US3765390A - Solid state breakerless ignition system for internal combustion engines - Google Patents

Solid state breakerless ignition system for internal combustion engines Download PDF

Info

Publication number
US3765390A
US3765390A US00119698A US3765390DA US3765390A US 3765390 A US3765390 A US 3765390A US 00119698 A US00119698 A US 00119698A US 3765390D A US3765390D A US 3765390DA US 3765390 A US3765390 A US 3765390A
Authority
US
United States
Prior art keywords
coil
flywheel
trigger
stator assembly
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00119698A
Other languages
English (en)
Inventor
D Loudon
H Bernhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bendix Corp
Original Assignee
Bendix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bendix Corp filed Critical Bendix Corp
Application granted granted Critical
Publication of US3765390A publication Critical patent/US3765390A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • F02P1/086Layout of circuits for generating sparks by discharging a capacitor into a coil circuit

Definitions

  • the ignition system is comprised of: a ferromagnetic flux conducting plate mounted on the flywheel of the engine; a stator assembly mounted on the engine, having a coil and a magnetic field responsive to the movement of the plate so that when the flywheel revolves and the flux conducting plate passes the stator assembly a voltage pulse is induced in the coil; and a control circuit for receiving and applying the voltage pulse induced in the coil to the spark plug at predetermined intervals.
  • the control circuit is capable of advancing and retarding the engine spark as the speed of the engine changes.
  • This invention relates to an internal combustion engine breakerless ignition system of the type having a capacitor, a means for charging the capacitor, and a means for triggering a discharge of the capacitor through an ignition coil to cause a spark across the gap of a spark plug.
  • the invention is more particularly related to the circuit for charging the capacitor which utilizes the flywheel of the internal combustion engine as part of the means that generates the energy to be stored in the capacitor and part of the means that triggers the discharge of the capacitor through the ignition coil.
  • This invention provides a breakerless ignition system that utilizes the flywheel of the internal combustion engine to help generate electrical energy that charges a capacitor and triggers the discharge of the capacitor through an ignition coil.
  • This arrangement eliminates the need for a d.c. battery or external ac power source and increases engine performance by advancing or retarding the engine spark timing as the speed of the engine changes.
  • the invention is a breakerless ignition system for an internal combustion engine characterized by a generator circuit that nonmagnetized ferromagnetic flux conducting plates mounted on the flywheel of the internal combustion engine to generate voltage pulses which are stored in a capacitive network before application to the internal combustion engine spark plug.
  • the ignition system comprises: a nonmagnetized magnetic flux conducting member or plate mounted on the flywheel of the internal combustionengine; a stator assembly including a coil and a magnetic field responsive to the movement of the plate on the flywheel mounted adjacent to the flywheel so that when the flywheel revolves and the plate passes the stator assembly, a voltage pulse is induced in the coil; and control means for receiving and applying the voltage pulse from the coil to the spark plug of the internal combustion engine in a predetermined manner.
  • the stator assembly includes a generally C-shaped magnetic flux conducting member wherein one of the extensions includes a permanent magnet disposed therein while the other extension includes a coil disposed around a portion thereof.
  • FIG. 1 is an illustration of a breakerless ignition system in combination with an internal combustion engine that has a flywheel.
  • FIG. 2 is a simplified schematic diagram of a breakerless ignition system.
  • FIG. 3 is a more detailed schematic diagram of a breakerless ignition system for internal combustion engines.
  • FIG. 4 is an illustration of a stator assembly having a C-shaped configuration that may be mounted on an internal combustion engine to produce electrical energy in response to the movement of the engine flywheel.
  • FIG. 5 is an end view of the stator assembly shown in FIG. 4.
  • FIG. 1 illustrates an internal combustion engine 1 having a flywheel 2 that utilizes the principles of this invention.
  • the breakerless ignition system used in combination with the internal combustion engine 1 comprises: one or more magnetic flux conducting plates 11 (e.g. cold rolled steel) mounted on the flywheel 2; a stator assembly 20 mounted adjacent the flywheel 2 by mounting bracket an ignition coil 40 for supplying energy to the spark plug (not shown); and a control circuit 30, which in conjunction with the triggering pins, 7 and 8, and stator assembly 20, properly synchronizes the application of the voltages applied to the ignition coil to the rotation of the engine.
  • the trigger pins 7 and 8 are mounted at a greater radial distance from the center of the flywheel 2 than the plates 11 to physically separate and, therefore, isolate the triggering pins 7 and 8 from the charging circuit but not the trigger circuit in the stator assembly 20.
  • the stator assembly is mounted on the engine 1 so that it is adjacent to and in close proximity to the flywheel 2.
  • the spacing between the stator assembly 20 and the flywheel 2 is such that when a trigger pin 7 or 8, or a plate 11 is immediately opposite of the stator assembly 20 they will respectively affect the magnetic circuits of the stator assembly to produce a trigger pulse or a charging pulse.
  • plates 11 are shown mounted on the flywheel 2, the flywheel 2 can be cast to include one or more raised surfaces that are flux conducting paths and thereby eliminate the need for mounting separate plates 11.
  • the plates 11 add to the versatility of the system because additional plates 11 may be added to the flywheel to increase the total electrical energy generated in the ignition system per revolution of the flywheel 2.
  • FIG. 2 is a schematic diagram that illustrates how the movement ofa plate 1 1 and a trigger pin 7 or 8 past the stator assembly 20 produces voltage pulses in the charging circuit and trigger circuit.
  • the breakerless ignition circuit is divided into a stator assembly circuit 20, a control circuit 30, and an ignition coil circuit 40. The electrical components contained in each circuit and in the corresponding assembly shown in FIG. 1 are shown within the dotted lines.
  • the stator assembly 20 includes a permanent magnet 25, flux conducting laminations 23, a charging coil 21 in electromagnetic circuit relatioship with the magnet 25 and laminations 23, a trigger coil 22, magnet 27, and flux conducting laminations 24 in electromagnetic circuit relationship with the coil 22 and magnet 27.
  • the charging coil 21 is electromagnetically responsive to the passage of a plate 11 and the trigger coil 22 is electromagnetically responsive to the passage of a trigger pin 7 or 8.
  • the control circuit comprises a solid state rectifier 31, a charging capacitor 33, and a silicon controlled rectifier switch having its gate 36 and cathode 38 in circuit relationship with trigger coil 22, its anode 34 in circuit relationship with the ignition coil circuit 40 and its cathode 38 in circuit relationship with charging coil 21 and charging capacitor 33.
  • the ignition coil circuit 40 includes a primary winding 41 which has one lead in circuit relationship with charging capacitor 33 and rectifier 31 and the other lead in circuit relationship with the anode 34 of the silicon controlled rectifier switch 35.
  • the secondary winding 42 of the ignition coil circuit 40 is connected in circuit relationship with spark plug 60.
  • the system depicted in FIG. 2 is completely free of moving parts, and each assembly is hermetically sealed to prevent adverse operation during out-of-doors use.
  • the magnetic flux conducting plates 11 pass opposite the stator assembly 20 they produce changes in the magnetic flux associated with that portion of the stator assembly 20 which includes the coil 21, magnet 25 and laminations 23.
  • the stator assembly charging coil 21, laminations 23, and permanent magnet 25 generate two voltage pulses (a positive and negative excursion) each time a plate 11 passes the stator assembly 20. Rectification of this primary output to pulsating direct current is accomplished by blocking diode 31 in the control circuit 30. The energy generated by the interaction of the stator assembly charging coil 21 with the moving plates 11 is then stored in capacitor 33 of control circuit 30.
  • the energy remains in capacitor 33 until the capacitor is discharged by triggering the silicon controlled rectifier switch 35 ON". Each time the switch 35 triggers ON, it produces an electrical discharge across the spark plug gap 60. After the capacitor 33 discharges, the SCR switch 35 returns to the OFF state allowing the storage capacitor 33 to recharge.
  • Spark timing is accomplished electronically by trigger pins 7 or 8 positioned on the side of the flywheel 2. As a trigger pin 7 or 8 passes the trigger coil 22, it generates a small voltage pulse across the coil 22 which triggers (turns on) the silicon controlled rectifier 35 thereby allowing the capacitor 33 to discharge through the primary coil 41 of the ignition coil 40. This creates an instantaneous high voltage in the secondary winding 42 of the ignition coil 40 that fires the spark plug 60.
  • coils 21 and 22 and their associated magnetic circuit components are part of the same stator assembly 20. Alternately, they could be separate assemblies.
  • Adavnce and retard timing is obtained through the use of two trigger pins 7 and 8 angularly spaced one from the other in the direction of rotation of the flywheel.
  • the spark timing is automatically advanced when speed is increased and automatically retarded when speed decreases. This is accomplished by locating the first trigger pin 7 (in the direction of rotation) so that it has a greater clearance as it passes the coil 22 and laminations 24 than the second trigger pin 8. At low speeds, pin 7 does not generate a voltage sufficient to trigger SCR 35. However, as the angular velocity of the flywheel increases the trigger pulses generated by the first trigger pin 7 passing the trigger coil 22 increase to sufficient magnitude to trigger the solid state control device 35.
  • the trigger pin 8 more closely spaced from the coil 22 that pin 7, generates a voltage in the coil 22 to turn the SCR 35 ON.
  • the rate of change of flux with respect to time caused by the passing of the first trigger pin 7 increases to a value sufficient to generate a voltage that gates SCR 35 ON".
  • FIG. 3 is a schematic diagram that is similar to the circuit shown in FIG. 2 with the exceptionof certain additional desirable features.
  • components performing the same function as those described in FIG. 2 will have the same number as those components shown in FIG. 2.
  • a voltage tripler circuit is employed to increase the maximum value of the voltage applied to the ignition coil primary winding 41 upon discharge of capacitor 33.
  • the voltage tripler circuit is comprised of capacitor 33 and diode 31 in circuit relationship with blocking diodes 72 and 73 and capacitors 71 and 74.
  • the diodes 31, 72 and 73 in combination with capacitors 33, 71 and 74 produce a dc. voltage equal to approximately three times the peak input voltage generated across coil 21.
  • a diode 75 connected in parallel across capacitor 33 has its cathode connected to the positive side of capacitor 33.
  • This diode 75 which could also be a zener diode, prevents capacitor 33 from acquiring a residual negative charge as a result of the final electromagnetic action of primary winding 41 of the ignition coil 40 after the capacitor 33 discharges therethrough.
  • Gate to cathode resistor 76 and diode 77 limits the leakage current that flows between the gate 36 and cathode 38 of SCR 35 when the SCR 35 is OFF.
  • the diode 77 and resistor 76 also prevents spurious noise signals in the trigger coil 22 circuit from turning the SCR ON.
  • FIG. 4 illustrates a generally C-shaped configuration of that portion of the stator assembly which includes the charging coil 21, the magnet 25, and the flux conducting laminations 23.
  • the charging coil 21 is arranged about one leg of the laminations 23 while a permanent magnet 25 is disposed in the other leg of the laminations 23. In this way, when a plate 11 passes the stator assembly 20, the flux in the magnetic circuit varies, producing an output voltage at wires A and B of charging coil 21.
  • FIG. 5 is a side view of the C-shaped portion of stator assembly 20 which shows the location of permanent magnet 25 in one leg of the assembly.
  • the laminations 23 and magnet 25 are held in place by pins 9 and nonmagnetic retaining plates 8.
  • a breakerless ignition system comprising:
  • stator assembly having a coil and a magnetic field responsive to the movement of said plate, said stator assembly including a generally C-shaped configuration comprised of:
  • a second magnetic flux conducting member in generally parallel relationship to and spaced from said first member
  • a third magnetic flux'conducting member disposed between and generally perpendicular to said first and second members to form said generally C- shaped configuration; and wherein said stator coil is dis-posed around a portion of said first member; and wherein said second member includes a permanent magnet disposed so that the magnets polar axis is perpendicular to said third member;
  • control means for receiving and applying the voltage pulse from said coil to said spark plug in a predetermined manner.
  • control means includes an ignition coil for amplifying the pulses received from said stator coil before applying them to said spark plug, said ignition coil having a primary winding in circuit relationship with said stator coil and a secondary winding in circuit relationship with said spark plug.
  • control means comprises:
  • circuit for periodically discharging said capacitor through the primary winding of said ignition coil said circuit including a solid state electronic switching device selectively rendered electrically conductive to permit discharge of said capacitor through the primary winding of said ignition coil and nonconductive to permit charging of said capacitor by the voltage pulses produced by said stator coil, said switching device having an anode, a cathode and a control electrode; and
  • trigger means for controlling said solid state switching device, said trigger means including means for generating trigger pulses having a repetition rate dependent upon the angular velocity of said flywheel and out of phase with said voltage pulses produced by said stator coil.
  • said means for generating trigger pulses includes a metal trigger pin mounted on said flywheel and a second stator assembly having a coil and a permanent magnet in electromagnetic relationship, said second stator coil electrically responsive to movement of said trigger pin and in circuit relationship with the cathode and control electrode of said solid state switching device, said second stator assembly mounted adjacent said flywheel so that when said flywheel revolves and said metal trigger pin passes said second stator coil, a voltage is induced in said coil causing the solid state switching device to conduct thereby permitting the capacitor to discharge through the primary winding of said ignition coil and supply energy to said spark plug.
  • said means for generating trigger pulses includes a second metal trigger pin angularly spaced from said first trigger pin in the direction of rotation of the flywheel, said second trigger pin having a greater clearance from said second stator assembly than said first trigger pin so that as the angular velocity of said flywheel increases the trigger pulses generated by said second trigger pin passing said second stator assembly increases to sufficient magnitude to trigger said solid state control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
US00119698A 1971-03-10 1971-03-10 Solid state breakerless ignition system for internal combustion engines Expired - Lifetime US3765390A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11969871A 1971-03-10 1971-03-10

Publications (1)

Publication Number Publication Date
US3765390A true US3765390A (en) 1973-10-16

Family

ID=22385837

Family Applications (1)

Application Number Title Priority Date Filing Date
US00119698A Expired - Lifetime US3765390A (en) 1971-03-10 1971-03-10 Solid state breakerless ignition system for internal combustion engines

Country Status (7)

Country Link
US (1) US3765390A (de)
AT (1) AT318309B (de)
DE (1) DE2211689A1 (de)
FR (1) FR2131414A5 (de)
GB (1) GB1342056A (de)
IT (1) IT950020B (de)
NL (1) NL7203135A (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864621A (en) * 1972-08-29 1975-02-04 Bosch Gmbh Robert Transistorized control circuit for magneto motor ignition systems
US4134370A (en) * 1977-01-24 1979-01-16 Kubota, Ltd. Engine with air-cooled non-contact ignition system
US4709669A (en) * 1985-10-04 1987-12-01 Andreas Stihl Ignition arrangement for an internal combustion engine of a handheld portable tool
US4907561A (en) * 1989-04-03 1990-03-13 Tecumseh Products Company Ignition system in an air-cooled engine
US5513617A (en) * 1994-12-08 1996-05-07 Bass; Charles D. Breakerless ignition system for internal combustion aircraft engines

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980093A (en) * 1958-09-12 1961-04-18 Gen Motors Corp Electronic ignition
US3251351A (en) * 1963-10-14 1966-05-17 Shell Oil Co Electronic ignition system
US3356896A (en) * 1964-12-16 1967-12-05 Motorola Inc Electronic device
US3490426A (en) * 1967-07-20 1970-01-20 Tecumseh Products Co Ignition system
US3500809A (en) * 1967-05-09 1970-03-17 Bosch Gmbh Robert Ignition arrangement for internal combustion engines
US3599615A (en) * 1969-05-29 1971-08-17 Motorola Inc Spark advance mechanism for solid state ignition systems
US3619634A (en) * 1970-07-10 1971-11-09 R E Phelan Co Inc Alternator and combined breakerless ignition system
US3623467A (en) * 1969-11-24 1971-11-30 Phelon Co Inc Triggering magnet and coil assembly for use with an ignition system including a permanent magnet alternator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980093A (en) * 1958-09-12 1961-04-18 Gen Motors Corp Electronic ignition
US3251351A (en) * 1963-10-14 1966-05-17 Shell Oil Co Electronic ignition system
US3356896A (en) * 1964-12-16 1967-12-05 Motorola Inc Electronic device
US3500809A (en) * 1967-05-09 1970-03-17 Bosch Gmbh Robert Ignition arrangement for internal combustion engines
US3490426A (en) * 1967-07-20 1970-01-20 Tecumseh Products Co Ignition system
US3599615A (en) * 1969-05-29 1971-08-17 Motorola Inc Spark advance mechanism for solid state ignition systems
US3623467A (en) * 1969-11-24 1971-11-30 Phelon Co Inc Triggering magnet and coil assembly for use with an ignition system including a permanent magnet alternator
US3619634A (en) * 1970-07-10 1971-11-09 R E Phelan Co Inc Alternator and combined breakerless ignition system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864621A (en) * 1972-08-29 1975-02-04 Bosch Gmbh Robert Transistorized control circuit for magneto motor ignition systems
US4134370A (en) * 1977-01-24 1979-01-16 Kubota, Ltd. Engine with air-cooled non-contact ignition system
US4709669A (en) * 1985-10-04 1987-12-01 Andreas Stihl Ignition arrangement for an internal combustion engine of a handheld portable tool
US4907561A (en) * 1989-04-03 1990-03-13 Tecumseh Products Company Ignition system in an air-cooled engine
US5513617A (en) * 1994-12-08 1996-05-07 Bass; Charles D. Breakerless ignition system for internal combustion aircraft engines

Also Published As

Publication number Publication date
FR2131414A5 (de) 1972-11-10
DE2211689A1 (de) 1972-11-23
GB1342056A (en) 1973-12-25
NL7203135A (de) 1972-09-12
AT318309B (de) 1974-10-10
IT950020B (it) 1973-06-20

Similar Documents

Publication Publication Date Title
US3356896A (en) Electronic device
US3240198A (en) Electrical apparatus
US3500809A (en) Ignition arrangement for internal combustion engines
US3630185A (en) Ignition-timing apparatus
US3490426A (en) Ignition system
US3788293A (en) Low impedance capacitor discharge system and method
US3545420A (en) Capacitor discharge ignition system
US3678913A (en) Current generator and electronic ignition circuit
US3186397A (en) Electrical apparatus
US3566188A (en) Triggered ignition system
US3515109A (en) Solid state ignition with automatic timing advance
US3661132A (en) Ignition circuit with automatic spark advance
US3809040A (en) Ignition triggering circuit with automatic advance
US3933139A (en) Capacitive discharge ignition system
US3426740A (en) Distributor
US3974815A (en) Signal source for use in a breakerless ignition system for an internal combustion engine
US3669086A (en) Solid state ignition system
US4074669A (en) Rotor controlled automatic spark advance
US3941111A (en) Ignition system
US3985109A (en) Breakerless ignition system for an internal combustion engine
US3587550A (en) Electronic ignition control system
US3765390A (en) Solid state breakerless ignition system for internal combustion engines
US3864621A (en) Transistorized control circuit for magneto motor ignition systems
US3496920A (en) Flywheel generator for charging the capacitor of a capacitor discharge ignition system
US3280810A (en) Semiconductor ignition system