US3766447A - Heteroepitaxial structure - Google Patents
Heteroepitaxial structure Download PDFInfo
- Publication number
- US3766447A US3766447A US00190778A US3766447DA US3766447A US 3766447 A US3766447 A US 3766447A US 00190778 A US00190778 A US 00190778A US 3766447D A US3766447D A US 3766447DA US 3766447 A US3766447 A US 3766447A
- Authority
- US
- United States
- Prior art keywords
- single crystal
- layer
- lattice constant
- substrate
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013078 crystal Substances 0.000 claims abstract description 57
- 239000000463 material Substances 0.000 claims abstract description 36
- 239000004065 semiconductor Substances 0.000 claims abstract description 18
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims description 32
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 11
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- 230000001464 adherent effect Effects 0.000 claims description 4
- 229910000927 Ge alloy Inorganic materials 0.000 claims description 3
- 229910000676 Si alloy Inorganic materials 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 19
- 239000010703 silicon Substances 0.000 abstract description 19
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 abstract description 17
- 238000000034 method Methods 0.000 abstract description 17
- 229910005540 GaP Inorganic materials 0.000 abstract description 16
- 230000008569 process Effects 0.000 abstract description 11
- 238000000151 deposition Methods 0.000 abstract description 5
- 238000012986 modification Methods 0.000 abstract description 4
- 230000004048 modification Effects 0.000 abstract description 4
- 235000012431 wafers Nutrition 0.000 description 17
- 229910045601 alloy Inorganic materials 0.000 description 16
- 239000000956 alloy Substances 0.000 description 16
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 15
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- -1 SiCL Chemical compound 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/0251—Graded layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02543—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02581—Transition metal or rare earth elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
- H01L27/156—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/006—Apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/059—Germanium on silicon or Ge-Si on III-V
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/067—Graded energy gap
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/072—Heterojunctions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/085—Isolated-integrated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/15—Silicon on sapphire SOS
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/933—Germanium or silicon or Ge-Si on III-V
Definitions
- ABSTRACT A process for producing light emitting diodes is disclosed. In the process a major planar surface of a single crystal silicon wafer is modified to acceptably match the crystallographic lattice constant of a preselected electroluminescent single crystal semiconductor, such as gallium phosphide.
- the preselected elec- H01] Hosb 33/00 troluminescent semiconductor material is then epitaxi- [58] Field of Search 317/235 N, 235 AC, n deposited in single crystal f on h difi d 317/234 S; 148/175 surface of the silicon wafer, a step which is not feasi- 1 ble without the modification of the silicon wafer sur- [56] Referencesclted face.
- the modification is achieved by epi- UNITED STATES PATENTS taxially depositing a thin layer of semiconductor mate- 3,433,684 3/1969 Zanowick et al.
- GaP and GaAs single crystals are grown in relatively small diameter form by the Bridgeman or Czochralski method, the crystals are thereafter sawed into wafers, and the same material of which the crystal is composed is ultimately epitaxially deposited in appropriately doped form and desired pattern on the wafer to provide a monolithic array of light emitting diodes.
- the crux of the invention is the epitaxial deposition of known electroluminescent semiconductor materials, such as GaP, GaAs, and GaAsP'on substrates of different, less expensive crystalline materials.
- substrates of single crystal silicon are used because the latter is comparatively less expensive than single crystal GaP, GaAs, or GaAsP, by a sufficiently large margin to justify widespread commercial use of LEDs, and because single crystal silicon'is compatible with fabrication techniques for most present-day semiconductor devices, being the basic material for those devices.
- the substrate material there is nothing critical about its use as the substrate material, and it is contemplated that other materials of equal or lesser cost such as germanium, sapphire or spinel may be preferred for a specific application.
- the material used for the substrate if it differs from the material to be epitaxially deposited thereon there will usually be a considerable difference in the lattice constant of the two materials. By considerable is meant a lattice mismatch sufficiently great to preclude true epitaxial growth, in the sense of extension of the crystal lattice structure, of one material upon the other.
- the resulting layer of electroluminescent material would be polycrystalline rather than monocrystalline in form, and hence would be unsuitable as an efficient light emitting diode structure.
- the lattice constants of the substrate and the electrolurninescent layers are artificially matched, where necessary, by use of an intermediate layer or region between the two which is compatible with both.
- the lattice constant of Si is approximately 5.42 and that of GaP is approximately 5.45.
- the lattice mismatch is (5.45 5.42)/5.42 X 0.56 percent, which is unacceptable for producing a heteroepitaxial structure.
- the angle of mismatch between the substrate and the epitaxial film, in this case is:
- mismatch angle is too large for normal epitaxy.
- the mismatch between Si and GaP is compensated by the use between the two of a graded alloy layer consisting of Si with a germanium (Ge) concentration ranging from zero at the junction with the Si substrate to about eight percent at the junction with the GaP layer.
- Ge germanium
- FIG. 1 is a cross-section of a monolithic heteroepitaxial LED array
- FIG. 2 is a cross-section of a heteroepitaxial LED in integrated circuit with a bipolar transistor.
- a large diameter single crystal silicon wafer is used as the substrate.
- One or both major faces of the wafer are'polished using standard techniques After polishing, the wafer is masked, as by oxidation,
- the desired light emitting diode pattern may then be provided in the mask using conventional protoresist and etch techniques.
- an alphanumeric display consisting of a 5 X 7 dot matrix is conveniently formed by opening five columns and seven rows of apertures in the oxide mask layer.
- other LED pattern geometries and other dielectric or insulative layers such as silicon oxynitride or silicon nitride may be employed in the masking process.
- Si-Ge alloy layer is now formed in each aperture on the major face of the Si wafer.
- the alloy or other intermediate material must be capable of forming a suitable junction between the substrate and the electroluminescent material, and must have a crystal lattice constant at its surface matching the lattice constant of the electroluminescent material. While Si-Ge alloy is preferred at this time, other materials may provide similar or perhaps even better results, and therefore the invention should not be considered as limited to any particular intermediate junction layer.
- the Si-Ge alloy is epitaxially deposited in a manner such that the initial coating on the silicon wafer face is substantially pure single crystal silicon and the germanium concentration is thereafter gradually increased from zero percent to about eight percent over a layer thickness of a few microns.
- This may be accomplished by vapor phase deposition, with hydrogen reduction of silicon tetrachloride (i.e., SiCL, in H at about 1,200C, adding germanium tetrachloride (GeCl in gradually increasing amounts to produce the uniformly increasing concentration of Ge throughout the thickness of the Si-Ge alloy layer.
- the epitaxial growth may be accomplished by thermal decomposition of silane (SH-I at a somewhat lower temperature (about l,OC), or by using SiHCl with GeCl, added during the reaction process in amounts suitable to produce the graded junction (preferably uniformly varying concentration of Ge) Si-Ge alloy layer.
- Silane Si-I
- SiHCl SiHCl with GeCl
- the Si-Ge alloy layer may simply contain a fixed low percentage of germanium, four to ten percent for example, in substantially uniform concentration throughout.
- the graded nor the uniformly low concentration alloy layer constitutes a step junction with the silicon wafer, nor between the single crystal silicon and the electroluminescent material ultimately deposited on the alloy layer.
- each may be validly considered as a linearly graded junction by which an appropriate match is provided between the lattice constant of the silicon wafer and the lattice'constant of the electroluminescent layer.
- the Si-Ge material deposits epitaxially in single crystal structure on the single crystal silicon wafer surface exposed in the mask apertures, and in polycrystalline structure on the oxide mask covering the remaining portions of the wafer surface.
- the polycrystalline material may be removed, by lapping, etching, or other conventional steps, before further processing, or it may be retained until additional steps of the overall process are completed.
- the desired electroluminescent layer may now be deposited epitaxially on the single crystal alloy layer since the latter provices a surface lattice constant matching the lattice constant of GaP.
- GaP doped with Zn, 0, and Te is epitaxially deposited as compensated p-type GaP, using separate vapors of elemental Ga in PCl Zn, H 0, and H Te, in the appropriate vapor phase concentrations to produce the single crystal GaP with the desired net doping.
- the PCl H 0 and l-l Te are introduced into separate inlets of a mixing chamber at desired flow rates.
- the outlet of the mixing chamber is connected to the inlet of a reaction chamber containing hyperpure gallium and into which is also fed the zinc vapor of ultra high purity.
- I-Iydrogen may be used as the carrier gas.
- the reaction zone temperature is preferably maintained in the range from 750C to 950C, and the substrate (the silicon wafer with Si-Ge alloy layer deposited thereon in the 'mask apertures) is maintained at a temperature of from 650C to 850C.
- An epitaxial layer of GaP about to 30 microns thick is grown on the single crystal Si-Ge alloy in the mask apertures to form the light emitting diode array.
- the formation of a pm junction necessary for diode action in the Ga? layer is conveniently achieved by heating the structure to a temperature in the range from 900C to l,000C to induce outdiffusion of zinc ionsfrom the surface of the Ga? epitaxial layer, thereby producing an n-type surface region on the p-type material.
- the substrate comprises an appropriately doped single crystal silicon body 10 (here p-type, for example) constituting one of the dice of the original silicon wafer after processing.
- the electroluminescent areas of Ga? are layers 12 separated from silicon body 10 by intermediate lattice constant matching layers 15.
- Each of the latter is a graded layer of silicon-germanium alloy (here doped p-type for example) in which the germanium concentration increases to a percentage of under 10 percent, in the manner described above.
- Layers 12 are separated from each other by insulative or dielectric passivating regions 16 atop silicon body 10. Usually, these passivating regions comprise silicon dioxide.
- Each of the electroluminescent layers constitutes a separate and distinct light emitting diode with a shallow p-n junction between p-region 18 (in this example) and nregion 20.
- the thickness of the various layers and regions are intentionally exaggerated in FIG. 1 for the sake of clarity.
- Metallization patterns (not shown) for interconnecting the diodes with appropriate drive and- /or decode circuitry may be laid down as an adherent aluminum film on the structure, which may also include an additional passivation layer. Obviously, in any desired arrangement at least a substantial portion of the electroluminescent material is left exposed to exhibit emission of light when energized.
- the silicon body and/or the silicon-germanium layer may contain active or passive components formed therein using conventional techniques, to provide an integrated circuit.
- a portion of such an integratedcircuit is shown in FIG. 2.
- a p-type single crystal silicon substrate 50 after polishing of one or both its major faces, is subjected to oxidation to form an oxide layer mask thereon. Apertures are opened in the mask by standard photoresistetch techniques, as required for the provision of active components (such as transistors), passive components, and alphanumeric character elements (i.e., LEDs).
- diffusion of n-type impurities is employed to form the transistor collector region 52 and the character tub 54.
- the lattice constant matching layer 55 consisting of p-type Si-Ge of the uniformly graded type as described above is epitaxially deposited on the surface of silicon body 50.
- the entire body is again subjected to oxidation and opening of apertures in the oxide mask for 11 diffusion to form isolation (p-n junction isolation) ring 57 and additional character tub 58.
- isolation (p-n junction isolation) ring 57 and additional character tub 58 After further masking the transistor emitter region 60 is formed by another n diffusion into layer 55.
- n-type GaP layer 62 onto Si-Ge layer 55 via the apertures.
- a p-type surface. diffusion into layer 62 provides a p-region 63 for creating the desired p-n junction for diode action.
- a protective coating 65 is deposited on the device and apertures are opened for application of contacts and interconnection through a metallization layer.
- a single crystal semiconductor as the substrate is preferred, to allow incorporation of components of the drive and decode circuit in monolithic form, other single crystal materials such as sapphire or spinel may alternatively be employed as the substrate.
- a light emitting diode structure comprising a single crystal silicon substrate
- a layer of single crystal semiconductor material consisting essentially of a Group III-V compound, said layer containing a pm junction for emission of light in response to electrical energization thereof, said single crystal layer having a crystal lattice constant which differs from the crystal lattice constant of said single crystal substrate, said single crystal layer superposed on said substrate, and
- graded layer of single crystal semiconductor material interposed between and in adherent contact with said substrate and the first-named single crystal layer, said graded layer consisting of an alloy of silicon and germanium in which the germanium concentration varies from approximately zero mole percent at the boundary with said substrate to approximately ten mole percent at the boundary with said first-named single crystal layer, said graded layer having a crystal lattice constant substantially matching the crystal lattice constant of said substrate at the boundary therebetween and having a crystal lattice constant substantially matching the crystal lattice constant of said first-named single crystal layer at the boundary therebetween.
- said Group III-V compound is selected from the group consisting of GaP, GaAs, and GaAsP.
- a monolithic light emitting diode display comprising a single crystal silicon substrate, a plurality of spaced-apart semiconductor p-n junction regions, each p-n junction region consisting of a single crystal layer, each said single crystal layer consisting essentially of a Group Ill-V compound for emission of light in response to electrical energization of the respective p-n junction, each said single crystal layer superposed on said substrate and having a crystal lattice constant different from the crystal lattice constant of said substrate, and
- graded layer of single crystal semiconductor material interposed between and in adherent contact with each said first-named single crystal layer and said substrate ,said graded layer consisting of an alloy of silicon and germanium in which the germanium concentration varies from approximately zero mole percent at the boundary with said substrate to approximately ten mole percent at the boundary with each said first-named single crystal layer, said graded layer having a crystal lattice constant substantially matching the crystal lattice constant of said substrate at the boundary therebetween and having a crystal lattice constant substantially matching the crystal lattice constant of the respective first-named single crystal layer at the boundary therebetween.
- I said Group III-V compound is selected from the group consisting of Gal, GaAs, and GaAsP.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Led Devices (AREA)
Abstract
A process for producing light emitting diodes is disclosed. In the process a major planar surface of a single crystal silicon wafer is modified to acceptably match the crystallographic lattice constant of a preselected electroluminescent single crystal semiconductor, such as gallium phosphide. The preselected electroluminescent semiconductor material is then epitaxially deposited in single crystal form on the modified surface of the silicon wafer, a step which is not feasible without the modification of the silicon wafer surface. Preferably, the modification is achieved by epitaxially depositing a thin layer of semiconductor material whose lattice structure offers a substantially smaller disparity with the structure of the electroluminescent material than the existing disparity between the silicon wafer and the electroluminescent material.
Description
Unite States Patent [191 Mason Oct. 16, 1973 [73] Assignee: Harris-Intertype Corporation,
Cleveland, Ohio [22] Filed: Oct. 20, 1971 [211 App]. No.: 190,778
[52] US. Cl. 317/235 R, 317/235 N, 317/235 F, 317/235 AC, 148/175 Primary Examiner-Martin H. Edlow Att0rney-Donald R. Greene [57] ABSTRACT A process for producing light emitting diodes is disclosed. In the process a major planar surface of a single crystal silicon wafer is modified to acceptably match the crystallographic lattice constant of a preselected electroluminescent single crystal semiconductor, such as gallium phosphide. The preselected elec- H01] Hosb 33/00 troluminescent semiconductor material is then epitaxi- [58] Field of Search 317/235 N, 235 AC, n deposited in single crystal f on h difi d 317/234 S; 148/175 surface of the silicon wafer, a step which is not feasi- 1 ble without the modification of the silicon wafer sur- [56] Referencesclted face. Preferably, the modification is achieved by epi- UNITED STATES PATENTS taxially depositing a thin layer of semiconductor mate- 3,433,684 3/1969 Zanowick et al. l48/33.4 rial Whose lattice Structure Qffers a Substantially 3,102,828 9/1963 Courvoisier 117/227 smaller disparity with the structure of the electrolumi- 3,615,855 10/1971 Smith 136/89 nescent material than the existing disparity between 3,515,576 9 M nasev t 117/106 the silicon wafer and the electroluminescent material. 3,414,434 12/1968 Manasevit v 117/201 3,476,593 11/1969 Lehrer 117/201 4 Claims, 2 Drawing Figures 18) (20 16 I6 15 [I2 I2 /flwgm/nw g/ 4g; g g, R ,1 t f 4/ y i/ 5 1 HETEROEPITAXIAL STRUCTURE BACKGROUND OF THE INVENTION 1. Field The invention disclosed and claimed herein is in the field of semiconductor devices and processes for their manufacture. Specifically the invention is directed toward the preparation of light emitting diodes (LEDs) and toward the structure of such diodes.
2. Prior Art The capability of certain semiconductor materials such as gallium phosphide (GaP), gallium arsenide (GaAs), and gallium arsenide phosphide (GaAsP), when in p-n junction configuration, to emit visible light in certain regions of the spectrum at extremely low power dissipation levels would seemingly make these materials prime candidates for use in the production of solid state displays. However, pure electroluminescent materials of this type are expensive, being difficult and costly to produce in large single crystals which heretofore have been required for display devices, and therefore solid state displays consisting of these materials have found only limited use, existing principally as laboratory curiosities. Typically GaP and GaAs single crystals are grown in relatively small diameter form by the Bridgeman or Czochralski method, the crystals are thereafter sawed into wafers, and the same material of which the crystal is composed is ultimately epitaxially deposited in appropriately doped form and desired pattern on the wafer to provide a monolithic array of light emitting diodes.
Manifestly, it would be desirable to provide monolithic displays capable of functioning in an identical manner to those described above, but without need for the costly basic materials heretofore employed. It is the principal objective of the present invention to provide low cost monolithic semiconductor light emitting displays and processes for making such displays.
SUMMARY OF THE INVENTION The crux of the invention is the epitaxial deposition of known electroluminescent semiconductor materials, such as GaP, GaAs, and GaAsP'on substrates of different, less expensive crystalline materials. Preferably, substrates of single crystal silicon are used because the latter is comparatively less expensive than single crystal GaP, GaAs, or GaAsP, by a sufficiently large margin to justify widespread commercial use of LEDs, and because single crystal silicon'is compatible with fabrication techniques for most present-day semiconductor devices, being the basic material for those devices. De-
spite the desirability of silicon there is nothing critical about its use as the substrate material, and it is contemplated that other materials of equal or lesser cost such as germanium, sapphire or spinel may be preferred for a specific application. Regardless of the material used for the substrate, however, if it differs from the material to be epitaxially deposited thereon there will usually be a considerable difference in the lattice constant of the two materials. By considerable is meant a lattice mismatch sufficiently great to preclude true epitaxial growth, in the sense of extension of the crystal lattice structure, of one material upon the other. Clearly, the resulting layer of electroluminescent material would be polycrystalline rather than monocrystalline in form, and hence would be unsuitable as an efficient light emitting diode structure.
According to an important aspect of the invention, then, the lattice constants of the substrate and the electrolurninescent layers are artificially matched, where necessary, by use of an intermediate layer or region between the two which is compatible with both. In the particular case of Si and GaP, for example, the lattice constant of Si is approximately 5.42 and that of GaP is approximately 5.45. The lattice mismatch is (5.45 5.42)/5.42 X 0.56 percent, which is unacceptable for producing a heteroepitaxial structure. The angle of mismatch between the substrate and the epitaxial film, in this case is:
0 cos (5.42/5.45-) cos 0.995 540.
Such a mismatch angle is too large for normal epitaxy. In a preferred embodiment of the invention the mismatch between Si and GaP is compensated by the use between the two of a graded alloy layer consisting of Si with a germanium (Ge) concentration ranging from zero at the junction with the Si substrate to about eight percent at the junction with the GaP layer. Here again, alternatives are available. Clearly, factors such as a reasonably close match between the thermal coefficients of linear expansion of the various layers, must be considered for any given case.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a cross-section of a monolithic heteroepitaxial LED array; and
FIG. 2 is a cross-section of a heteroepitaxial LED in integrated circuit with a bipolar transistor.
DESCRIPTION OF THE PREFERRED EMBODIMENT:
According to a preferred method of practicing the invention, a large diameter single crystal silicon wafer is used as the substrate. One or both major faces of the wafer are'polished using standard techniques After polishing, the wafer is masked, as by oxidation,
to form a silicon oxide-film on an exposed major surface. The desired light emitting diode pattern may then be provided in the mask using conventional protoresist and etch techniques. For example, an alphanumeric display consisting of a 5 X 7 dot matrix is conveniently formed by opening five columns and seven rows of apertures in the oxide mask layer. vOf course, other LED pattern geometries and other dielectric or insulative layers (such as silicon oxynitride or silicon nitride) may be employed in the masking process.
- A silicon-germanium (Si-Ge) alloy layer is now formed in each aperture on the major face of the Si wafer. This is one of the critical steps of the process in that the alloy or other intermediate material must be capable of forming a suitable junction between the substrate and the electroluminescent material, and must have a crystal lattice constant at its surface matching the lattice constant of the electroluminescent material. While Si-Ge alloy is preferred at this time, other materials may provide similar or perhaps even better results, and therefore the invention should not be considered as limited to any particular intermediate junction layer. The Si-Ge alloy is epitaxially deposited in a manner such that the initial coating on the silicon wafer face is substantially pure single crystal silicon and the germanium concentration is thereafter gradually increased from zero percent to about eight percent over a layer thickness of a few microns. This may be accomplished by vapor phase deposition, with hydrogen reduction of silicon tetrachloride (i.e., SiCL, in H at about 1,200C, adding germanium tetrachloride (GeCl in gradually increasing amounts to produce the uniformly increasing concentration of Ge throughout the thickness of the Si-Ge alloy layer.
Rather than using hydrogen reduction of silicon tetrachloride, the epitaxial growth may be accomplished by thermal decomposition of silane (SH-I at a somewhat lower temperature (about l,OC), or by using SiHCl with GeCl, added during the reaction process in amounts suitable to produce the graded junction (preferably uniformly varying concentration of Ge) Si-Ge alloy layer. Methods of epitaxial deposition of silicon and Si-X alloys are generally well known, and therefore the invention contemplates the use of any available process for accomplishing that result, without limitation.
Although a graded layer is preferred, as an altemative the Si-Ge alloy layer may simply contain a fixed low percentage of germanium, four to ten percent for example, in substantially uniform concentration throughout. In principle, neither the graded nor the uniformly low concentration alloy layer constitutes a step junction with the silicon wafer, nor between the single crystal silicon and the electroluminescent material ultimately deposited on the alloy layer. Instead, each may be validly considered as a linearly graded junction by which an appropriate match is provided between the lattice constant of the silicon wafer and the lattice'constant of the electroluminescent layer.
In the formation of the Si-Ge alloy layer, the Si-Ge material deposits epitaxially in single crystal structure on the single crystal silicon wafer surface exposed in the mask apertures, and in polycrystalline structure on the oxide mask covering the remaining portions of the wafer surface. The polycrystalline material may be removed, by lapping, etching, or other conventional steps, before further processing, or it may be retained until additional steps of the overall process are completed. In any event, the desired electroluminescent layer may now be deposited epitaxially on the single crystal alloy layer since the latter provices a surface lattice constant matching the lattice constant of GaP.
GaP doped with Zn, 0, and Te is epitaxially deposited as compensated p-type GaP, using separate vapors of elemental Ga in PCl Zn, H 0, and H Te, in the appropriate vapor phase concentrations to produce the single crystal GaP with the desired net doping. The PCl H 0 and l-l Te are introduced into separate inlets of a mixing chamber at desired flow rates. The outlet of the mixing chamber is connected to the inlet of a reaction chamber containing hyperpure gallium and into which is also fed the zinc vapor of ultra high purity. I-Iydrogen may be used as the carrier gas. The reaction zone temperature is preferably maintained in the range from 750C to 950C, and the substrate (the silicon wafer with Si-Ge alloy layer deposited thereon in the 'mask apertures) is maintained at a temperature of from 650C to 850C. An epitaxial layer of GaP about to 30 microns thick is grown on the single crystal Si-Ge alloy in the mask apertures to form the light emitting diode array. The formation of a pm junction necessary for diode action in the Ga? layer is conveniently achieved by heating the structure to a temperature in the range from 900C to l,000C to induce outdiffusion of zinc ionsfrom the surface of the Ga? epitaxial layer, thereby producing an n-type surface region on the p-type material.
An array of LEDs in a monolithic display produced by the above process is shown in FIG. 1. The substrate comprises an appropriately doped single crystal silicon body 10 (here p-type, for example) constituting one of the dice of the original silicon wafer after processing. The electroluminescent areas of Ga? are layers 12 separated from silicon body 10 by intermediate lattice constant matching layers 15. Each of the latter is a graded layer of silicon-germanium alloy (here doped p-type for example) in which the germanium concentration increases to a percentage of under 10 percent, in the manner described above. Layers 12 are separated from each other by insulative or dielectric passivating regions 16 atop silicon body 10. Usually, these passivating regions comprise silicon dioxide. Each of the electroluminescent layers constitutes a separate and distinct light emitting diode with a shallow p-n junction between p-region 18 (in this example) and nregion 20. The thickness of the various layers and regions are intentionally exaggerated in FIG. 1 for the sake of clarity. Metallization patterns (not shown) for interconnecting the diodes with appropriate drive and- /or decode circuitry may be laid down as an adherent aluminum film on the structure, which may also include an additional passivation layer. Obviously, in any desired arrangement at least a substantial portion of the electroluminescent material is left exposed to exhibit emission of light when energized.
The silicon body and/or the silicon-germanium layer may contain active or passive components formed therein using conventional techniques, to provide an integrated circuit. A portion of such an integratedcircuit is shown in FIG. 2. In the formation of this structure a p-type single crystal silicon substrate 50, after polishing of one or both its major faces, is subjected to oxidation to form an oxide layer mask thereon. Apertures are opened in the mask by standard photoresistetch techniques, as required for the provision of active components (such as transistors), passive components, and alphanumeric character elements (i.e., LEDs). In the device shown in FIG. 2, diffusion of n-type impurities is employed to form the transistor collector region 52 and the character tub 54. After an oxide strip and clean operation, the lattice constant matching layer 55 consisting of p-type Si-Ge of the uniformly graded type as described above is epitaxially deposited on the surface of silicon body 50. The entire body is again subjected to oxidation and opening of apertures in the oxide mask for 11 diffusion to form isolation (p-n junction isolation) ring 57 and additional character tub 58. After further masking the transistor emitter region 60 is formed by another n diffusion into layer 55.
The surface is again masked and LED matrix apertures are opened for epitaxial deposition of n-type GaP layer 62 onto Si-Ge layer 55 via the apertures. A p-type surface. diffusion into layer 62 provides a p-region 63 for creating the desired p-n junction for diode action. Finally, a protective coating 65 is deposited on the device and apertures are opened for application of contacts and interconnection through a metallization layer.
Again, while the use of a single crystal semiconductor as the substrate is preferred, to allow incorporation of components of the drive and decode circuit in monolithic form, other single crystal materials such as sapphire or spinel may alternatively be employed as the substrate.
What is claimed is:
1. A light emitting diode structure, comprising a single crystal silicon substrate,
a layer of single crystal semiconductor material consisting essentially of a Group III-V compound, said layer containing a pm junction for emission of light in response to electrical energization thereof, said single crystal layer having a crystal lattice constant which differs from the crystal lattice constant of said single crystal substrate, said single crystal layer superposed on said substrate, and
a graded layer of single crystal semiconductor material interposed between and in adherent contact with said substrate and the first-named single crystal layer, said graded layer consisting of an alloy of silicon and germanium in which the germanium concentration varies from approximately zero mole percent at the boundary with said substrate to approximately ten mole percent at the boundary with said first-named single crystal layer, said graded layer having a crystal lattice constant substantially matching the crystal lattice constant of said substrate at the boundary therebetween and having a crystal lattice constant substantially matching the crystal lattice constant of said first-named single crystal layer at the boundary therebetween.
2. The light emitting diode structure according to claim 1, wherein said Group III-V compound is selected from the group consisting of GaP, GaAs, and GaAsP.
3. A monolithic light emitting diode display, comprising a single crystal silicon substrate, a plurality of spaced-apart semiconductor p-n junction regions, each p-n junction region consisting of a single crystal layer, each said single crystal layer consisting essentially of a Group Ill-V compound for emission of light in response to electrical energization of the respective p-n junction, each said single crystal layer superposed on said substrate and having a crystal lattice constant different from the crystal lattice constant of said substrate, and
a graded layer of single crystal semiconductor material interposed between and in adherent contact with each said first-named single crystal layer and said substrate ,said graded layer consisting of an alloy of silicon and germanium in which the germanium concentration varies from approximately zero mole percent at the boundary with said substrate to approximately ten mole percent at the boundary with each said first-named single crystal layer, said graded layer having a crystal lattice constant substantially matching the crystal lattice constant of said substrate at the boundary therebetween and having a crystal lattice constant substantially matching the crystal lattice constant of the respective first-named single crystal layer at the boundary therebetween.
4. The monolithic light emitting diode display according to claim 3, wherein I said Group III-V compound is selected from the group consisting of Gal, GaAs, and GaAsP.
Claims (3)
- 2. The light emitting diode structure according to claim 1, wherein said Group III-V compound is selected from the group consisting of GaP, GaAs, and GaAsP.
- 3. A monolithic light emitting diode display, comprising a single crystal silicon substrate, a plurality of spaced-apart semiconductor p-n junction regions, each p-n junction region consisting of a single crystal layer, each said single crystal layer consisting essentially of a Group III-V compound for emission of light in response to electrical energization of the respective p-n junction, each said single crystal layer superposed on said substrate and having a crystal lattice constant different from the crystal lattice constant of said substrate, and a graded layer of single crystal semiconductor material interposed between and in adherent contact with each said first-named single crystal layer and said substrate ,said graded layer consisting of an alloy of silicon and germanium in which the germanium concentration varies from approximately zero mole percent at the boundary with said substrate to approximately ten mole percent at the boundary with each said first-named single crystal layer, said graded layer having a crystal lattice constant substantially matching the crystal lattice constant of said substrate at the boundary therebetween and having a crystal lattice constant substantially matching the crystal lattice constant of the respective first-named single crystal layer at the boundary therebetween.
- 4. The monolithic light emitting diode display according to claim 3, wherein said Group III-V compound is selected from the group consisting of GaP, GaAs, and GaAsP.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19077871A | 1971-10-20 | 1971-10-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3766447A true US3766447A (en) | 1973-10-16 |
Family
ID=22702733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00190778A Expired - Lifetime US3766447A (en) | 1971-10-20 | 1971-10-20 | Heteroepitaxial structure |
Country Status (1)
Country | Link |
---|---|
US (1) | US3766447A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862859A (en) * | 1972-01-10 | 1975-01-28 | Rca Corp | Method of making a semiconductor device |
US3900863A (en) * | 1974-05-13 | 1975-08-19 | Westinghouse Electric Corp | Light-emitting diode which generates light in three dimensions |
US3914137A (en) * | 1971-10-06 | 1975-10-21 | Motorola Inc | Method of manufacturing a light coupled monolithic circuit by selective epitaxial deposition |
US3963538A (en) * | 1974-12-17 | 1976-06-15 | International Business Machines Corporation | Two stage heteroepitaxial deposition process for GaP/Si |
US3963539A (en) * | 1974-12-17 | 1976-06-15 | International Business Machines Corporation | Two stage heteroepitaxial deposition process for GaAsP/Si LED's |
US4120706A (en) * | 1977-09-16 | 1978-10-17 | Harris Corporation | Heteroepitaxial deposition of gap on silicon substrates |
US4180825A (en) * | 1977-09-16 | 1979-12-25 | Harris Corporation | Heteroepitaxial deposition of GaP on silicon substrates |
EP0011418A1 (en) * | 1978-11-20 | 1980-05-28 | THE GENERAL ELECTRIC COMPANY, p.l.c. | Manufacture of electroluminescent display devices |
US4716445A (en) * | 1986-01-17 | 1987-12-29 | Nec Corporation | Heterojunction bipolar transistor having a base region of germanium |
US4925810A (en) * | 1986-10-25 | 1990-05-15 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Compound semiconductor device and a method of manufacturing the same |
US5011550A (en) * | 1987-05-13 | 1991-04-30 | Sharp Kabushiki Kaisha | Laminated structure of compound semiconductors |
US5736754A (en) * | 1995-11-17 | 1998-04-07 | Motorola, Inc. | Full color organic light emitting diode array |
US5810924A (en) * | 1991-05-31 | 1998-09-22 | International Business Machines Corporation | Low defect density/arbitrary lattice constant heteroepitaxial layers |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3102828A (en) * | 1959-06-02 | 1963-09-03 | Philips Corp | Method of manufacturing semiconductor bodies |
US3414434A (en) * | 1965-06-30 | 1968-12-03 | North American Rockwell | Single crystal silicon on spinel insulators |
US3433684A (en) * | 1966-09-13 | 1969-03-18 | North American Rockwell | Multilayer semiconductor heteroepitaxial structure |
US3476593A (en) * | 1967-01-24 | 1969-11-04 | Fairchild Camera Instr Co | Method of forming gallium arsenide films by vacuum deposition techniques |
US3515576A (en) * | 1966-01-26 | 1970-06-02 | North American Rockwell | Single crystal silicon on beryllium oxide |
US3615855A (en) * | 1969-04-03 | 1971-10-26 | Gen Motors Corp | Radiant energy photovoltalic device |
-
1971
- 1971-10-20 US US00190778A patent/US3766447A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3102828A (en) * | 1959-06-02 | 1963-09-03 | Philips Corp | Method of manufacturing semiconductor bodies |
US3414434A (en) * | 1965-06-30 | 1968-12-03 | North American Rockwell | Single crystal silicon on spinel insulators |
US3515576A (en) * | 1966-01-26 | 1970-06-02 | North American Rockwell | Single crystal silicon on beryllium oxide |
US3433684A (en) * | 1966-09-13 | 1969-03-18 | North American Rockwell | Multilayer semiconductor heteroepitaxial structure |
US3476593A (en) * | 1967-01-24 | 1969-11-04 | Fairchild Camera Instr Co | Method of forming gallium arsenide films by vacuum deposition techniques |
US3615855A (en) * | 1969-04-03 | 1971-10-26 | Gen Motors Corp | Radiant energy photovoltalic device |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3914137A (en) * | 1971-10-06 | 1975-10-21 | Motorola Inc | Method of manufacturing a light coupled monolithic circuit by selective epitaxial deposition |
US3862859A (en) * | 1972-01-10 | 1975-01-28 | Rca Corp | Method of making a semiconductor device |
US3900863A (en) * | 1974-05-13 | 1975-08-19 | Westinghouse Electric Corp | Light-emitting diode which generates light in three dimensions |
US3963538A (en) * | 1974-12-17 | 1976-06-15 | International Business Machines Corporation | Two stage heteroepitaxial deposition process for GaP/Si |
US3963539A (en) * | 1974-12-17 | 1976-06-15 | International Business Machines Corporation | Two stage heteroepitaxial deposition process for GaAsP/Si LED's |
US4180825A (en) * | 1977-09-16 | 1979-12-25 | Harris Corporation | Heteroepitaxial deposition of GaP on silicon substrates |
US4120706A (en) * | 1977-09-16 | 1978-10-17 | Harris Corporation | Heteroepitaxial deposition of gap on silicon substrates |
EP0011418A1 (en) * | 1978-11-20 | 1980-05-28 | THE GENERAL ELECTRIC COMPANY, p.l.c. | Manufacture of electroluminescent display devices |
US4280273A (en) * | 1978-11-20 | 1981-07-28 | The General Electric Company Limited | Manufacture of monolithic LED arrays for electroluminescent display devices |
US4716445A (en) * | 1986-01-17 | 1987-12-29 | Nec Corporation | Heterojunction bipolar transistor having a base region of germanium |
US4925810A (en) * | 1986-10-25 | 1990-05-15 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Compound semiconductor device and a method of manufacturing the same |
US5011550A (en) * | 1987-05-13 | 1991-04-30 | Sharp Kabushiki Kaisha | Laminated structure of compound semiconductors |
US5810924A (en) * | 1991-05-31 | 1998-09-22 | International Business Machines Corporation | Low defect density/arbitrary lattice constant heteroepitaxial layers |
US5736754A (en) * | 1995-11-17 | 1998-04-07 | Motorola, Inc. | Full color organic light emitting diode array |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3935040A (en) | Process for forming monolithic semiconductor display | |
US3985590A (en) | Process for forming heteroepitaxial structure | |
US3802967A (en) | Iii-v compound on insulating substrate and its preparation and use | |
US3900863A (en) | Light-emitting diode which generates light in three dimensions | |
US3611069A (en) | Multiple color light emitting diodes | |
US3877060A (en) | Semiconductor device having an insulating layer of boron phosphide and method of making the same | |
US4378259A (en) | Method for producing mixed crystal wafer using special temperature control for preliminary gradient and constant layer deposition suitable for fabricating light-emitting diode | |
US3766447A (en) | Heteroepitaxial structure | |
US3725749A (en) | GaAS{11 {11 {11 P{11 {11 ELECTROLUMINESCENT DEVICE DOPED WITH ISOELECTRONIC IMPURITIES | |
EP0214610A2 (en) | Epitaxial gallium arsenide semiconductor wafer and method of producing the same | |
US3931631A (en) | Gallium phosphide light-emitting diodes | |
US4001056A (en) | Epitaxial deposition of iii-v compounds containing isoelectronic impurities | |
JPH03133182A (en) | Semiconductor substrate and manufacture thereof | |
US3984857A (en) | Heteroepitaxial displays | |
US3723201A (en) | Diffusion process for heteroepitaxial germanium device fabrication utilizing polycrystalline silicon mask | |
US4216484A (en) | Method of manufacturing electroluminescent compound semiconductor wafer | |
JPS581539B2 (en) | epitaxial wafer | |
Blum et al. | The liquid phase epitaxy of Al x Ga 1-x As for monolithic planar structures | |
US3629018A (en) | Process for the fabrication of light-emitting semiconductor diodes | |
US3728785A (en) | Fabrication of semiconductor devices | |
US3471922A (en) | Monolithic integrated circuitry with dielectric isolated functional regions | |
JP3146874B2 (en) | Light emitting diode | |
GB1582063A (en) | Electroluminescent element and method of fabricating the same | |
US3873382A (en) | Process for the preparation of semiconductor materials and devices | |
US5571321A (en) | Method for producing a gallium phosphide epitaxial wafer |