US3766447A - Heteroepitaxial structure - Google Patents

Heteroepitaxial structure Download PDF

Info

Publication number
US3766447A
US3766447A US00190778A US3766447DA US3766447A US 3766447 A US3766447 A US 3766447A US 00190778 A US00190778 A US 00190778A US 3766447D A US3766447D A US 3766447DA US 3766447 A US3766447 A US 3766447A
Authority
US
United States
Prior art keywords
single crystal
layer
lattice constant
substrate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00190778A
Inventor
D Mason
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harris Corp
Original Assignee
Harris Intertype Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris Intertype Corp filed Critical Harris Intertype Corp
Application granted granted Critical
Publication of US3766447A publication Critical patent/US3766447A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/006Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/059Germanium on silicon or Ge-Si on III-V
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/067Graded energy gap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/072Heterojunctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/085Isolated-integrated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/15Silicon on sapphire SOS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/933Germanium or silicon or Ge-Si on III-V

Definitions

  • ABSTRACT A process for producing light emitting diodes is disclosed. In the process a major planar surface of a single crystal silicon wafer is modified to acceptably match the crystallographic lattice constant of a preselected electroluminescent single crystal semiconductor, such as gallium phosphide.
  • the preselected elec- H01] Hosb 33/00 troluminescent semiconductor material is then epitaxi- [58] Field of Search 317/235 N, 235 AC, n deposited in single crystal f on h difi d 317/234 S; 148/175 surface of the silicon wafer, a step which is not feasi- 1 ble without the modification of the silicon wafer sur- [56] Referencesclted face.
  • the modification is achieved by epi- UNITED STATES PATENTS taxially depositing a thin layer of semiconductor mate- 3,433,684 3/1969 Zanowick et al.
  • GaP and GaAs single crystals are grown in relatively small diameter form by the Bridgeman or Czochralski method, the crystals are thereafter sawed into wafers, and the same material of which the crystal is composed is ultimately epitaxially deposited in appropriately doped form and desired pattern on the wafer to provide a monolithic array of light emitting diodes.
  • the crux of the invention is the epitaxial deposition of known electroluminescent semiconductor materials, such as GaP, GaAs, and GaAsP'on substrates of different, less expensive crystalline materials.
  • substrates of single crystal silicon are used because the latter is comparatively less expensive than single crystal GaP, GaAs, or GaAsP, by a sufficiently large margin to justify widespread commercial use of LEDs, and because single crystal silicon'is compatible with fabrication techniques for most present-day semiconductor devices, being the basic material for those devices.
  • the substrate material there is nothing critical about its use as the substrate material, and it is contemplated that other materials of equal or lesser cost such as germanium, sapphire or spinel may be preferred for a specific application.
  • the material used for the substrate if it differs from the material to be epitaxially deposited thereon there will usually be a considerable difference in the lattice constant of the two materials. By considerable is meant a lattice mismatch sufficiently great to preclude true epitaxial growth, in the sense of extension of the crystal lattice structure, of one material upon the other.
  • the resulting layer of electroluminescent material would be polycrystalline rather than monocrystalline in form, and hence would be unsuitable as an efficient light emitting diode structure.
  • the lattice constants of the substrate and the electrolurninescent layers are artificially matched, where necessary, by use of an intermediate layer or region between the two which is compatible with both.
  • the lattice constant of Si is approximately 5.42 and that of GaP is approximately 5.45.
  • the lattice mismatch is (5.45 5.42)/5.42 X 0.56 percent, which is unacceptable for producing a heteroepitaxial structure.
  • the angle of mismatch between the substrate and the epitaxial film, in this case is:
  • mismatch angle is too large for normal epitaxy.
  • the mismatch between Si and GaP is compensated by the use between the two of a graded alloy layer consisting of Si with a germanium (Ge) concentration ranging from zero at the junction with the Si substrate to about eight percent at the junction with the GaP layer.
  • Ge germanium
  • FIG. 1 is a cross-section of a monolithic heteroepitaxial LED array
  • FIG. 2 is a cross-section of a heteroepitaxial LED in integrated circuit with a bipolar transistor.
  • a large diameter single crystal silicon wafer is used as the substrate.
  • One or both major faces of the wafer are'polished using standard techniques After polishing, the wafer is masked, as by oxidation,
  • the desired light emitting diode pattern may then be provided in the mask using conventional protoresist and etch techniques.
  • an alphanumeric display consisting of a 5 X 7 dot matrix is conveniently formed by opening five columns and seven rows of apertures in the oxide mask layer.
  • other LED pattern geometries and other dielectric or insulative layers such as silicon oxynitride or silicon nitride may be employed in the masking process.
  • Si-Ge alloy layer is now formed in each aperture on the major face of the Si wafer.
  • the alloy or other intermediate material must be capable of forming a suitable junction between the substrate and the electroluminescent material, and must have a crystal lattice constant at its surface matching the lattice constant of the electroluminescent material. While Si-Ge alloy is preferred at this time, other materials may provide similar or perhaps even better results, and therefore the invention should not be considered as limited to any particular intermediate junction layer.
  • the Si-Ge alloy is epitaxially deposited in a manner such that the initial coating on the silicon wafer face is substantially pure single crystal silicon and the germanium concentration is thereafter gradually increased from zero percent to about eight percent over a layer thickness of a few microns.
  • This may be accomplished by vapor phase deposition, with hydrogen reduction of silicon tetrachloride (i.e., SiCL, in H at about 1,200C, adding germanium tetrachloride (GeCl in gradually increasing amounts to produce the uniformly increasing concentration of Ge throughout the thickness of the Si-Ge alloy layer.
  • the epitaxial growth may be accomplished by thermal decomposition of silane (SH-I at a somewhat lower temperature (about l,OC), or by using SiHCl with GeCl, added during the reaction process in amounts suitable to produce the graded junction (preferably uniformly varying concentration of Ge) Si-Ge alloy layer.
  • Silane Si-I
  • SiHCl SiHCl with GeCl
  • the Si-Ge alloy layer may simply contain a fixed low percentage of germanium, four to ten percent for example, in substantially uniform concentration throughout.
  • the graded nor the uniformly low concentration alloy layer constitutes a step junction with the silicon wafer, nor between the single crystal silicon and the electroluminescent material ultimately deposited on the alloy layer.
  • each may be validly considered as a linearly graded junction by which an appropriate match is provided between the lattice constant of the silicon wafer and the lattice'constant of the electroluminescent layer.
  • the Si-Ge material deposits epitaxially in single crystal structure on the single crystal silicon wafer surface exposed in the mask apertures, and in polycrystalline structure on the oxide mask covering the remaining portions of the wafer surface.
  • the polycrystalline material may be removed, by lapping, etching, or other conventional steps, before further processing, or it may be retained until additional steps of the overall process are completed.
  • the desired electroluminescent layer may now be deposited epitaxially on the single crystal alloy layer since the latter provices a surface lattice constant matching the lattice constant of GaP.
  • GaP doped with Zn, 0, and Te is epitaxially deposited as compensated p-type GaP, using separate vapors of elemental Ga in PCl Zn, H 0, and H Te, in the appropriate vapor phase concentrations to produce the single crystal GaP with the desired net doping.
  • the PCl H 0 and l-l Te are introduced into separate inlets of a mixing chamber at desired flow rates.
  • the outlet of the mixing chamber is connected to the inlet of a reaction chamber containing hyperpure gallium and into which is also fed the zinc vapor of ultra high purity.
  • I-Iydrogen may be used as the carrier gas.
  • the reaction zone temperature is preferably maintained in the range from 750C to 950C, and the substrate (the silicon wafer with Si-Ge alloy layer deposited thereon in the 'mask apertures) is maintained at a temperature of from 650C to 850C.
  • An epitaxial layer of GaP about to 30 microns thick is grown on the single crystal Si-Ge alloy in the mask apertures to form the light emitting diode array.
  • the formation of a pm junction necessary for diode action in the Ga? layer is conveniently achieved by heating the structure to a temperature in the range from 900C to l,000C to induce outdiffusion of zinc ionsfrom the surface of the Ga? epitaxial layer, thereby producing an n-type surface region on the p-type material.
  • the substrate comprises an appropriately doped single crystal silicon body 10 (here p-type, for example) constituting one of the dice of the original silicon wafer after processing.
  • the electroluminescent areas of Ga? are layers 12 separated from silicon body 10 by intermediate lattice constant matching layers 15.
  • Each of the latter is a graded layer of silicon-germanium alloy (here doped p-type for example) in which the germanium concentration increases to a percentage of under 10 percent, in the manner described above.
  • Layers 12 are separated from each other by insulative or dielectric passivating regions 16 atop silicon body 10. Usually, these passivating regions comprise silicon dioxide.
  • Each of the electroluminescent layers constitutes a separate and distinct light emitting diode with a shallow p-n junction between p-region 18 (in this example) and nregion 20.
  • the thickness of the various layers and regions are intentionally exaggerated in FIG. 1 for the sake of clarity.
  • Metallization patterns (not shown) for interconnecting the diodes with appropriate drive and- /or decode circuitry may be laid down as an adherent aluminum film on the structure, which may also include an additional passivation layer. Obviously, in any desired arrangement at least a substantial portion of the electroluminescent material is left exposed to exhibit emission of light when energized.
  • the silicon body and/or the silicon-germanium layer may contain active or passive components formed therein using conventional techniques, to provide an integrated circuit.
  • a portion of such an integratedcircuit is shown in FIG. 2.
  • a p-type single crystal silicon substrate 50 after polishing of one or both its major faces, is subjected to oxidation to form an oxide layer mask thereon. Apertures are opened in the mask by standard photoresistetch techniques, as required for the provision of active components (such as transistors), passive components, and alphanumeric character elements (i.e., LEDs).
  • diffusion of n-type impurities is employed to form the transistor collector region 52 and the character tub 54.
  • the lattice constant matching layer 55 consisting of p-type Si-Ge of the uniformly graded type as described above is epitaxially deposited on the surface of silicon body 50.
  • the entire body is again subjected to oxidation and opening of apertures in the oxide mask for 11 diffusion to form isolation (p-n junction isolation) ring 57 and additional character tub 58.
  • isolation (p-n junction isolation) ring 57 and additional character tub 58 After further masking the transistor emitter region 60 is formed by another n diffusion into layer 55.
  • n-type GaP layer 62 onto Si-Ge layer 55 via the apertures.
  • a p-type surface. diffusion into layer 62 provides a p-region 63 for creating the desired p-n junction for diode action.
  • a protective coating 65 is deposited on the device and apertures are opened for application of contacts and interconnection through a metallization layer.
  • a single crystal semiconductor as the substrate is preferred, to allow incorporation of components of the drive and decode circuit in monolithic form, other single crystal materials such as sapphire or spinel may alternatively be employed as the substrate.
  • a light emitting diode structure comprising a single crystal silicon substrate
  • a layer of single crystal semiconductor material consisting essentially of a Group III-V compound, said layer containing a pm junction for emission of light in response to electrical energization thereof, said single crystal layer having a crystal lattice constant which differs from the crystal lattice constant of said single crystal substrate, said single crystal layer superposed on said substrate, and
  • graded layer of single crystal semiconductor material interposed between and in adherent contact with said substrate and the first-named single crystal layer, said graded layer consisting of an alloy of silicon and germanium in which the germanium concentration varies from approximately zero mole percent at the boundary with said substrate to approximately ten mole percent at the boundary with said first-named single crystal layer, said graded layer having a crystal lattice constant substantially matching the crystal lattice constant of said substrate at the boundary therebetween and having a crystal lattice constant substantially matching the crystal lattice constant of said first-named single crystal layer at the boundary therebetween.
  • said Group III-V compound is selected from the group consisting of GaP, GaAs, and GaAsP.
  • a monolithic light emitting diode display comprising a single crystal silicon substrate, a plurality of spaced-apart semiconductor p-n junction regions, each p-n junction region consisting of a single crystal layer, each said single crystal layer consisting essentially of a Group Ill-V compound for emission of light in response to electrical energization of the respective p-n junction, each said single crystal layer superposed on said substrate and having a crystal lattice constant different from the crystal lattice constant of said substrate, and
  • graded layer of single crystal semiconductor material interposed between and in adherent contact with each said first-named single crystal layer and said substrate ,said graded layer consisting of an alloy of silicon and germanium in which the germanium concentration varies from approximately zero mole percent at the boundary with said substrate to approximately ten mole percent at the boundary with each said first-named single crystal layer, said graded layer having a crystal lattice constant substantially matching the crystal lattice constant of said substrate at the boundary therebetween and having a crystal lattice constant substantially matching the crystal lattice constant of the respective first-named single crystal layer at the boundary therebetween.
  • I said Group III-V compound is selected from the group consisting of Gal, GaAs, and GaAsP.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

A process for producing light emitting diodes is disclosed. In the process a major planar surface of a single crystal silicon wafer is modified to acceptably match the crystallographic lattice constant of a preselected electroluminescent single crystal semiconductor, such as gallium phosphide. The preselected electroluminescent semiconductor material is then epitaxially deposited in single crystal form on the modified surface of the silicon wafer, a step which is not feasible without the modification of the silicon wafer surface. Preferably, the modification is achieved by epitaxially depositing a thin layer of semiconductor material whose lattice structure offers a substantially smaller disparity with the structure of the electroluminescent material than the existing disparity between the silicon wafer and the electroluminescent material.

Description

Unite States Patent [191 Mason Oct. 16, 1973 [73] Assignee: Harris-Intertype Corporation,
Cleveland, Ohio [22] Filed: Oct. 20, 1971 [211 App]. No.: 190,778
[52] US. Cl. 317/235 R, 317/235 N, 317/235 F, 317/235 AC, 148/175 Primary Examiner-Martin H. Edlow Att0rney-Donald R. Greene [57] ABSTRACT A process for producing light emitting diodes is disclosed. In the process a major planar surface of a single crystal silicon wafer is modified to acceptably match the crystallographic lattice constant of a preselected electroluminescent single crystal semiconductor, such as gallium phosphide. The preselected elec- H01] Hosb 33/00 troluminescent semiconductor material is then epitaxi- [58] Field of Search 317/235 N, 235 AC, n deposited in single crystal f on h difi d 317/234 S; 148/175 surface of the silicon wafer, a step which is not feasi- 1 ble without the modification of the silicon wafer sur- [56] Referencesclted face. Preferably, the modification is achieved by epi- UNITED STATES PATENTS taxially depositing a thin layer of semiconductor mate- 3,433,684 3/1969 Zanowick et al. l48/33.4 rial Whose lattice Structure Qffers a Substantially 3,102,828 9/1963 Courvoisier 117/227 smaller disparity with the structure of the electrolumi- 3,615,855 10/1971 Smith 136/89 nescent material than the existing disparity between 3,515,576 9 M nasev t 117/106 the silicon wafer and the electroluminescent material. 3,414,434 12/1968 Manasevit v 117/201 3,476,593 11/1969 Lehrer 117/201 4 Claims, 2 Drawing Figures 18) (20 16 I6 15 [I2 I2 /flwgm/nw g/ 4g; g g, R ,1 t f 4/ y i/ 5 1 HETEROEPITAXIAL STRUCTURE BACKGROUND OF THE INVENTION 1. Field The invention disclosed and claimed herein is in the field of semiconductor devices and processes for their manufacture. Specifically the invention is directed toward the preparation of light emitting diodes (LEDs) and toward the structure of such diodes.
2. Prior Art The capability of certain semiconductor materials such as gallium phosphide (GaP), gallium arsenide (GaAs), and gallium arsenide phosphide (GaAsP), when in p-n junction configuration, to emit visible light in certain regions of the spectrum at extremely low power dissipation levels would seemingly make these materials prime candidates for use in the production of solid state displays. However, pure electroluminescent materials of this type are expensive, being difficult and costly to produce in large single crystals which heretofore have been required for display devices, and therefore solid state displays consisting of these materials have found only limited use, existing principally as laboratory curiosities. Typically GaP and GaAs single crystals are grown in relatively small diameter form by the Bridgeman or Czochralski method, the crystals are thereafter sawed into wafers, and the same material of which the crystal is composed is ultimately epitaxially deposited in appropriately doped form and desired pattern on the wafer to provide a monolithic array of light emitting diodes.
Manifestly, it would be desirable to provide monolithic displays capable of functioning in an identical manner to those described above, but without need for the costly basic materials heretofore employed. It is the principal objective of the present invention to provide low cost monolithic semiconductor light emitting displays and processes for making such displays.
SUMMARY OF THE INVENTION The crux of the invention is the epitaxial deposition of known electroluminescent semiconductor materials, such as GaP, GaAs, and GaAsP'on substrates of different, less expensive crystalline materials. Preferably, substrates of single crystal silicon are used because the latter is comparatively less expensive than single crystal GaP, GaAs, or GaAsP, by a sufficiently large margin to justify widespread commercial use of LEDs, and because single crystal silicon'is compatible with fabrication techniques for most present-day semiconductor devices, being the basic material for those devices. De-
spite the desirability of silicon there is nothing critical about its use as the substrate material, and it is contemplated that other materials of equal or lesser cost such as germanium, sapphire or spinel may be preferred for a specific application. Regardless of the material used for the substrate, however, if it differs from the material to be epitaxially deposited thereon there will usually be a considerable difference in the lattice constant of the two materials. By considerable is meant a lattice mismatch sufficiently great to preclude true epitaxial growth, in the sense of extension of the crystal lattice structure, of one material upon the other. Clearly, the resulting layer of electroluminescent material would be polycrystalline rather than monocrystalline in form, and hence would be unsuitable as an efficient light emitting diode structure.
According to an important aspect of the invention, then, the lattice constants of the substrate and the electrolurninescent layers are artificially matched, where necessary, by use of an intermediate layer or region between the two which is compatible with both. In the particular case of Si and GaP, for example, the lattice constant of Si is approximately 5.42 and that of GaP is approximately 5.45. The lattice mismatch is (5.45 5.42)/5.42 X 0.56 percent, which is unacceptable for producing a heteroepitaxial structure. The angle of mismatch between the substrate and the epitaxial film, in this case is:
0 cos (5.42/5.45-) cos 0.995 540.
Such a mismatch angle is too large for normal epitaxy. In a preferred embodiment of the invention the mismatch between Si and GaP is compensated by the use between the two of a graded alloy layer consisting of Si with a germanium (Ge) concentration ranging from zero at the junction with the Si substrate to about eight percent at the junction with the GaP layer. Here again, alternatives are available. Clearly, factors such as a reasonably close match between the thermal coefficients of linear expansion of the various layers, must be considered for any given case.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a cross-section of a monolithic heteroepitaxial LED array; and
FIG. 2 is a cross-section of a heteroepitaxial LED in integrated circuit with a bipolar transistor.
DESCRIPTION OF THE PREFERRED EMBODIMENT:
According to a preferred method of practicing the invention, a large diameter single crystal silicon wafer is used as the substrate. One or both major faces of the wafer are'polished using standard techniques After polishing, the wafer is masked, as by oxidation,
to form a silicon oxide-film on an exposed major surface. The desired light emitting diode pattern may then be provided in the mask using conventional protoresist and etch techniques. For example, an alphanumeric display consisting of a 5 X 7 dot matrix is conveniently formed by opening five columns and seven rows of apertures in the oxide mask layer. vOf course, other LED pattern geometries and other dielectric or insulative layers (such as silicon oxynitride or silicon nitride) may be employed in the masking process.
- A silicon-germanium (Si-Ge) alloy layer is now formed in each aperture on the major face of the Si wafer. This is one of the critical steps of the process in that the alloy or other intermediate material must be capable of forming a suitable junction between the substrate and the electroluminescent material, and must have a crystal lattice constant at its surface matching the lattice constant of the electroluminescent material. While Si-Ge alloy is preferred at this time, other materials may provide similar or perhaps even better results, and therefore the invention should not be considered as limited to any particular intermediate junction layer. The Si-Ge alloy is epitaxially deposited in a manner such that the initial coating on the silicon wafer face is substantially pure single crystal silicon and the germanium concentration is thereafter gradually increased from zero percent to about eight percent over a layer thickness of a few microns. This may be accomplished by vapor phase deposition, with hydrogen reduction of silicon tetrachloride (i.e., SiCL, in H at about 1,200C, adding germanium tetrachloride (GeCl in gradually increasing amounts to produce the uniformly increasing concentration of Ge throughout the thickness of the Si-Ge alloy layer.
Rather than using hydrogen reduction of silicon tetrachloride, the epitaxial growth may be accomplished by thermal decomposition of silane (SH-I at a somewhat lower temperature (about l,OC), or by using SiHCl with GeCl, added during the reaction process in amounts suitable to produce the graded junction (preferably uniformly varying concentration of Ge) Si-Ge alloy layer. Methods of epitaxial deposition of silicon and Si-X alloys are generally well known, and therefore the invention contemplates the use of any available process for accomplishing that result, without limitation.
Although a graded layer is preferred, as an altemative the Si-Ge alloy layer may simply contain a fixed low percentage of germanium, four to ten percent for example, in substantially uniform concentration throughout. In principle, neither the graded nor the uniformly low concentration alloy layer constitutes a step junction with the silicon wafer, nor between the single crystal silicon and the electroluminescent material ultimately deposited on the alloy layer. Instead, each may be validly considered as a linearly graded junction by which an appropriate match is provided between the lattice constant of the silicon wafer and the lattice'constant of the electroluminescent layer.
In the formation of the Si-Ge alloy layer, the Si-Ge material deposits epitaxially in single crystal structure on the single crystal silicon wafer surface exposed in the mask apertures, and in polycrystalline structure on the oxide mask covering the remaining portions of the wafer surface. The polycrystalline material may be removed, by lapping, etching, or other conventional steps, before further processing, or it may be retained until additional steps of the overall process are completed. In any event, the desired electroluminescent layer may now be deposited epitaxially on the single crystal alloy layer since the latter provices a surface lattice constant matching the lattice constant of GaP.
GaP doped with Zn, 0, and Te is epitaxially deposited as compensated p-type GaP, using separate vapors of elemental Ga in PCl Zn, H 0, and H Te, in the appropriate vapor phase concentrations to produce the single crystal GaP with the desired net doping. The PCl H 0 and l-l Te are introduced into separate inlets of a mixing chamber at desired flow rates. The outlet of the mixing chamber is connected to the inlet of a reaction chamber containing hyperpure gallium and into which is also fed the zinc vapor of ultra high purity. I-Iydrogen may be used as the carrier gas. The reaction zone temperature is preferably maintained in the range from 750C to 950C, and the substrate (the silicon wafer with Si-Ge alloy layer deposited thereon in the 'mask apertures) is maintained at a temperature of from 650C to 850C. An epitaxial layer of GaP about to 30 microns thick is grown on the single crystal Si-Ge alloy in the mask apertures to form the light emitting diode array. The formation of a pm junction necessary for diode action in the Ga? layer is conveniently achieved by heating the structure to a temperature in the range from 900C to l,000C to induce outdiffusion of zinc ionsfrom the surface of the Ga? epitaxial layer, thereby producing an n-type surface region on the p-type material.
An array of LEDs in a monolithic display produced by the above process is shown in FIG. 1. The substrate comprises an appropriately doped single crystal silicon body 10 (here p-type, for example) constituting one of the dice of the original silicon wafer after processing. The electroluminescent areas of Ga? are layers 12 separated from silicon body 10 by intermediate lattice constant matching layers 15. Each of the latter is a graded layer of silicon-germanium alloy (here doped p-type for example) in which the germanium concentration increases to a percentage of under 10 percent, in the manner described above. Layers 12 are separated from each other by insulative or dielectric passivating regions 16 atop silicon body 10. Usually, these passivating regions comprise silicon dioxide. Each of the electroluminescent layers constitutes a separate and distinct light emitting diode with a shallow p-n junction between p-region 18 (in this example) and nregion 20. The thickness of the various layers and regions are intentionally exaggerated in FIG. 1 for the sake of clarity. Metallization patterns (not shown) for interconnecting the diodes with appropriate drive and- /or decode circuitry may be laid down as an adherent aluminum film on the structure, which may also include an additional passivation layer. Obviously, in any desired arrangement at least a substantial portion of the electroluminescent material is left exposed to exhibit emission of light when energized.
The silicon body and/or the silicon-germanium layer may contain active or passive components formed therein using conventional techniques, to provide an integrated circuit. A portion of such an integratedcircuit is shown in FIG. 2. In the formation of this structure a p-type single crystal silicon substrate 50, after polishing of one or both its major faces, is subjected to oxidation to form an oxide layer mask thereon. Apertures are opened in the mask by standard photoresistetch techniques, as required for the provision of active components (such as transistors), passive components, and alphanumeric character elements (i.e., LEDs). In the device shown in FIG. 2, diffusion of n-type impurities is employed to form the transistor collector region 52 and the character tub 54. After an oxide strip and clean operation, the lattice constant matching layer 55 consisting of p-type Si-Ge of the uniformly graded type as described above is epitaxially deposited on the surface of silicon body 50. The entire body is again subjected to oxidation and opening of apertures in the oxide mask for 11 diffusion to form isolation (p-n junction isolation) ring 57 and additional character tub 58. After further masking the transistor emitter region 60 is formed by another n diffusion into layer 55.
The surface is again masked and LED matrix apertures are opened for epitaxial deposition of n-type GaP layer 62 onto Si-Ge layer 55 via the apertures. A p-type surface. diffusion into layer 62 provides a p-region 63 for creating the desired p-n junction for diode action. Finally, a protective coating 65 is deposited on the device and apertures are opened for application of contacts and interconnection through a metallization layer.
Again, while the use of a single crystal semiconductor as the substrate is preferred, to allow incorporation of components of the drive and decode circuit in monolithic form, other single crystal materials such as sapphire or spinel may alternatively be employed as the substrate.
What is claimed is:
1. A light emitting diode structure, comprising a single crystal silicon substrate,
a layer of single crystal semiconductor material consisting essentially of a Group III-V compound, said layer containing a pm junction for emission of light in response to electrical energization thereof, said single crystal layer having a crystal lattice constant which differs from the crystal lattice constant of said single crystal substrate, said single crystal layer superposed on said substrate, and
a graded layer of single crystal semiconductor material interposed between and in adherent contact with said substrate and the first-named single crystal layer, said graded layer consisting of an alloy of silicon and germanium in which the germanium concentration varies from approximately zero mole percent at the boundary with said substrate to approximately ten mole percent at the boundary with said first-named single crystal layer, said graded layer having a crystal lattice constant substantially matching the crystal lattice constant of said substrate at the boundary therebetween and having a crystal lattice constant substantially matching the crystal lattice constant of said first-named single crystal layer at the boundary therebetween.
2. The light emitting diode structure according to claim 1, wherein said Group III-V compound is selected from the group consisting of GaP, GaAs, and GaAsP.
3. A monolithic light emitting diode display, comprising a single crystal silicon substrate, a plurality of spaced-apart semiconductor p-n junction regions, each p-n junction region consisting of a single crystal layer, each said single crystal layer consisting essentially of a Group Ill-V compound for emission of light in response to electrical energization of the respective p-n junction, each said single crystal layer superposed on said substrate and having a crystal lattice constant different from the crystal lattice constant of said substrate, and
a graded layer of single crystal semiconductor material interposed between and in adherent contact with each said first-named single crystal layer and said substrate ,said graded layer consisting of an alloy of silicon and germanium in which the germanium concentration varies from approximately zero mole percent at the boundary with said substrate to approximately ten mole percent at the boundary with each said first-named single crystal layer, said graded layer having a crystal lattice constant substantially matching the crystal lattice constant of said substrate at the boundary therebetween and having a crystal lattice constant substantially matching the crystal lattice constant of the respective first-named single crystal layer at the boundary therebetween.
4. The monolithic light emitting diode display according to claim 3, wherein I said Group III-V compound is selected from the group consisting of Gal, GaAs, and GaAsP.

Claims (3)

  1. 2. The light emitting diode structure according to claim 1, wherein said Group III-V compound is selected from the group consisting of GaP, GaAs, and GaAsP.
  2. 3. A monolithic light emitting diode display, comprising a single crystal silicon substrate, a plurality of spaced-apart semiconductor p-n junction regions, each p-n junction region consisting of a single crystal layer, each said single crystal layer consisting essentially of a Group III-V compound for emission of light in response to electrical energization of the respective p-n junction, each said single crystal layer superposed on said substrate and having a crystal lattice constant different from the crystal lattice constant of said substrate, and a graded layer of single crystal semiconductor material interposed between and in adherent contact with each said first-named single crystal layer and said substrate ,said graded layer consisting of an alloy of silicon and germanium in which the germanium concentration varies from approximately zero mole percent at the boundary with said substrate to approximately ten mole percent at the boundary with each said first-named single crystal layer, said graded layer having a crystal lattice constant substantially matching the crystal lattice constant of said substrate at the boundary therebetween and having a crystal lattice constant substantially matching the crystal lattice constant of the respective first-named single crystal layer at the boundary therebetween.
  3. 4. The monolithic light emitting diode display according to claim 3, wherein said Group III-V compound is selected from the group consisting of GaP, GaAs, and GaAsP.
US00190778A 1971-10-20 1971-10-20 Heteroepitaxial structure Expired - Lifetime US3766447A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19077871A 1971-10-20 1971-10-20

Publications (1)

Publication Number Publication Date
US3766447A true US3766447A (en) 1973-10-16

Family

ID=22702733

Family Applications (1)

Application Number Title Priority Date Filing Date
US00190778A Expired - Lifetime US3766447A (en) 1971-10-20 1971-10-20 Heteroepitaxial structure

Country Status (1)

Country Link
US (1) US3766447A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862859A (en) * 1972-01-10 1975-01-28 Rca Corp Method of making a semiconductor device
US3900863A (en) * 1974-05-13 1975-08-19 Westinghouse Electric Corp Light-emitting diode which generates light in three dimensions
US3914137A (en) * 1971-10-06 1975-10-21 Motorola Inc Method of manufacturing a light coupled monolithic circuit by selective epitaxial deposition
US3963538A (en) * 1974-12-17 1976-06-15 International Business Machines Corporation Two stage heteroepitaxial deposition process for GaP/Si
US3963539A (en) * 1974-12-17 1976-06-15 International Business Machines Corporation Two stage heteroepitaxial deposition process for GaAsP/Si LED's
US4120706A (en) * 1977-09-16 1978-10-17 Harris Corporation Heteroepitaxial deposition of gap on silicon substrates
US4180825A (en) * 1977-09-16 1979-12-25 Harris Corporation Heteroepitaxial deposition of GaP on silicon substrates
EP0011418A1 (en) * 1978-11-20 1980-05-28 THE GENERAL ELECTRIC COMPANY, p.l.c. Manufacture of electroluminescent display devices
US4716445A (en) * 1986-01-17 1987-12-29 Nec Corporation Heterojunction bipolar transistor having a base region of germanium
US4925810A (en) * 1986-10-25 1990-05-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Compound semiconductor device and a method of manufacturing the same
US5011550A (en) * 1987-05-13 1991-04-30 Sharp Kabushiki Kaisha Laminated structure of compound semiconductors
US5736754A (en) * 1995-11-17 1998-04-07 Motorola, Inc. Full color organic light emitting diode array
US5810924A (en) * 1991-05-31 1998-09-22 International Business Machines Corporation Low defect density/arbitrary lattice constant heteroepitaxial layers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102828A (en) * 1959-06-02 1963-09-03 Philips Corp Method of manufacturing semiconductor bodies
US3414434A (en) * 1965-06-30 1968-12-03 North American Rockwell Single crystal silicon on spinel insulators
US3433684A (en) * 1966-09-13 1969-03-18 North American Rockwell Multilayer semiconductor heteroepitaxial structure
US3476593A (en) * 1967-01-24 1969-11-04 Fairchild Camera Instr Co Method of forming gallium arsenide films by vacuum deposition techniques
US3515576A (en) * 1966-01-26 1970-06-02 North American Rockwell Single crystal silicon on beryllium oxide
US3615855A (en) * 1969-04-03 1971-10-26 Gen Motors Corp Radiant energy photovoltalic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102828A (en) * 1959-06-02 1963-09-03 Philips Corp Method of manufacturing semiconductor bodies
US3414434A (en) * 1965-06-30 1968-12-03 North American Rockwell Single crystal silicon on spinel insulators
US3515576A (en) * 1966-01-26 1970-06-02 North American Rockwell Single crystal silicon on beryllium oxide
US3433684A (en) * 1966-09-13 1969-03-18 North American Rockwell Multilayer semiconductor heteroepitaxial structure
US3476593A (en) * 1967-01-24 1969-11-04 Fairchild Camera Instr Co Method of forming gallium arsenide films by vacuum deposition techniques
US3615855A (en) * 1969-04-03 1971-10-26 Gen Motors Corp Radiant energy photovoltalic device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914137A (en) * 1971-10-06 1975-10-21 Motorola Inc Method of manufacturing a light coupled monolithic circuit by selective epitaxial deposition
US3862859A (en) * 1972-01-10 1975-01-28 Rca Corp Method of making a semiconductor device
US3900863A (en) * 1974-05-13 1975-08-19 Westinghouse Electric Corp Light-emitting diode which generates light in three dimensions
US3963538A (en) * 1974-12-17 1976-06-15 International Business Machines Corporation Two stage heteroepitaxial deposition process for GaP/Si
US3963539A (en) * 1974-12-17 1976-06-15 International Business Machines Corporation Two stage heteroepitaxial deposition process for GaAsP/Si LED's
US4180825A (en) * 1977-09-16 1979-12-25 Harris Corporation Heteroepitaxial deposition of GaP on silicon substrates
US4120706A (en) * 1977-09-16 1978-10-17 Harris Corporation Heteroepitaxial deposition of gap on silicon substrates
EP0011418A1 (en) * 1978-11-20 1980-05-28 THE GENERAL ELECTRIC COMPANY, p.l.c. Manufacture of electroluminescent display devices
US4280273A (en) * 1978-11-20 1981-07-28 The General Electric Company Limited Manufacture of monolithic LED arrays for electroluminescent display devices
US4716445A (en) * 1986-01-17 1987-12-29 Nec Corporation Heterojunction bipolar transistor having a base region of germanium
US4925810A (en) * 1986-10-25 1990-05-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Compound semiconductor device and a method of manufacturing the same
US5011550A (en) * 1987-05-13 1991-04-30 Sharp Kabushiki Kaisha Laminated structure of compound semiconductors
US5810924A (en) * 1991-05-31 1998-09-22 International Business Machines Corporation Low defect density/arbitrary lattice constant heteroepitaxial layers
US5736754A (en) * 1995-11-17 1998-04-07 Motorola, Inc. Full color organic light emitting diode array

Similar Documents

Publication Publication Date Title
US3935040A (en) Process for forming monolithic semiconductor display
US3985590A (en) Process for forming heteroepitaxial structure
US3802967A (en) Iii-v compound on insulating substrate and its preparation and use
US3900863A (en) Light-emitting diode which generates light in three dimensions
US3611069A (en) Multiple color light emitting diodes
US3877060A (en) Semiconductor device having an insulating layer of boron phosphide and method of making the same
US4378259A (en) Method for producing mixed crystal wafer using special temperature control for preliminary gradient and constant layer deposition suitable for fabricating light-emitting diode
US3766447A (en) Heteroepitaxial structure
US3725749A (en) GaAS{11 {11 {11 P{11 {11 ELECTROLUMINESCENT DEVICE DOPED WITH ISOELECTRONIC IMPURITIES
EP0214610A2 (en) Epitaxial gallium arsenide semiconductor wafer and method of producing the same
US3931631A (en) Gallium phosphide light-emitting diodes
US4001056A (en) Epitaxial deposition of iii-v compounds containing isoelectronic impurities
JPH03133182A (en) Semiconductor substrate and manufacture thereof
US3984857A (en) Heteroepitaxial displays
US3723201A (en) Diffusion process for heteroepitaxial germanium device fabrication utilizing polycrystalline silicon mask
US4216484A (en) Method of manufacturing electroluminescent compound semiconductor wafer
JPS581539B2 (en) epitaxial wafer
Blum et al. The liquid phase epitaxy of Al x Ga 1-x As for monolithic planar structures
US3629018A (en) Process for the fabrication of light-emitting semiconductor diodes
US3728785A (en) Fabrication of semiconductor devices
US3471922A (en) Monolithic integrated circuitry with dielectric isolated functional regions
JP3146874B2 (en) Light emitting diode
GB1582063A (en) Electroluminescent element and method of fabricating the same
US3873382A (en) Process for the preparation of semiconductor materials and devices
US5571321A (en) Method for producing a gallium phosphide epitaxial wafer