of the tube 54 extends from the upper end of the casing downwardly to a point adjacent the lower end of the casing. The tube is then provided with a bend 58 and the second leg 60 extends upwardly and terminates in an open end adjacent to the upper end of the casing. A small metering opening 62 is provided in the tube bend 58 for the passage .of metered amounts of liquid refrigerant from the casing into the tube 54.
In operation of the accumulator 46, cold refrigerant gas having some liquid refrigerant entrained therein enters the accumulator through the inlet tube 52. The incoming gases, which move at a relatively high velocity, are directed downwardly and are free to expand. The refrigerant gases are drawn into the open end of the U- tube 54, pass through both legs thereof and exit from the accumulator. The outlet of the accumulator 46 is connected to the inlet of the compressor 14 via line 66. A pressure regulator valve 24 is provided in line 66. The compressor, which creates a suction, draws the gaseous refrigerant through the accumulator at a relatively rapid rate.
Liquid refrigerant which enters the accumulator through the inlet tube 52 drops to the bottom of the accumulator and is subsequently drawn through the small opening 62 in the tube bend 58 and then through the leg 56 at a metered rate. The liquid which is drawn through the opening 62 is entrained in the stream of gaseous refrigerant and is drawn through the leg 60 and thence to the compressor of the system. The opening 62 acts as a restriction and causes liquid refrigerant to be metered into the compressor at a controlled rate. The accumulator thus acts to prevent large amounts of liquid refrigerant from suddenly entering the compressor. Such sudden surges of liquid may result in seriously damaging thecompressor. The suction accumulator 46 also permits variation in the refrigerant charge throughout the cycle and thus efficient operation of the system at different speeds and ambient temperature conditions. The suction accumulator may also contain a desiccant which would eliminate the need for a separate drier 22. The construction of the accumulator 46 results in the accumulator acting as a muffler. Thus, the usual muffler provided in the suction lines may be eliminated.
The accumulator 46 is placed in heat exchange relationship with the water of the vehicle heater 68. As will be noted, the outlet of the heater 68 is connected to the inlet of a jacket 72 via line 76. An on-off valve 74 is provided in this line. The jacket 72 encloses the lower portion of the suction accumulator 46. The outlet of the jacket 72 is connected to the inlet of the heater 68 via line 78.
Placing the accumulator 46 in heat exchange relationship with the vehicle heater water results in permitting the refrigeration system to be run continuously throughout the year. This eliminates the use of the usal magnetic clutch provided on vehicle air conditioning systems with a consequent cost saving. In the winter months, heat will be supplied to the refrigeration system via the heat exchange relationship above. described. Consequently, the refrigeration system will be loaded even in the wintertime, thus allowing for return of oil to the compressor from the remainder of the system. This results in maintaining the compressor in good operating condition throughout the year because oil is prevented from logging in other parts of the system and starving the compressor of oil. Additionally, the heat exchange relationship assists in drying our liquid in the gas return to the compressor and thereby assists in preventing bearing washout of the compressor. The system becomes more loaded in cooler ambients as more hot water is used to provide heat to the car heater. In the warm ambients the heat exchanger will have no water flow through it as normally the water valve.74 will be shut.
The function of the evaporator pressure regulator valve 24 is to partially close when the pressure in the evaporator 16 begins to decrease. When the valve 24 partially closes, it causes the evaporator pressure to remain at a minimum predetermined pressure which is selected so that the corresponding temperature thereof will not permit the evaporator to freeze. Freon-12 is the refrigerant most often used in vehicle air conditioning systems. This refrigerant will boil at 21.7 degrees F. below zero at atmospheric pressure. In viewof the fact that water freezes at 32 degrees F., the temperature in the evaporator must be controlled so that water-collecting on the core surface will not freeze and block air flow through the unit. In order to control the temperature, it'is necessary to control the amountof refrigerant entering the evaporator and to control the pressure inside the' evaporator. To obtain maximum cooling effects, the refrigerant must remain in the evaporator long enough to completely vaporize. If insufficient refrigerant is present in the evaporator, cooling efficiency decreases. The evaporator pressure regulator valve is used to provide the necessary refrigerant pressure control to aid in preventing evaporator freeze-up and to aid in maintaining efficiency of the system. The system may be designed for use without the 'valve 24. However, the use of this valve is desirable to provide greater stability and protection against evaporator freeze-up and to eliminate the possible necessity of another control element in the system.
Operation of the refrigeration system 10 will now be described. Cool refrigerant gas is drawn from the accumulator 46 into the compressor 14 (which is drivenjby the vehicle engine) and pumped therefrom to the condenser 12 under high pressure. This high pressure gas will also have a high temperature as the result of being subjected to compression. As the gas passes through the condenser, it loses heat to the ambient atmosphere, the condenser usually being located at the forward portion of the vehicle in front of the automotive radiator to result in air passing thereover. The gas is thus condensed to a liquid. The liquid passes from the condenser 12 through the drier 22 and strainer 28 into the capillary tube 36. Passage of the liquid through the capillary tube 36 results in reducing the pressure thereof and in partial conversion of a liquid to a gas. The refrigerant exits from the capillary tube 36 into the protective tube 40. There is sufficient flow to normally flood the tube 40. The tube 40 protects the capillary tube 36 from physical damage and also protects this tube from sudden temperature changes such as a hot blast or air from the vehicle engine which might influence its performance. The refrigerant then passes into the evaporator l6, maintaining the evaporator in the most desired flooded condition throughout the cycle of operation. This is opposed to a system wherein an expansion valve is used. In such a system, the evaporator is not always maintained in the desired flooded condition because of hunting and seeking of the expansion valve. The refrigerant vaporizes within the evaporator. Normally, a motor driven fan is provided to blow air over the evaporator for cooling purposes within the vehicle.
Refrigerant gas exits from the evaporator into the suction accumulator 46. This gas may have liquid refrigerant entrained therein and, in fact, liquid refrigerant may spill over lightly from the evaporatorbefore vaporization into the suction accumulator because of the high condition of flooding which the capillary tube 36 maintains. The gas is removed from the accumulator 46 immediately by the U-tube 54. Liquid refrigerant is retained in the accumulator for the time necessary for it' to be metered through the metering opening 62. There is always a metering of refrigerant through the opening 62 regardless of temperature or pressure conditions within the system. Return of refrigerant to the compressor 14 does not depend upon, for example,
heat exchange between the accumulator and a coil therearound containing hot liquid or gas. Thus, the system will function in a controlled manner regardless of the temperature conditions therewithin. Upon return of the refrigerantto the compressor, the cycle is repeated.
The system thus describedincludes many counterbalancing factors which permits it tobe operated over a widerange of compressor speeds, ambient temperatureconditions and load conditions. The capillary tube will satisfactorily control refrigerant flow from very low speeds to very high speeds. At higher speeds liquid may tend to back up in the condenser but is available because of the largevolume of the suction accumulator- Consequently, the liquid will be further sub-cooled than is normal andwill flow more rapidly through the capillary resulting in maintaining refrigerant flow throughout the system at the desired controlled rate. Another factoraffecting the operation of the system at higher speeds is that the compressor volumetric efficiency falls off considerably thus providing an additional counterbalancing factor. The evaporator pressure regulator also will reduce refrigerant flow as it controls minimum evaporator pressure.
FIG. 2 illustrates another embodiment of the vehicle refrigeration system. The system 80 comprises a compressor 82, condenser 84 and evaporator 86. The outlet of the compressor 82 is connected to the inlet of the condenser 84 via line 88. A discharge muffler 90 is provided in this line. The outlet of the evaporator 86 is connected to the compressor 82 via line 92. An evaporator pressure regulator valve 94 is provided in this line as is a suction accumulator 96. A jacket 98 is provided end 120 of the capillary tube is connected toa line 122 which is then directed to the inlet of the evaporator. :As
around the suction accumulator 96. A line 100 leads from the outlet of the condenser 84 to the inlet of the jacket 98. A line 102 leads from the outlet of the jacket 98 to a strainer 104. Liquid refrigerant circulates through the jacket 98 in heat exchange relationship with the suction accumulator 96. This heat exchange relationship assists in preventing flooding of liquid refrigerant to the compressor in that it aids in vaporizing the refrigerant therewithin so that less will pass through the metering opening 106 in the U-tube 108 and be directed to the compressor. Additionally, this heat exchange relationship permits the evaporator 86 to be run in a variable load super-heat condition. Because of the fact that the low side of the evaporator coil may be run in a completely flooded condition, the capacity of the evaporator will be increased to provide superior performance. Additionally, the liquid exiting from the condenser is sub-cooled prior to entering the capillary tube 110. Alternately, a heat exchange coil connected to the condenser outlet may be provided within the suction accumulator 96. Further, a tube may be brazed around the outside of the suction accumulator and be' connected to the outlet of the condenser. It will be noted that a desiccant 1 12 is provided within the jacket 98 to remove moisture from the refrigerant. This eliminates the need for a separate drier at the inlet to the capillary tube 110.
As previously discussed, the strainer 104 screens out foreign matter and prevents it from entering the capillary tube 110. A sight glass 114 is provided just prior to the strainer to permit visual examination of the condition of the fluid therewithin.
A protective tube 116 is connected between the outlet of the strainer 104 and the inlet to the evaporator 86. The tube 116 receives refrigerant directly from the strainer. The inlet end 118 of the capillary tube '110 is not connected directly to the strainer outlet as previously described in connection with FIG. 1. The outlet a consequence, the refrigerant contained in the capillarytube will be at a pressure somewhatdifferent than that of the liquid withinthe capillary tube 36. This arrangement does not affect the basic operation of the system. However, depending upon the overall characteristics of the refrigeration system, in some instances,
it maybe desirable to connect the capillary tube as in FIG. 2 and in other instances as in FIG. 1.
What we claim as our invention is: I 1
l. A vehicle air conditioning system for anengine driven vehicle which includes a-vehicle cooling system.
with a source of hot water forming a part thereof during operation thereof, comprisinga compressor driven by the vehicle engine, an evaporatorand a condenser connected in operative relationship, capillary tube refriger-' ant expansion means'between the condenser andevaporator, and a suction accumulator between the evaporator and compressor, said suction accumulator com,- prising a'casing, an inlet to the casing, an outlet from the casing, a generally U-shaped tube having a first leg connected to and extending from said outlet towards the lower portion of the casing and a second leg extending from the first leg towards the upper portion of the casing and terminating in an open end for the passage of gas through the U-shaped tube,-said U-shaped tube vehicle cooling system whereby said system may be operated continuously throughout the year in a loaded condition and whereby the system effectively operates when the compressor operates at variable speeds, the condenser is subjected to variable ambient temperatures, and the evaporator is subjected to a variable load.

Claims (1)

1. A vehicle air conditioning system for an engine driven vehicle which includes a vehicle cooling system with a source of hot water forming a part thereof during operation thereof, comprising a compressor driven by the vehicle engine, an evaporator and a condenser connected in operative relationship, capillary tube refrigerant expansion means between the condenser and evaporator, and a suction accumulator between the evaporator and compressor, said suction accumulator comprising a casing, an inlet to the casing, an outlet from the casing, a generally Ushaped tube having a first leg connected to and extending from said outlet towards the lower portion of the casing and a second leg extending from the first leg towards the upper portion of the casing and terminating in an open end for the passage of gas through the U-shaped tube, said U-shaped tube having an opening therein adjacent the lower portion of the casing to draw liquid from the casing and expel it into the casing outlet at a metered rate, said casing inlet being connected to the outlet of the evaporator and said casing outlet being connected to the inlet of the compressor, heat exchange means on said suction accumulator, and means connecting the heat exchange means with the source of hot water forming part of the vehicle cooling system whereby said system may be operated continuously throughout the year in a loaded condition and whereby the system effectively operates when the compressor operates at variable speeds, the condenser is subjected to variable ambient temperatures, and the evaporator is subjected to a variable load.
US00841032A 1969-07-11 1969-07-11 Vehicle air conditioning system with suction accumulator Expired - Lifetime US3766748A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84103269A 1969-07-11 1969-07-11

Publications (1)

Publication Number Publication Date
US3766748A true US3766748A (en) 1973-10-23

Family

ID=25283845

Family Applications (1)

Application Number Title Priority Date Filing Date
US00841032A Expired - Lifetime US3766748A (en) 1969-07-11 1969-07-11 Vehicle air conditioning system with suction accumulator

Country Status (1)

Country Link
US (1) US3766748A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2552212A1 (en) * 1983-09-16 1985-03-22 Elf Aquitaine METHOD AND DEVICE FOR OVERHEATING A REFRIGERATING FLUID
US5491981A (en) * 1993-09-15 1996-02-20 Samsung Electronics Co., Ltd. Refrigeration cycle having an evaporator for evaporating residual liquid refrigerant
US5493875A (en) * 1994-08-01 1996-02-27 Kozinski; Richard C. Vehicle air conditioning system utilizing refrigerant recirculation within the evaporatorccumulator circuit
US5505060A (en) * 1994-09-23 1996-04-09 Kozinski; Richard C. Integral evaporator and suction accumulator for air conditioning system utilizing refrigerant recirculation
EP1096210A2 (en) * 1999-10-27 2001-05-02 Mitsubishi Denki Kabushiki Kaisha Accumulator/receiver and a method of producing the same
US20030089493A1 (en) * 2001-11-12 2003-05-15 Yoshiaki Takano Vehicle air conditioner with hot-gas heater cycle
CN102087061A (en) * 2011-01-06 2011-06-08 黎澄光 Air conditioner for cooling and warming by sharing same capillary tube
US20110132006A1 (en) * 2009-12-08 2011-06-09 Thermo King Corporation Method of controlling inlet pressure of a refrigerant compressor
CN104748273A (en) * 2013-12-31 2015-07-01 Lg电子株式会社 Air conditioner
US20180058734A1 (en) * 2015-07-03 2018-03-01 Mitsubishi Electric Corporation Heat pump device
US20180058735A1 (en) * 2015-07-03 2018-03-01 Mitsubishi Electric Corporation Heat pump device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2155516A (en) * 1936-09-03 1939-04-25 Westinghouse Electric & Mfg Co Refrigeration apparatus
US2645099A (en) * 1950-09-29 1953-07-14 Bailey Perkins Inc Capillary tube assembly for refrigerators
US2990698A (en) * 1959-07-06 1961-07-04 Revco Inc Refrigeration apparatus
US3012414A (en) * 1960-05-09 1961-12-12 Porte Francis L La Refrigeration apparatus with liquid trapping means
US3105367A (en) * 1961-10-06 1963-10-01 Coleman Co Refrigerant metering device
US3212289A (en) * 1963-02-12 1965-10-19 Refrigeration Research Combination accumulator and receiver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2155516A (en) * 1936-09-03 1939-04-25 Westinghouse Electric & Mfg Co Refrigeration apparatus
US2645099A (en) * 1950-09-29 1953-07-14 Bailey Perkins Inc Capillary tube assembly for refrigerators
US2990698A (en) * 1959-07-06 1961-07-04 Revco Inc Refrigeration apparatus
US3012414A (en) * 1960-05-09 1961-12-12 Porte Francis L La Refrigeration apparatus with liquid trapping means
US3105367A (en) * 1961-10-06 1963-10-01 Coleman Co Refrigerant metering device
US3212289A (en) * 1963-02-12 1965-10-19 Refrigeration Research Combination accumulator and receiver

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2552212A1 (en) * 1983-09-16 1985-03-22 Elf Aquitaine METHOD AND DEVICE FOR OVERHEATING A REFRIGERATING FLUID
EP0143013A2 (en) * 1983-09-16 1985-05-29 Pactole S.A. method and device for overheating a refrigerant
EP0143013A3 (en) * 1983-09-16 1986-01-08 Pactole S.A. Method and device for overheating a refrigerant
US4653282A (en) * 1983-09-16 1987-03-31 Pactole S.A. Process and apparatus for superheating a refrigeration fluid
US5491981A (en) * 1993-09-15 1996-02-20 Samsung Electronics Co., Ltd. Refrigeration cycle having an evaporator for evaporating residual liquid refrigerant
US5493875A (en) * 1994-08-01 1996-02-27 Kozinski; Richard C. Vehicle air conditioning system utilizing refrigerant recirculation within the evaporatorccumulator circuit
US5505060A (en) * 1994-09-23 1996-04-09 Kozinski; Richard C. Integral evaporator and suction accumulator for air conditioning system utilizing refrigerant recirculation
EP1096210A2 (en) * 1999-10-27 2001-05-02 Mitsubishi Denki Kabushiki Kaisha Accumulator/receiver and a method of producing the same
EP1096210A3 (en) * 1999-10-27 2001-09-19 Mitsubishi Denki Kabushiki Kaisha Accumulator/receiver and a method of producing the same
US7028767B2 (en) * 2001-11-12 2006-04-18 Denso Corporation Vehicle air conditioner with hot-gas heater cycle
US20030089493A1 (en) * 2001-11-12 2003-05-15 Yoshiaki Takano Vehicle air conditioner with hot-gas heater cycle
US20110132006A1 (en) * 2009-12-08 2011-06-09 Thermo King Corporation Method of controlling inlet pressure of a refrigerant compressor
US9453669B2 (en) 2009-12-08 2016-09-27 Thermo King Corporation Method of controlling inlet pressure of a refrigerant compressor
CN102087061A (en) * 2011-01-06 2011-06-08 黎澄光 Air conditioner for cooling and warming by sharing same capillary tube
CN104748273A (en) * 2013-12-31 2015-07-01 Lg电子株式会社 Air conditioner
US20150184905A1 (en) * 2013-12-31 2015-07-02 Lg Electronics Inc. Air conditioner
CN104748273B (en) * 2013-12-31 2017-09-01 Lg电子株式会社 Air-conditioning
US9810457B2 (en) * 2013-12-31 2017-11-07 Lg Electronics Inc. Air conditioner
US20180058734A1 (en) * 2015-07-03 2018-03-01 Mitsubishi Electric Corporation Heat pump device
US20180058735A1 (en) * 2015-07-03 2018-03-01 Mitsubishi Electric Corporation Heat pump device
US10495360B2 (en) * 2015-07-03 2019-12-03 Mitsubishi Electric Corporation Heat pump device
US10508842B2 (en) * 2015-07-03 2019-12-17 Mitsubishi Electric Corporation Heat pump device with separately spaced components

Similar Documents

Publication Publication Date Title
US3872687A (en) Vehicle air conditioning system
US5228301A (en) Methods and apparatus for operating a refrigeration system
CA2140192C (en) Combined oil return and compressor discharge temperature limitation regarding flooded economizer heat exchanger
US5410889A (en) Methods and apparatus for operating a refrigeration system
CA2140179C (en) Two mop expansion valves, one pressure setting for heating mode and one for cooling mode
US4493193A (en) Reversible cycle heating and cooling system
US3301002A (en) Conditioning apparatus
CA1049798A (en) Hot gas defrost system with dual function liquid line
US4215555A (en) Hot gas defrost system
US3766748A (en) Vehicle air conditioning system with suction accumulator
US3651657A (en) Air conditioning system with suction accumulator
US4068494A (en) Power saving capacity control for air cooled condensers
US3389576A (en) System for controlling refrigerant condensing pressures by dynamic hydraulic balance
US4949551A (en) Hot gas defrost system for refrigeration systems
US2688850A (en) Refrigeration system defrosting by controlled flow of gaseous refrigerant
US3145545A (en) Air conditioning and refrigeration apparatus for motor vehicles
US5797277A (en) Condensate cooler for increasing refrigerant density
US3390540A (en) Multiple evaporator refrigeration systems
US4286435A (en) Hot gas defrost system
US2320432A (en) Refrigerating apparatus
US4045977A (en) Self operating excess refrigerant storage system for a heat pump
US2713995A (en) Air heating and cooling system
US3177674A (en) Refrigeration system including charge checking means
US4832068A (en) Liquid/gas bypass
US2892320A (en) Liquid level control in refrigeration system

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIDELITY UNION TRUST COMPANY, TRUSTEE,NEW JERSEY

Free format text: MORTGAGE;ASSIGNOR:CHRYSLER CORPORATION;REEL/FRAME:003832/0358

Effective date: 19810209

Owner name: FIDELITY UNION TRUST COMPANY, 765 BROAD ST., NEWAR

Free format text: MORTGAGE;ASSIGNOR:CHRYSLER CORPORATION;REEL/FRAME:003832/0358

Effective date: 19810209

AS Assignment

Owner name: CHRYSLER CORPORATION, HIGHLAND PARK, MI 12000 LYNN

Free format text: ASSIGNORS HEREBY REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID INVENTIONS AND RELEASE THEIR SECURITY INTEREST.;ASSIGNORS:FIDELITY UNION BANK;ARNEBECK, WILLIAM, INDIVIDUAL TRUSTEE;REEL/FRAME:004063/0604

Effective date: 19820217

AS Assignment

Owner name: CHRYSLER CORPORATION

Free format text: PARTES REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID PATENTS ALSO RELEASE THEIR SECURITY INTEREST.;ASSIGNOR:MANUFACTURERS NATIONAL BANK OF DETROIL (CORPORATE TRUSTEE) AND BLACK DONALD E., (INDIVIDUAL TRUSTEE);REEL/FRAME:004355/0154

Effective date: 19840905