US3765196A - Armored cable-type lock assembly with special end fittings for the armored cable thereof - Google Patents

Armored cable-type lock assembly with special end fittings for the armored cable thereof Download PDF

Info

Publication number
US3765196A
US3765196A US00266984A US3765196DA US3765196A US 3765196 A US3765196 A US 3765196A US 00266984 A US00266984 A US 00266984A US 3765196D A US3765196D A US 3765196DA US 3765196 A US3765196 A US 3765196A
Authority
US
United States
Prior art keywords
cable
lock
socket
bore
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00266984A
Inventor
S Balicki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J J TOUREK Manufacturing Co A CORP OF
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3765196A publication Critical patent/US3765196A/en
Assigned to J. J. TOUREK MFG. CO., A CORP. OF IL reassignment J. J. TOUREK MFG. CO., A CORP. OF IL ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BALICKI, STANLEY C.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B67/00Padlocks; Details thereof
    • E05B67/003Chain, wire or cable locks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/40Portable
    • Y10T70/402Fetters
    • Y10T70/409Shackles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/40Portable
    • Y10T70/413Padlocks
    • Y10T70/437Key-controlled
    • Y10T70/483Flexible shackle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/70Operating mechanism
    • Y10T70/7441Key
    • Y10T70/7486Single key
    • Y10T70/7508Tumbler type
    • Y10T70/7559Cylinder type
    • Y10T70/7576Sliding and rotary plug

Definitions

  • the present lock assembly is designed primarily for useas a tie-down lock for a motorcycle, a go-cart, a mini-bike, a snowmobile, or any other wheeled sporting vehicle, as well as for a sail or a motor boat, and in this respect it does not differ from the lock assembly of my aforementioned patent.
  • the cable armor per se of the present invention is concerned, it is similar to that of the patented lock assembly in that it consists of ball and socket members which are threaded onto a flexible stranded-steel cable.
  • Two forms of cable armor are disclosed herein, each being similar to a corresponding form of armor disclosed in said patent but possessing certain inherent advantages, principal among which is the ability of the cable to make a relatively sharp bend or curve without binding of the armor sections (ball and socket members).
  • each includes a pair of end fittings, one of which is in the form of a lock housing which establishes a slip joint for the medial region ofthe armor sections and the other of which establishes a lost motion take-up device for said sections.
  • This anchoring and assembly arrangement enables the cable and its armor to be fashionedand assembled for inventory purposes in predetermined lengths so that individual customer requirements may be attended to on a retail basis by selecting the desired armored cable length and then snapping the two end fittings in position on the armored cable to effect a permanent and selfcontained lock assembly.
  • the present lock housing and cylinder lock combination employs a pop-up type of cylinder lock which,
  • FIG. 1 is a fragmentary sectional view, partly in elevation, taken centrally and longitudinally through the proximate or locking end region of an armored cabletype lock assembly embodying the present invention
  • FIG. 2 is a transverse sectional view taken on the line 22 of FIG. I;
  • FIG. 3 is a fragmentary sectional view similar to FIG. I but taken on a central longitudinal plane which is at a right angle to the sectional plane of FIG. 1, and showing the armored cable, with a different form of cable armor, threaded through the lock housing and locked in position therein; and
  • FIG. 4 is a fragmentary sectional view, partly in ele vation, taken centrally and longitudinally through the distal end region of the cable-type lock assembly.
  • the cable-type lock assembly of the present invention is comprised essentially of four separately manufactured and assembled components, namely, an armored cable, two forms of which are designated by the reference numerals 210 and in FIGS. 1 and 3, respectively, an end fitting in the form of a lock housing 12 at one end of the armored cable, a second or terminal end fitting in the form of a lost motion or slack take-up member 14 at the other end of the armored cable, and a cylinder lock 16 which is permanently received within the lock housing 12.
  • an armored cable two forms of which are designated by the reference numerals 210 and in FIGS. 1 and 3, respectively, an end fitting in the form of a lock housing 12 at one end of the armored cable, a second or terminal end fitting in the form of a lost motion or slack take-up member 14 at the other end of the armored cable, and a cylinder lock 16 which is permanently received within the lock housing 12.
  • All of the socket members 24 are identical and each is in the form of a tubular bead having an axial bore 30 extending therethrough. At each end of the bore 30 there is formed a frusto-conical recess 32, the outer rim of which communicates with a semi-sopherical socket 34 of annular configuration, the curvature of the socket being conformable to the curvature of the outer surface of the adjacent ball member 22 in the alternate arrangement of ball and socket members 22 and 24.
  • each socket 34 is slightly less than the radius of a ball member 22 and, consequently, an intervening ball member 22 between two adjacent socket members 24, when seated within the opposed sockets 34, will present a limited exposed peripheral portion of the ball member and will maintain the adjacent socket members slightly spaced apart and thus establish a flexible ball and socket joint between such adjacent socket members.
  • the socket members 24 which extend inwardly an appreciable distance from the terminal end fitting or slack take-up member 14 are provided with medial circumferential locking grooves 36, the purpose of which is to establish a series of locking shoulders for cooperation with a locking flange which is associated with the cylinder lock 16 in a manner that will be described subsequently.
  • any given armored cable 10 will be a direct function of the number of ball members 22 and socket members 24 which are employed on the stranded steel cable 20. As previously stated, these members 22 and 24 are alternately threaded on the cable 20, there being one more ball member than there are socket members so that each end of the cable armor will present one of the ball members 22. After the requisite number of ball and socket members have been threaded on the stranded cable 20 so as substantially to cover the cable from end to end, each end of the cable will have applied thereto a tubular machined retaining collar.
  • One of these retaining collars is designated by the reference numeral 40 in FIG. 3 and is operatively applied to the lock housing 12, and the other of the two collars is designated by the numeral 42 in H6. 4 and is operatively applied to the slack take-up member 14.
  • the collar 40 is applied to the adjacent or fixed end of the stranded cable 20 by initially inserting such end of the cable into the semi-spherical socket 46 and then through the bore 44 until it becomes flush with the outer end face 52 of the collar, after which a plurality of tapered wedges 54 are driven endwise into the adjacent end of the cable in order to spread the steel strands thereof outwardly and against the tapered wall of the bore 44 much in the manner that a wedge is driven into the distal end of a wooden hammer handle in order fixedly to maintain the same in the eye of the head of the hammer.
  • tension which may be applied to the cable 20 will enhance the wedging action of the wedges 54 and prevent withdrawal of the adjacent end of the cable 20 from the bore 44 in the retaining collar 40.
  • the collar 42 (see FlG. 4) is similar to the collar 40 except for the fact that it is of somewhat smaller diameter and is devoid of an external annular groove therearound, as well as of a semi-spherical socket in its inner end. It is applied to the adjacent or free end of the cable 20 in the same manner as the collar 40 is applied to the fixed end of the cable, i.e., by means of tapered wedges 56 which force the cable strands against the wall of a tapered or frusto-conical axial bore 58 which is formed in and extends through the collar 42.
  • Said collar 42 constitutes a reaction member for one end of a helical compression spring 60 which surrounds the free end of the stranded steel cable 20, the other end of the spring bearing against one end face 62 of a guide collar 64.
  • the other end face of the guide collar is formed with a semi-spherical recess 66 which bears against the adjacent ball member 22 of the armored cable.
  • the guide collar 64 has formed therearound an external annular groove 68 within which the inner marginal portion of a snap ring 70 is seated, the groove. and snap ring being designed for locking engagement with the terminal end member or slack take-up fitting 1.4 in a manner that will be set forth presently.
  • the thus completed or assembled armored cable 10 constitutes an individualor unitary cable lock component which may be inventoried by the retailer in predetermined lengths for subsequent application thereto of the two end fittings, i.e., the lock housing 12 and the slack take-up member 14, the former being applied to the collar 40 and the latter being applied to the guide collar 64.
  • the lock housing 12 isgenerally in the form of a pear-shaped body, the large end of which has formed therein a cylindrical lock-receiving socket 72, while the small end has formed therein a socket 74, the two sockets being coaxial with the lock housing 12.
  • the socket 74 is designed for reception of the retaining collar 40 on the fixed end of the stranded cable 20.
  • Said socket 74 is provided with a semi-spherical countersocket 76 in the rim or outer end region thereof, such countersocket being designed for mating cooperation withthe adjacent ball member 22 of the armored cable 10.
  • the socket 74 is provided with a medially disposed continuous annular groove 78 which registers with the external annular groove 48 in the collar 40 so that when the latter collar is inserted endwise in the socket 74 of the lock housing 12 the snap ring will fall in place between the two grooves and thus permanently anchor the fixed end of the armored cable 10 to the lock housing 12.
  • the cylinder lock 16 is of the pop-up axial tumbler type and involves in its general organization a composite lock cylinder embodying two telescopic cylinder parts.
  • the latter consist of a front part 86 and a cupshaped rear part 88, the former part being telescopically received within the latter part and being fixedly and permanently secured thereto by means of a pair of coaxial radially extending anchor or drive pins 98.
  • the two lock cylinder parts 86 and 88 are formed with outwardly extending annular rim flanges 92 and 94 which define therebetween an annular recess 96.
  • the latter has disposed therein the inner portion of a snap ring 98.
  • the outer portion of said snap ring seats within an annular internal groove which is formed in the wall of the cylindrical lock-receiving socket 72 in the large end of the lock housing 12.
  • the entire lock cylinder 16 is shiftable bodily as a unit between a retracted position within the socket 72 wherein the snap ring 98 engages the rim flange 86 of the front part 86, and a projected position wherein the snap ring 98 engages the rim flange 94 of the rear part 88, such position being shown in dotted lines in FIG. 1.
  • Two helical compression springs 102 are received in small sockets 104 in the rear or inner end face of the rear cylinder part 88 and bear at their inner ends against the bottom wall 186 of the socket 72, the purpose of such spring being yieldingly to urge the cylinder lock 16 into its projected position.
  • the previously mentioned locking flange 84 is integrally formed on the rear end of the rear cylinder part 88 and is of sharp right-angle configuration in cross section in order that it will positively engage within a selected locking groove 82 or 36 with no danger of slipping under the influence of armored cable tension. Said locking flange 84 projects through a diametrically disposed slot 108 which is formed in the bottom wall 106 of the socket 72.
  • the distal edge of the flange 84 is recessed on an arcuate bias as indicated at 110 in FIG. 1 so that when the lock cylinder 16 is in its retracted position within the confines of the socket 72, the locking flange will be projected into a selected locking groove 82 or 36 of the armored cable 18 and the arcuate edge or relief area of the locking flange will mate with the spherical outer surface of the adjacent ball member 22 of the bottom of the groove 36, depending on whether the flange in one of the grooves 86 on one of the grooves 36.
  • the cylinder lock 16 further includes a rotatable barrel part 112 which is disposed and rotatably mounted in the composite lock cylinder and has an outwardly extending annular flange 114.
  • the latter in combination with a fixed inner barrel part 115, establishes an interfacial plane 116 which is normally intersected by a series of split, spring-biased, axial tumblers 118 as is conventional in connection with an axial tumbler type lock.
  • the outer barrel part 112 is capable of being rotated, otherwise not.
  • the inner barrel part 115 is maintained in fixed relation with the front and rear parts 86 and 88 of the composite lock cylinder by the anchor or drive pins 90 (see FIG. 3).
  • Rotation of said outer barrel part 112 is accomplished under the control of a key 120 having a tubular body portion 122 which is provided with tumblerdisplacing shoulders 124 and a manipulating wing 126.
  • the body portion 112 of the key 120 is telescopically receivable over the outer end of the outer barrel part 112 and, when so received, the shoulders 124 serve to bring the various tumblers 118 to their positions of lock release as is customary with a conventional axial tunibler type lock.
  • Means are provided for releasably latching the cylinder lock 16 in its retracted position within the socket 72, this position serving to project the locking flange 84 through the slot 108 for cable-locking purposes as previously described.
  • This retracted position of the cylinder lock 16 may thus be regarded as'the locked" position of the lock housing 12, although it is not necessarily the locked condition of the lock cylinder 16.
  • the projected or popped-out" position of the cylinder lock 16 may be regarded as the unlocked condition of the lock housing 12 although it does not necessarily represent the unlocked condition of the cylinder lock.
  • the means for releasably latching the cylinder lock 16 in its retracted position embodies a cylindrical latch bolt 130 which is longitudinally slidable in a cylindrical bore 132 in the inner end portion of the cup-shaped rear cylinder part 88.
  • the bore 132 extends transversely of said rear cylinder part 88 and a portion of its wall intersects the bottom wall of the rear cylinder part 88 so that the upper or outer portion of the latch bolt 130, as viewed in FIG. 3, is exposed to the lower or inner end of the rotatable barrel part 112.
  • a small eccentric pin 134 on the lower or inner end of the barrel part 112 projects into a circular recess 136 (see FIG.
  • a helical compression spring 140 extends into a longitudinal socket 142 in the inner end of the latch bolt 130 and serves yieldingly to urge the bolt to a projected position wherein the outer or distal end thereof enters a recess 144 (see FIGS. 1 and 3) which is cut in the cylindrical wall of the bore 72 in the lock housing 12.
  • the end fitting or slack take-up member 14 is shown in FIG. 4 and it consists of an elongated thimble-like member which, in effect, constitutes a terminal armor section and defines a relatively deep socket 150.
  • An enlarged counter-socket 152 in the lower or open end region of the thimble-like member defines with the socket 150 an annular shoulder 154 in the medial region of said thimble-like member.
  • the countersocket 152 is formed with an annular snap ring-receiving groove 156, the function of which will become apparent presently.
  • the rim region of the slack take-up member 14 is formed with semi-spherical recess 158 of annular configuration, this recess being designed for mating engagement with the adjacent ball member 22 of the armored cable 10.
  • the end fitting or slack take-up device 14 is adapted to be manufactured in quantity and stocked by a retailer who may apply one such fitting to each armored cable at the time the latter is sold to a customer.
  • the cableattached collar 42 is pushed into the bore 52 until such time as the snap ring which is disposed within the annular groove 68 in the guide collar 64 snaps into position within the groove 156. At this time, the assembly is complete and permanent and no disconnection is possible.
  • terminal end fittings 12 and 14 i.e., the lock housing and the slack take-up member, are useable without modification in connection with the alternate form of armored cable 210 which is illustrated in FIG. 1.
  • the stranded cable proper and the two end fittings remain precisely the same as heretofore described, the only difference in the lock assembly as a whole being in the use of a different form of armored cable.
  • all of the armor sections with the exception of the use of a single terminal ball member 22, are identical and each is in the form ofa tubular body 212 which is of cylindrical design and presents male and female end regions.
  • the male end region is in the form of an axially extending reduced post-like section 214 on the outer end of which there is formed semi-spherical ball fragment 216, while the female end region embodies a semi-spherical socket 218 which is conformable in shape to that of the ball fragment 216.
  • a straight cylindrical bore 220 extends through the ball fragment 216 and the post-like section 214 and opens into the small end of a frusto-conical counterbore 222. The large end of such counterbore opens into the semi-spherical socket 218.
  • tubular bodies 212 of the armored cable 210 are threaded onto the stranded steel cable 20 in end-to-end fashion so that each ball fragment 216 is received in a socket 218 in the next adjacent tubular body 212.
  • a lock assembly comprising an elongated flexible armored cable having a fixed end and a free end and provided with a series of longitudinally spaced annular locking grooves therealong, a lock housing secured to said fixed end and having therein a transverse bore for sliding reception therethrough of said free end in order to produce a closed variable size loop, said housing being formed with a cylindrical lock-receiving socket having a bottom wall with an opening which communicates with said bore, a cylinder lock fixedly disposed in said socket, said cylinder lock including a lock cylinder slidable axially in said bore and provided with a locking member on its inner end, said cylinder being movable bodily between a retracted position wherein the locking member projects through said opening and into said bore for selective engagement with said annular locking grooves, and a projected position wherein the locking member is withdrawn from said bore, spring means yieldingly biasing said cylinder to its projected position, releasable latch means effective between said lock cylinder and the wall of said bore for latching the
  • a lock assembly as set forth in claim 2 and wherein said releasable latch means comprises a latch bolt mounted for diametric sliding movement in said lock cylinder between a retracted position wherein it is disposed within the cylindrical confines of the cylinder and a projected position wherein the forward end thereof is projected radially from the cylinder, and a recess is formed in the wall of said lock-receiving socket and into which the forward end of the latch bolt extends when the lock cylinder is in its retracted position.
  • said flexible armored cable comprises a stranded steel cable having one end thereof fixedly secured to said lock housing, and a plurality of tubular sheathe-like armor sections slidingly received over said cable and bridging the distance between said free end and said fixed end, said armor sections including alternately arranged ball members presenting convex frustospherical bearing surfaces at their opposite ends and cylindrical socket members presenting concave frustospherical bearing surfaces at their opposite ends, each ball member being provided with a cylindrical bore therethrough which communicates with frusto-conical recesses at its opposite ends, the steel cable passing through said bore and recesses and the recesses constituting clearance areas for the cable to enhance the extent of angular flexing of the armored cable.
  • each socket member is formed with a cylindrical bore therethrough which communicates with frusto-conical recesses at its opposite ends, the steel cable passing through said latter bore and recesses and the recesses constituting clearance areas for the cable to enhance the extent of angular flexing of the armored cable.
  • a lock assembly comprising an elongated flexible stranded cable having a fixed end and a free end, a plurality of tubular armor sections telescopically and loosely received over said cable in end-to-end contiguity, thus establishing an armored cable assembly, adjacent armor sections defining therebetween ball and socket connections which collectively permit articulation of the armored cable assembly, said armor sections defining a series of longitudinally spaced external annular locking grooves, a lock housing on the fixed end of said cable, a terminal end fitting on the free end of the cable, said lock housing being provided with a transverse bore for sliding reception therethrough of said free end of the cable together with the associated armor sections to produce a closed variable size loop, key-actuated locking meansin said lock housing and including a retractable locking flange designed for selective projection into said grooves to thus establish different size loops, said lock housing being formed with a cylindrical socket the wall of which is provided with an internal annular groove therearound, a cylindrical anchoring collar mounted on said free end of the cable and
  • a lock assembly comprising an elongated flexible stranded cable having a fixed end and a free end, a plurality of tubular armor sections telescopically and loosely received over said cable in end-to-end contiguity, thus establishing an armored cable assembly, adjacent armor sections defining therebetween ball and socket connections which collectively permit articulation of the armored cable assembly, said armor sections defining a series of longitudinally spaced external annular locking grooves, a lock housing on the fixed end of said cable, a terminal end fitting on the free end of the cable, said lock housing being provided with a transverse bore for sliding reception therethrough of said free end of the cable together with the associated armor sections to produce a closed variable size loop, key-actuated locking means in said lock housing and including a retractable locking flange designed for selective projection into said grooves to thus establish different size loops, said terminal end fitting being in the form of a cup-shaped member having a relatively deep socket therein and provided therearound with an internal annular groove into which the free end of said

Landscapes

  • Flexible Shafts (AREA)

Abstract

An armored ball and socket-type cable having a first end fitting in the form of a lock housing which establishes a slip joint for the medial region of the cable and a second end fitting which establishes a lost motion take-up device for the cable. Novel anchor means are provided for permanently securing the two end fittings to the ends of the cable, a novel cylinder lock is associated with the lock housing (first end fitting) for removably projecting a locking bolt into locking engagement with selected armor sections, and two forms of armor sections are capable of being used in connection with the stranded cable proper.

Description

United States Patent [191 Balicki [111 3,765,196 Oct. 16, 1973 ARMORED CABLE-TYPE LOCK ASSEMBLY WITH SPECIAL END FITTINGS FOR THE ARMORED CABLE THEREOF Stanley C. Balicki, 2834 N Commerce St., Franklin Park, 111. 60131 Filed: June 28. 1972 Appl. No.; 266,984
Inventor:
References Cited UNITED STATES PATENTS 8/1928 Johnson 1 1/1970 Guenther 10/ 1972 FOREIGN PATENTS OR APPLICATIONS 962,322 4/ 1957 Gennany 70/49 Primary ExaminerRobert L. Wolfe Attorney-Norman H. Gerlach 5 7] ABSTRACT An armored ball and socket-type cable having a first end fitting in the form of a lock housing which establishes a slip joint for the medial region of the cable and a second end fitting which establishes a lost motion takeup device for the cable. Novel anchor means are provided for permanently securing the two end fittings to the ends of the cable, a novel cylinder lock is associated with the lock housing (first end fitting) for removably projecting a locking bolt into locking engagement with selected armor sections, and two forms of armor sections are capable of being used in connection with the stranded cable proper.
13 Claims, 4 Drawing Figures ARMORED CABLE-TYPE LOCK ASSEMBLY WITH SPECIAL END FITTINGS FOR THE ARMORED CABLE THEREOF The present invention relates to an armored cabletype lock assembly of the general type which is shown and described in my U.S. Pat. No. 3,696,647, granted on Oct. 10, I972, and entitled CABLE-TYPE LOCK ASSEMBLY," the present lock assembly being an improvement over that which is disclosed in such patent.
The present lock assembly is designed primarily for useas a tie-down lock for a motorcycle, a go-cart, a mini-bike, a snowmobile, or any other wheeled sporting vehicle, as well as for a sail or a motor boat, and in this respect it does not differ from the lock assembly of my aforementioned patent. Structurally, insofar as the cable armor per se of the present invention is concerned, it is similar to that of the patented lock assembly in that it consists of ball and socket members which are threaded onto a flexible stranded-steel cable. Two forms of cable armor are disclosed herein, each being similar to a corresponding form of armor disclosed in said patent but possessing certain inherent advantages, principal among which is the ability of the cable to make a relatively sharp bend or curve without binding of the armor sections (ball and socket members).
Functionally also there is a similarity between the patented and the present cable-type lock assemblies in that each includes a pair of end fittings, one of which is in the form of a lock housing which establishes a slip joint for the medial region ofthe armor sections and the other of which establishes a lost motion take-up device for said sections. Furthermore, each lock assembly is capable of being put to use for tie-down purposes by threading an end of the armored cable through a transverse bore in the lock housing in order to establish a variable size loop, and then locking such medial region of the armored cable in a fixed position when the deand more effective means for anchoring the opposite ends of the cable in the end fittings, i.e., the lock housing and the lost motion take-up device and, in addition, a novel key-operated lock housing and cylinder lock combination by means of which the lock housing may be caused to interlock with the cable armor at selected regions therealong.
Insofar as the anchoring means are concerned, whereas such means in the case of the patented lock assembly consist of captured tubular sheet metal ferrules which are either crimped or soldered to the ends of the cables after the latter are initially threaded through the respective end fittings, i.e., the lock housing and the lost motion take-up device, the present anchoring means consist of machined anchor members in the form of metal collars which may be affixed to the ends of the cable prior to application of the lock housing and the take-up device to the cable. Thereafter, the anchor members are applied to the end fittings by a pushin-and-snap action, afterwhich the assembly is a complete and permanent one which cannot be taken apart except by the use of a cutting torch or the like. This anchoring and assembly arrangement enables the cable and its armor to be fashionedand assembled for inventory purposes in predetermined lengths so that individual customer requirements may be attended to on a retail basis by selecting the desired armored cable length and then snapping the two end fittings in position on the armored cable to effect a permanent and selfcontained lock assembly.
.Insofar as the key-operated lock housing and cylinder lock combination is concerned, whereas the patented combination embodies a positive action, cam-operated withdrawal means for disengaging a locking flange from the cable armor sections in the vicinity of the slip joint, the present lock housing and cylinder lock combination employs a pop-up type of cylinder lock which,
when it moves bodily from a seated and latched position to its popped-out position, withdraws the locking flange from engagement with the cable armor sections. The cylinder lock is maintained in its seated position by means of a slidable latch bolt which, when withdrawn from a projected latching position under the influence of a key and tumbler arrangement, allows the entire cylinder lock to shift bodily to its popped-out position, thereby releasing the cable armor for sliding movement through the lock housing. The advantages of such a lock housing and cylinder'arrangement will be set forth presently, the principal advantage being in the con struction of a simpler and less costly combination of parts and one which may be inventoried separately from the lock housing and snapped permanently into position in such housing at the time of retail sales.
The provision of an armored cable-type lock assembly such as has briefly been outlined above, and possessing the stated advantages, constitutes the principal object of the present invention. Numerous other objects and advantages, not at this time enumerated, will become readily apparent from a consideration of the following detailed description.
The invention consists in the several novel features which are described herein and are more specifically defined by the claims at the conclusion hereof.
In the accompanying single sheet of drawings forming a part of this specification, one illustrative embodiment of the invention, but with two forms of cable armor, is shown.
In these drawings:
FIG. 1 is a fragmentary sectional view, partly in elevation, taken centrally and longitudinally through the proximate or locking end region of an armored cabletype lock assembly embodying the present invention;
FIG. 2 is a transverse sectional view taken on the line 22 of FIG. I;
FIG. 3 is a fragmentary sectional view similar to FIG. I but taken on a central longitudinal plane which is at a right angle to the sectional plane of FIG. 1, and showing the armored cable, with a different form of cable armor, threaded through the lock housing and locked in position therein; and
FIG. 4 is a fragmentary sectional view, partly in ele vation, taken centrally and longitudinally through the distal end region of the cable-type lock assembly.
Referring now to the drawings in detail and in particular to FIGS. 1 to 3, inclusive, the cable-type lock assembly of the present invention is comprised essentially of four separately manufactured and assembled components, namely, an armored cable, two forms of which are designated by the reference numerals 210 and in FIGS. 1 and 3, respectively, an end fitting in the form of a lock housing 12 at one end of the armored cable, a second or terminal end fitting in the form of a lost motion or slack take-up member 14 at the other end of the armored cable, and a cylinder lock 16 which is permanently received within the lock housing 12.
For descriptive purposes herein, the end of the armored cable to which the lock housing 12 is applied will be referred to as the fixed end, while the other end of the armored cable to which the terminal end fitting 14 is applied will be referred to as the free" end.
Considering first the nature of the armored cable 10 which is illustrated in FIG. 3, the cable is comprised of a central length of flexible stranded steel cable 20 over which there is threaded series of tubular sheathe-like armor sections including alternately arranged male ball members 22 and female socket members 24. All of the ball members 22 are identical in configuration and are in the form of spherical beads of relatively massive construction. Each ball member presents an outer spherical surface which is interrupted by a central bore 26. The latter extends diametrically through the member and receives the stranded cable 20. The opposite ends of the bore 26 in each ball member 22 communicate with frusto-conical recesses 28 which perform a function that will be set forth presently. The diameter of the bores 26 is slightly greater than the outside diameter of the stranded cable 20 with the result that the ball members 22 will slide easily along the cable during cable and ball member assembly operations and with the further result that after the assembly is complete the ball members 22 will not bind against the cable.
All of the socket members 24 are identical and each is in the form of a tubular bead having an axial bore 30 extending therethrough. At each end of the bore 30 there is formed a frusto-conical recess 32, the outer rim of which communicates with a semi-sopherical socket 34 of annular configuration, the curvature of the socket being conformable to the curvature of the outer surface of the adjacent ball member 22 in the alternate arrangement of ball and socket members 22 and 24. The effective depth of each socket 34 is slightly less than the radius of a ball member 22 and, consequently, an intervening ball member 22 between two adjacent socket members 24, when seated within the opposed sockets 34, will present a limited exposed peripheral portion of the ball member and will maintain the adjacent socket members slightly spaced apart and thus establish a flexible ball and socket joint between such adjacent socket members. As shown in FIG. 4, the socket members 24 which extend inwardly an appreciable distance from the terminal end fitting or slack take-up member 14 are provided with medial circumferential locking grooves 36, the purpose of which is to establish a series of locking shoulders for cooperation with a locking flange which is associated with the cylinder lock 16 in a manner that will be described subsequently. It is to be noted at this point that the bores 26 in the ball members 22 and the bores 30 in the socket members 24 are of relatively short axial extent, specifically on the order of approximately twice the diameter of the bores. The slant angle of the frusto-conical recesses 28 at the ends of the bores in the ball members 22 and of the frusto-conical recesses 32 at the ends of the bores 30 in the socket members 24 is on the order of 30, the various recesses constituting clearance areas which allow for relatively steep angular bends or curves in the assembled armored cable since there are no sharp rim edges that ordinarily would contact the stranded cable 20 in the absence of such frusto-conical recesses. Whereas, in the absence of such clearance recesses, an angular flexion of approximately would be possible, albeit, not without some danger of cable cutting, when the frusto- conical recesses 28 and 32 are provided a flexion of as much as 55 can be effected with no danger of cable cutting, these figures being based on the illustrated form of armored cable 10 as shown in FIGS. 3 and 4 of the drawings. It will be understood that by varying the depth and angularity of the frusto- conical recesses 28 and 32 and of the semispherical sockets 34, the maximum curvature of which the armored cable 10 is capable will be varied accordingly.
It will be understood, of course, that the effective length of any given armored cable 10 will be a direct function of the number of ball members 22 and socket members 24 which are employed on the stranded steel cable 20. As previously stated, these members 22 and 24 are alternately threaded on the cable 20, there being one more ball member than there are socket members so that each end of the cable armor will present one of the ball members 22. After the requisite number of ball and socket members have been threaded on the stranded cable 20 so as substantially to cover the cable from end to end, each end of the cable will have applied thereto a tubular machined retaining collar. One of these retaining collars is designated by the reference numeral 40 in FIG. 3 and is operatively applied to the lock housing 12, and the other of the two collars is designated by the numeral 42 in H6. 4 and is operatively applied to the slack take-up member 14.
The collar 40 is of cylindrical configuration and has formed therein a frusto-conical axial bore 44 of relatively small slant angle. The inner end of the collar 40 is formed with a semi-spherical socket 46 which is commensurate in diameter to the diameter of the adjacent ball member 22. The outer cylindrical surface of the collar 40 is provided with a medial external annular groove 48 which cooperates with a snap ring 50 in securing the collar 40 permanently within the confines of the lock housing 12 in a manner that will be made clear presently. The collar 40 is applied to the adjacent or fixed end of the stranded cable 20 by initially inserting such end of the cable into the semi-spherical socket 46 and then through the bore 44 until it becomes flush with the outer end face 52 of the collar, after which a plurality of tapered wedges 54 are driven endwise into the adjacent end of the cable in order to spread the steel strands thereof outwardly and against the tapered wall of the bore 44 much in the manner that a wedge is driven into the distal end of a wooden hammer handle in order fixedly to maintain the same in the eye of the head of the hammer. By this expedient, tension which may be applied to the cable 20 will enhance the wedging action of the wedges 54 and prevent withdrawal of the adjacent end of the cable 20 from the bore 44 in the retaining collar 40.
The collar 42 (see FlG. 4) is similar to the collar 40 except for the fact that it is of somewhat smaller diameter and is devoid of an external annular groove therearound, as well as of a semi-spherical socket in its inner end. It is applied to the adjacent or free end of the cable 20 in the same manner as the collar 40 is applied to the fixed end of the cable, i.e., by means of tapered wedges 56 which force the cable strands against the wall of a tapered or frusto-conical axial bore 58 which is formed in and extends through the collar 42. Said collar 42 constitutes a reaction member for one end of a helical compression spring 60 which surrounds the free end of the stranded steel cable 20, the other end of the spring bearing against one end face 62 of a guide collar 64. The other end face of the guide collar is formed with a semi-spherical recess 66 which bears against the adjacent ball member 22 of the armored cable. The guide collar 64 has formed therearound an external annular groove 68 within which the inner marginal portion of a snap ring 70 is seated, the groove. and snap ring being designed for locking engagement with the terminal end member or slack take-up fitting 1.4 in a manner that will be set forth presently.
It is to be understood that at the time of assembly of the armored cable 10, the collar 42 is applied to the free end of the cable in such a manner that the compression spring 60 is caused to exist under a slight degree of compression so that the guide collar 64 is forced yieldingly'against the adjacent ball member 22 with a moderate degree of pressure, thus transmitting pressure successively from ball member to socket member and vice versa throughout the entire length of the armored cable, the two retaining collars 42 and constituting terminal reaction members which assimilate or contain such pressure.
The thus completed or assembled armored cable 10 constitutes an individualor unitary cable lock component which may be inventoried by the retailer in predetermined lengths for subsequent application thereto of the two end fittings, i.e., the lock housing 12 and the slack take-up member 14, the former being applied to the collar 40 and the latter being applied to the guide collar 64. I
The lock housing 12 isgenerally in the form of a pear-shaped body, the large end of which has formed therein a cylindrical lock-receiving socket 72, while the small end has formed therein a socket 74, the two sockets being coaxial with the lock housing 12. The socket 74 is designed for reception of the retaining collar 40 on the fixed end of the stranded cable 20. Said socket 74 is provided with a semi-spherical countersocket 76 in the rim or outer end region thereof, such countersocket being designed for mating cooperation withthe adjacent ball member 22 of the armored cable 10. The socket 74 is provided with a medially disposed continuous annular groove 78 which registers with the external annular groove 48 in the collar 40 so that when the latter collar is inserted endwise in the socket 74 of the lock housing 12 the snap ring will fall in place between the two grooves and thus permanently anchor the fixed end of the armored cable 10 to the lock housing 12.
The central portion of the lock housing 12 is provided with a transverse bore 80, the diameter ofthe bore being slightly greater than the external diameter of the various socket members 24. This transverse bore 80 is designed for reception therethrough of a medial region of the armored cable 10 in order that a variable size loop may be established for vehicle-locking purposes, as, for example, when the free end of the armored cable is passed through the frame or wheel of a motorcycle and then threaded through the bore 80 as shown in FIG. 3. After pulling the cable through the bore until the desired size of loop is attained, the cylinder lock 16 is manipulated to lock the armored cable 10 to the lock housing 12.
It is to be noted that in connection with any given linearly straight length or span of the armored cable 10, the socket members 24, in combination with the intervening ball members 22, define a series of annular locking grooves 82 (see FIGS. 3 and and are designed for selective cooperation with a locking flange 84 which is associated with the cylinder lock 16 and the nature of which will be set forth presently. When this locking flange is projected forwardly from the inner end of the cylinder lock 16, it is capable of entering a selected groove 82 or 36 in order securely to lock the lock housing 12 in a fixed axial position along the armored cable 10. When the locking flange 84 is withdrawn from the selected groove 82 or 36 and into the confines of the lock housing 12, the armored cable is released and the lock housing 12 may be slid therealong into a position wherein it is free with respect to the free end of the armored cable 10.
The cylinder lock 16 is of the pop-up axial tumbler type and involves in its general organization a composite lock cylinder embodying two telescopic cylinder parts. The latter consist of a front part 86 and a cupshaped rear part 88, the former part being telescopically received within the latter part and being fixedly and permanently secured thereto by means of a pair of coaxial radially extending anchor or drive pins 98. The two lock cylinder parts 86 and 88 are formed with outwardly extending annular rim flanges 92 and 94 which define therebetween an annular recess 96. The latter has disposed therein the inner portion of a snap ring 98. The outer portion of said snap ring seats within an annular internal groove which is formed in the wall of the cylindrical lock-receiving socket 72 in the large end of the lock housing 12. The entire lock cylinder 16 is shiftable bodily as a unit between a retracted position within the socket 72 wherein the snap ring 98 engages the rim flange 86 of the front part 86, and a projected position wherein the snap ring 98 engages the rim flange 94 of the rear part 88, such position being shown in dotted lines in FIG. 1. Two helical compression springs 102 are received in small sockets 104 in the rear or inner end face of the rear cylinder part 88 and bear at their inner ends against the bottom wall 186 of the socket 72, the purpose of such spring being yieldingly to urge the cylinder lock 16 into its projected position. The previously mentioned locking flange 84 is integrally formed on the rear end of the rear cylinder part 88 and is of sharp right-angle configuration in cross section in order that it will positively engage within a selected locking groove 82 or 36 with no danger of slipping under the influence of armored cable tension. Said locking flange 84 projects through a diametrically disposed slot 108 which is formed in the bottom wall 106 of the socket 72. The distal edge of the flange 84 is recessed on an arcuate bias as indicated at 110 in FIG. 1 so that when the lock cylinder 16 is in its retracted position within the confines of the socket 72, the locking flange will be projected into a selected locking groove 82 or 36 of the armored cable 18 and the arcuate edge or relief area of the locking flange will mate with the spherical outer surface of the adjacent ball member 22 of the bottom of the groove 36, depending on whether the flange in one of the grooves 86 on one of the grooves 36.
The cylinder lock 16 further includes a rotatable barrel part 112 which is disposed and rotatably mounted in the composite lock cylinder and has an outwardly extending annular flange 114. The latter, in combination with a fixed inner barrel part 115, establishes an interfacial plane 116 which is normally intersected by a series of split, spring-biased, axial tumblers 118 as is conventional in connection with an axial tumbler type lock. When all of the splits of the split tumblers 118 lie in the common interfacial plane 116, the outer barrel part 112 is capable of being rotated, otherwise not. The inner barrel part 115 is maintained in fixed relation with the front and rear parts 86 and 88 of the composite lock cylinder by the anchor or drive pins 90 (see FIG. 3). Rotation of said outer barrel part 112 is accomplished under the control of a key 120 having a tubular body portion 122 which is provided with tumblerdisplacing shoulders 124 and a manipulating wing 126. The body portion 112 of the key 120 is telescopically receivable over the outer end of the outer barrel part 112 and, when so received, the shoulders 124 serve to bring the various tumblers 118 to their positions of lock release as is customary with a conventional axial tunibler type lock.
Means are provided for releasably latching the cylinder lock 16 in its retracted position within the socket 72, this position serving to project the locking flange 84 through the slot 108 for cable-locking purposes as previously described. This retracted position of the cylinder lock 16 may thus be regarded as'the locked" position of the lock housing 12, although it is not necessarily the locked condition of the lock cylinder 16. Similarly, the projected or popped-out" position of the cylinder lock 16 may be regarded as the unlocked condition of the lock housing 12 although it does not necessarily represent the unlocked condition of the cylinder lock.
The means for releasably latching the cylinder lock 16 in its retracted position embodies a cylindrical latch bolt 130 which is longitudinally slidable in a cylindrical bore 132 in the inner end portion of the cup-shaped rear cylinder part 88. The bore 132 extends transversely of said rear cylinder part 88 and a portion of its wall intersects the bottom wall of the rear cylinder part 88 so that the upper or outer portion of the latch bolt 130, as viewed in FIG. 3, is exposed to the lower or inner end of the rotatable barrel part 112. A small eccentric pin 134 on the lower or inner end of the barrel part 112 projects into a circular recess 136 (see FIG. 2) which is formed in the flattened upper or outer portion of the latch bolt 130 and thus provides a lost motion interlock for translating rotational movement of the barrel part 112 into longitudinal sliding movement of the latch bolt 130. A helical compression spring 140 extends into a longitudinal socket 142 in the inner end of the latch bolt 130 and serves yieldingly to urge the bolt to a projected position wherein the outer or distal end thereof enters a recess 144 (see FIGS. 1 and 3) which is cut in the cylindrical wall of the bore 72 in the lock housing 12.
The end fitting or slack take-up member 14 is shown in FIG. 4 and it consists of an elongated thimble-like member which, in effect, constitutes a terminal armor section and defines a relatively deep socket 150. An enlarged counter-socket 152 in the lower or open end region of the thimble-like member defines with the socket 150 an annular shoulder 154 in the medial region of said thimble-like member. The countersocket 152 is formed with an annular snap ring-receiving groove 156, the function of which will become apparent presently. The rim region of the slack take-up member 14 is formed with semi-spherical recess 158 of annular configuration, this recess being designed for mating engagement with the adjacent ball member 22 of the armored cable 10.
The end fitting or slack take-up device 14 is adapted to be manufactured in quantity and stocked by a retailer who may apply one such fitting to each armored cable at the time the latter is sold to a customer. To assemble the end fitting 14 on the cable, the cableattached collar 42 is pushed into the bore 52 until such time as the snap ring which is disposed within the annular groove 68 in the guide collar 64 snaps into position within the groove 156. At this time, the assembly is complete and permanent and no disconnection is possible.
In the operation of the cylinder lock 16, assuming that the lock is in its retracted position within the confines of the bore 72, and that the latch bolt 130 is in its projected position so that it extends into the recess 44 in the wall of the bore 72, insertion of the key into the cylinder lock will cause the various split tumblers to shift axially so that the splits defined thereby lie in the aforementioned interfacial plane 116 of the rotatable and fixed barrel parts 112 and 115, thereby permitting turning of the key and together with the rotatable barrel part 112. Such rotation of the barrel part 112 will shift the position of the small eccentric pin 134, and the latter will ride against the circular edge of the recess 136 and, by a camming action, withdraw the outer or distal end of the latch bolt from the recess 144. As soon as the latch bolt 130 clears the downwardnly facing shoulder which is afforded by said recess 144, the two springs 102 will project the entire cylinder lock 16 upwardly to the dotted-line position in which it is shown in FIG. 1, thereby withdrawing the locking flange 84 from the particular locking groove 82 or 36 in which it may be seated and freeing the lock housing 12 from the medial region of the armored cable 10 for sliding therealong in either direction. his to be noted that during rotation of the barrel part 112, the mating locking flange 84 and the elongated slot 108 through which it projects prevent turning of the composite cylinder 86, 88 in the bore 72.
It is also to be noted that when the cylinder lock 16 moves bodily toward its raised dotted-line position, the extreme distal end of the latch bolt rides on the smooth cylindrical wall of the socket 72, the bolt remaining in its retracted position against the yielding or biasing action of the compression spring 140. The key 120 may be withdrawn from the cylinder lock 16 at any time and ordinarily after the cylinder lock has moved to its raised or popped-out" position, the key will be removed and the lock housing will thus remain in its unlocked condition until such time as it is again desired to engage the housing with the armored cable. At this time, it is necessary merely to adjust the cable 10 in the transverse bore 80 of the lock housing 12 until the locking flange 84 is brought into register with the desired locking groove 82 or 36, as the case may be, at which time the lock cylinder 16 will be pushed manually to its retracted position within the bore 72. As soon as this occurs, the latch bolt 130 will snap into its projected position and enter the recess 144 in order thus to maintain the cylinder lock in such retracted position with the locking flange 84 in interlocking engagement with the selected locking groove 82 or 36.
The above-described terminal end fittings 12 and 14, i.e., the lock housing and the slack take-up member, are useable without modification in connection with the alternate form of armored cable 210 which is illustrated in FIG. 1. When so used, the stranded cable proper and the two end fittings remain precisely the same as heretofore described, the only difference in the lock assembly as a whole being in the use of a different form of armored cable. Instead of employing male ball members 22 and separate female socket members 24, all of the armor sections with the exception of the use of a single terminal ball member 22, are identical and each is in the form ofa tubular body 212 which is of cylindrical design and presents male and female end regions. The male end region is in the form of an axially extending reduced post-like section 214 on the outer end of which there is formed semi-spherical ball fragment 216, while the female end region embodies a semi-spherical socket 218 which is conformable in shape to that of the ball fragment 216. A straight cylindrical bore 220 extends through the ball fragment 216 and the post-like section 214 and opens into the small end of a frusto-conical counterbore 222. The large end of such counterbore opens into the semi-spherical socket 218. v
The tubular bodies 212 of the armored cable 210 are threaded onto the stranded steel cable 20 in end-to-end fashion so that each ball fragment 216 is received in a socket 218 in the next adjacent tubular body 212.
When the cable is placed under tension by reason of assembly of the terminal end fitting (slack take-up member 14), a universal ball and socket joint is established between each pair of adjacent bodies 212. The frustoconical counterbores 222 function in the manner of the frusto-conical recesses 32 of the ball members 22 of the armored cable 10 v Since the female end of one of the tubular bodies 212 opposes the lock housing 12, it is necessary to inte'rpose one of the ball members 22 between such tubular body and the lock housing, such ball member mating with the adjacent spherical recess 76 of the lock housing 12 and the adjacent semi-spherical socket 218 of said one tubular body 212.
The invention is not to be limtied to the exact arrangement of parts shown in the accompanying drawings or described in this specification as various changes in the details of construction may be resorted to without departing from the spirit or scope of the invention. Therefore, only insofar as the invention is particularly pointed out in the accompanying claims is the same to be limited.
Having thus described the invention what I claim as new and desire to secure by letters patent is:
1. A lock assembly comprising an elongated flexible armored cable having a fixed end and a free end and provided with a series of longitudinally spaced annular locking grooves therealong, a lock housing secured to said fixed end and having therein a transverse bore for sliding reception therethrough of said free end in order to produce a closed variable size loop, said housing being formed with a cylindrical lock-receiving socket having a bottom wall with an opening which communicates with said bore, a cylinder lock fixedly disposed in said socket, said cylinder lock including a lock cylinder slidable axially in said bore and provided with a locking member on its inner end, said cylinder being movable bodily between a retracted position wherein the locking member projects through said opening and into said bore for selective engagement with said annular locking grooves, and a projected position wherein the locking member is withdrawn from said bore, spring means yieldingly biasing said cylinder to its projected position, releasable latch means effective between said lock cylinder and the wall of said bore for latching the cylinder in its retracted position, and key-actuated means dis posed within said lock cylinder for releasing said latch means.
2. A lock assembly as set forth in claim 1 and wherein the opening in the bottom wall of said lock-receiving socket is in the form of a diametrically extending slot, and the locking member is in the form of a flat-sided flange which is slidable in said slot and thus prevents turning movement of the lock cylinder within said lockreceiving socket.
3. A lock assembly as set forth in claim 2 and wherein said releasable latch means comprises a latch bolt mounted for diametric sliding movement in said lock cylinder between a retracted position wherein it is disposed within the cylindrical confines of the cylinder and a projected position wherein the forward end thereof is projected radially from the cylinder, and a recess is formed in the wall of said lock-receiving socket and into which the forward end of the latch bolt extends when the lock cylinder is in its retracted position.
4. A lock assembly as set forth in claim 2 and wherein said lock cylinder is provided with spaced apart rim flanges which define therebetween an annular recess, and a snap ring is disposed within said recess and seats within an annular internal annular groove in the wall of said lock-receiving bore and serves to maintain the lock cylinder permanently in position within said latter bore.
5. A lock assembly as set forth in claim 2 and wherein said lock cylinder is of a composite nature and is comprised of inner rear and outer front cup-shaped telescopic sections which are maintained in their fixed telescopic relationship by means of radial drive pins which pass through the walls of such sections.
6. A lock assembly as set forth in claim 2 and wherein said key-actuated means comprises fixed and rotatable barrel parts within said lock cylinder, an eccentric pin which is connected to said rotatable barrel part and projects into a circular recess in the latch bolt, and a key-responsive split tumbler mechanism for releasably locking the rotatable barrel part to the fixed barrel part.
7. A lock assembly as set forth in claim 1 and wherein said flexible armored cable comprises a stranded steel cable having one end thereof fixedly secured to said lock housing, and a plurality of tubular sheathe-like armor sections slidingly received over said cable and bridging the distance between said free end and said fixed end, said armor sections including alternately arranged ball members presenting convex frustospherical bearing surfaces at their opposite ends and cylindrical socket members presenting concave frustospherical bearing surfaces at their opposite ends, each ball member being provided with a cylindrical bore therethrough which communicates with frusto-conical recesses at its opposite ends, the steel cable passing through said bore and recesses and the recesses constituting clearance areas for the cable to enhance the extent of angular flexing of the armored cable.
8. A lock assembly as set forth in claim 7 and wherein each socket member is formed with a cylindrical bore therethrough which communicates with frusto-conical recesses at its opposite ends, the steel cable passing through said latter bore and recesses and the recesses constituting clearance areas for the cable to enhance the extent of angular flexing of the armored cable.
9. A lock assembly as set forth inclaim 7 and wherein said armor sections further include a terminal end section into which the end region of the steel cable which is remote from the lock housing extends, and a helical compression spring which encircules said end region, bears at one end against the cable and at its other end against said terminal end section so as to place the cable under tension and draw adjacent armor sections hard against each other.
10. A lock assembly comprising an elongated flexible stranded cable having a fixed end and a free end, a plurality of tubular armor sections telescopically and loosely received over said cable in end-to-end contiguity, thus establishing an armored cable assembly, adjacent armor sections defining therebetween ball and socket connections which collectively permit articulation of the armored cable assembly, said armor sections defining a series of longitudinally spaced external annular locking grooves, a lock housing on the fixed end of said cable, a terminal end fitting on the free end of the cable, said lock housing being provided with a transverse bore for sliding reception therethrough of said free end of the cable together with the associated armor sections to produce a closed variable size loop, key-actuated locking meansin said lock housing and including a retractable locking flange designed for selective projection into said grooves to thus establish different size loops, said lock housing being formed with a cylindrical socket the wall of which is provided with an internal annular groove therearound, a cylindrical anchoring collar mounted on said free end of the cable and provided therearound with an external annular groove, said collar fitting snugly within said cylindrical socket with said internal and external grooves in cir cumferential register, and a split snap ring seated within the last-mentioned grooves and serving permanently to retain said collar within said socket.
11. A lock assembly as set forth in claim 10 and wherein said anchoring collar is formed with a frustoconical bore into which said free end of the stranded cable projects, and a tapered wedge disposed within said frusto-conical bore and serving to spread the strands of said cable apart and against the wall of said frusto-conical bore in order thus fixedly to secure the collar on said free end of the cable.
12. A lock assembly comprising an elongated flexible stranded cable having a fixed end and a free end, a plurality of tubular armor sections telescopically and loosely received over said cable in end-to-end contiguity, thus establishing an armored cable assembly, adjacent armor sections defining therebetween ball and socket connections which collectively permit articulation of the armored cable assembly, said armor sections defining a series of longitudinally spaced external annular locking grooves, a lock housing on the fixed end of said cable, a terminal end fitting on the free end of the cable, said lock housing being provided with a transverse bore for sliding reception therethrough of said free end of the cable together with the associated armor sections to produce a closed variable size loop, key-actuated locking means in said lock housing and including a retractable locking flange designed for selective projection into said grooves to thus establish different size loops, said terminal end fitting being in the form of a cup-shaped member having a relatively deep socket therein and provided therearound with an internal annular groove into which the free end of said cable projects, a reaction collar on said free end of the cable and slidable within said socket, a guide collar surrounding the free end region of the cable and provided with an external annular groove therearound, said guide collar fitting snugly within said socket with said internal and external grooves in circumferential register, a split snap ring seated within said latter grooves and serving permanently to retain the guide collar within said socket, and a compression spring encircling the free end region of said cable and interposed between said reaction and guide collars and serving to take up lost motion between said guide collar and the adjacent armor sections.
13. A lock assembly as set forth in claim 12 and wherein said reaction collar is formed with a frustoconical bore into which said free end of the stranded cable projects, and a tapered wedge disposed within said frusto-conical bore and serving to spread the strands of said cable apart and against the wall of said frusto-conical bore to thus fixedly secure the collar on said free end of the cable.

Claims (13)

1. A lock assembly comprising an elongated flexible armored cable having a fixed end and a free end and provided with a series of longitudinally spaced annular locking grooves therealong, a lock housing secured to said fixed end and having therein a transverse bore for sliding reception therethrough of said free end in order to produce a closed variable size loop, said housing being formed with a cylindrical lock-receiving socket having a bottom wall with an opening which communicates with said bore, a cylinder lock fixedly disposed in said socket, said cylinder lock including a lock cylinder slidable axially in said bore and provided with a locking member on its inner end, said cylinder being movable bodily between a retracted position wherein the locking member projects through said opening and into said bore for selective engagement with said annular locking grooves, and a projected position wherein the locking member is withdrawn from said bore, spring means yieldingly biasing said cylinder to its projected position, releasable latch means effective between said lock cylinder and the wall of said bore for latching the cylinder in its retracted position, and keyactuated means disposed within said lock cylinder for releasing said latch means.
2. A lock assembly as set forth in claim 1 and wherein the opening in the bottom wall of said lock-receiving socket is in the form of a diametrically extending slot, and the locking member is in the form of a flat-sided flange which is slidable in said slot and thus prevents turning movement of the lock cylinder within said lock-receiving socket.
3. A lock assembly as set forth in claim 2 and wherein said releasable latch means comprises a latch bolt mounted for diametric sliding movement in said lock cylinder between a retracted position wherein it is disposed within the cylindrical confines of the cylinder and a projected position wherein the forward end thereof is projected radially from the cylinder, and a recess is formed in the wall of said lock-receiving socket and into which the forward end of the latch bolt extends when the lock cylinder is in its retracted position.
4. A lock assembly as set forth in claim 2 and wherein said lock cylinder is provided with spaced apart rim flanges which define therebetween an annular recess, and a snap ring is disposed within said recess and seats within an annular internal annular groove in the wall of said lock-receiving bore and serves to maintain the lock cylinder permanently in position within said latter bore.
5. A lock assembly as set forth in claim 2 and wherein said lock cylinder is of a composite nature and is comprised of inner rear and outer front cup-shaped telescopic sections which are maintained in their fixed telescopic relationship by means of radial drive pins which pass through the walls of such sections.
6. A lock assembly as set forth in claim 2 and wherein said key-actuated means comprises fixed and rotatable barrel parts within said lock cylinder, an eccentric pin which is connected to said rotatable barrel part and projects into a circular recess in the latch bolt, and a key-responsive split tumbler mechanism for releasably locking the rotatable barrel part to the fixed barrel part.
7. A lock assembly as set forth in claim 1 and wherein said flexible armored cable comprises a stranded steel cable having one end thereof fixedly secured to said lock housing, and a plurality of tubular sheathe-like armor sections slidingly received over said cable and bridging the distance between said free end and said fixed end, said armor sections including alternately arranged ball members presenting convex frusto-spherical bearing surfaces at their opposite ends and cylindrical socket members presenting concave fRusto-spherical bearing surfaces at their opposite ends, each ball member being provided with a cylindrical bore therethrough which communicates with frusto-conical recesses at its opposite ends, the steel cable passing through said bore and recesses and the recesses constituting clearance areas for the cable to enhance the extent of angular flexing of the armored cable.
8. A lock assembly as set forth in claim 7 and wherein each socket member is formed with a cylindrical bore therethrough which communicates with frusto-conical recesses at its opposite ends, the steel cable passing through said latter bore and recesses and the recesses constituting clearance areas for the cable to enhance the extent of angular flexing of the armored cable.
9. A lock assembly as set forth inclaim 7 and wherein said armor sections further include a terminal end section into which the end region of the steel cable which is remote from the lock housing extends, and a helical compression spring which encircles said end region, bears at one end against the cable and at its other end against said terminal end section so as to place the cable under tension and draw adjacent armor sections hard against each other.
10. A lock assembly comprising an elongated flexible stranded cable having a fixed end and a free end, a plurality of tubular armor sections telescopically and loosely received over said cable in end-to-end contiguity, thus establishing an armored cable assembly, adjacent armor sections defining therebetween ball and socket connections which collectively permit articulation of the armored cable assembly, said armor sections defining a series of longitudinally spaced external annular locking grooves, a lock housing on the fixed end of said cable, a terminal end fitting on the free end of the cable, said lock housing being provided with a transverse bore for sliding reception therethrough of said free end of the cable together with the associated armor sections to produce a closed variable size loop, key-actuated locking means in said lock housing and including a retractable locking flange designed for selective projection into said grooves to thus establish different size loops, said lock housing being formed with a cylindrical socket the wall of which is provided with an internal annular groove therearound, a cylindrical anchoring collar mounted on said free end of the cable and provided therearound with an external annular groove, said collar fitting snugly within said cylindrical socket with said internal and external grooves in circumferential register, and a split snap ring seated within the last-mentioned grooves and serving permanently to retain said collar within said socket.
11. A lock assembly as set forth in claim 10 and wherein said anchoring collar is formed with a frusto-conical bore into which said free end of the stranded cable projects, and a tapered wedge disposed within said frusto-conical bore and serving to spread the strands of said cable apart and against the wall of said frusto-conical bore in order thus fixedly to secure the collar on said free end of the cable.
12. A lock assembly comprising an elongated flexible stranded cable having a fixed end and a free end, a plurality of tubular armor sections telescopically and loosely received over said cable in end-to-end contiguity, thus establishing an armored cable assembly, adjacent armor sections defining therebetween ball and socket connections which collectively permit articulation of the armored cable assembly, said armor sections defining a series of longitudinally spaced external annular locking grooves, a lock housing on the fixed end of said cable, a terminal end fitting on the free end of the cable, said lock housing being provided with a transverse bore for sliding reception therethrough of said free end of the cable together with the associated armor sections to produce a closed variable size loop, key-actuated locking means in said lock housing and including a retractable locking flange designEd for selective projection into said grooves to thus establish different size loops, said terminal end fitting being in the form of a cup-shaped member having a relatively deep socket therein and provided therearound with an internal annular groove into which the free end of said cable projects, a reaction collar on said free end of the cable and slidable within said socket, a guide collar surrounding the free end region of the cable and provided with an external annular groove therearound, said guide collar fitting snugly within said socket with said internal and external grooves in circumferential register, a split snap ring seated within said latter grooves and serving permanently to retain the guide collar within said socket, and a compression spring encircling the free end region of said cable and interposed between said reaction and guide collars and serving to take up lost motion between said guide collar and the adjacent armor sections.
13. A lock assembly as set forth in claim 12 and wherein said reaction collar is formed with a frusto-conical bore into which said free end of the stranded cable projects, and a tapered wedge disposed within said frusto-conical bore and serving to spread the strands of said cable apart and against the wall of said frusto-conical bore to thus fixedly secure the collar on said free end of the cable.
US00266984A 1972-06-28 1972-06-28 Armored cable-type lock assembly with special end fittings for the armored cable thereof Expired - Lifetime US3765196A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US26698472A 1972-06-28 1972-06-28

Publications (1)

Publication Number Publication Date
US3765196A true US3765196A (en) 1973-10-16

Family

ID=23016821

Family Applications (1)

Application Number Title Priority Date Filing Date
US00266984A Expired - Lifetime US3765196A (en) 1972-06-28 1972-06-28 Armored cable-type lock assembly with special end fittings for the armored cable thereof

Country Status (2)

Country Link
US (1) US3765196A (en)
CA (1) CA949345A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933015A (en) * 1974-06-20 1976-01-20 Balicki Stanley C Armored cable-type lock assembly with special means for rendering it tamper-proof
US3980337A (en) * 1972-12-07 1976-09-14 E. J. Brooks Company Locking seal
US4854140A (en) * 1988-02-04 1989-08-08 Herman Miller, Inc. Plunger lock mechanism
FR2645495A1 (en) * 1989-04-11 1990-10-12 Bianchi Victor ANTI-BREAKING DEVICE
US4970883A (en) * 1990-01-18 1990-11-20 Johnson Curt L Lock assembly with flexible shackle
US5070712A (en) * 1990-09-27 1991-12-10 David Fox Locking device
US5568740A (en) * 1995-08-15 1996-10-29 Lin; Yung-Ta Steel wire rope lock
US5709110A (en) * 1996-10-07 1998-01-20 Greenfield; Jack Security system for a lap-top computer
US6044669A (en) * 1998-05-08 2000-04-04 Levi; Clark Strap lock
US6477870B1 (en) * 2002-01-04 2002-11-12 Jay S. Derman Cable end tubular lock
US6510717B1 (en) 2000-07-10 2003-01-28 Clark Levi Strap lock, a strap lock body for a strap lock, a strap for a strap lock and a strap lock assembly
US6725692B2 (en) 2002-09-26 2004-04-27 Weinraub Enterprises, Inc. Firearm lock assembly
US20040231376A1 (en) * 2003-05-20 2004-11-25 Se-Kure Controls, Inc . Cable security system
US20050183475A1 (en) * 2004-02-20 2005-08-25 Mo Liu Cable lock
US20050262904A1 (en) * 2004-05-27 2005-12-01 Ling Renny T Bonding lock
US20050268674A1 (en) * 2004-06-03 2005-12-08 Christopher Marszalek Apparatus, a system and a method for securing a device to a fixture
WO2006110951A1 (en) * 2005-04-19 2006-10-26 Tyson Security Pty Ltd Armoured cable assemblies, locking assemblies, mounting systems and anchors
US20080067818A1 (en) * 2006-08-09 2008-03-20 Hartwell Corporation Bifurcated latching system
US8925979B2 (en) 2006-11-30 2015-01-06 Hartwell Corporation Command latch and pin latch system
US9243428B1 (en) 2014-12-12 2016-01-26 Darrell Miracle Bicycle lock
NL2020645A (en) * 2017-04-03 2018-10-10 Diskus 186 Beteiligungs Gmbh Modular attachment element
US10196837B2 (en) 2016-09-01 2019-02-05 Schlage Lock Company Llc Ceramic spine security cable
US20190210509A1 (en) * 2018-01-09 2019-07-11 Ford Global Technologies, Llc Truck Box Cable Lock Assembly
US10472862B2 (en) * 2014-10-28 2019-11-12 Zeal Innovation Ltd. Security locks
US20210131145A1 (en) * 2019-11-01 2021-05-06 The Eastern Company Pull Through Cable Lock
US20210238891A1 (en) * 2018-05-30 2021-08-05 Legutec Iniciativas Tecnicas, S.L. Configurable safety device and procedure for its configuration
US11428029B2 (en) * 2017-03-01 2022-08-30 Carrier Corporation Collet latch
US11808060B2 (en) 2019-11-01 2023-11-07 The Eastern Company Lock with sliding lock body portions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1681409A (en) * 1927-01-31 1928-08-21 Johnson Automobile Lock Co Spare-tire lock
DE962322C (en) * 1952-10-03 1957-04-18 Raukamp & Co Cable lock
US3538725A (en) * 1968-10-31 1970-11-10 Cfc Enterprises Hood locking device
US3696647A (en) * 1970-10-09 1972-10-10 Stanley C Balicki Cable-type lock assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1681409A (en) * 1927-01-31 1928-08-21 Johnson Automobile Lock Co Spare-tire lock
DE962322C (en) * 1952-10-03 1957-04-18 Raukamp & Co Cable lock
US3538725A (en) * 1968-10-31 1970-11-10 Cfc Enterprises Hood locking device
US3696647A (en) * 1970-10-09 1972-10-10 Stanley C Balicki Cable-type lock assembly

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980337A (en) * 1972-12-07 1976-09-14 E. J. Brooks Company Locking seal
US3933015A (en) * 1974-06-20 1976-01-20 Balicki Stanley C Armored cable-type lock assembly with special means for rendering it tamper-proof
US4854140A (en) * 1988-02-04 1989-08-08 Herman Miller, Inc. Plunger lock mechanism
FR2645495A1 (en) * 1989-04-11 1990-10-12 Bianchi Victor ANTI-BREAKING DEVICE
WO1990012182A1 (en) * 1989-04-11 1990-10-18 Laumonier, Alain Anti-theft device
US5274353A (en) * 1989-04-11 1993-12-28 Alain Laumonier Anti-theft device
US4970883A (en) * 1990-01-18 1990-11-20 Johnson Curt L Lock assembly with flexible shackle
WO1991010797A1 (en) * 1990-01-18 1991-07-25 Johnson Curt L Lock assembly with flexible shackle
US5070712A (en) * 1990-09-27 1991-12-10 David Fox Locking device
US5568740A (en) * 1995-08-15 1996-10-29 Lin; Yung-Ta Steel wire rope lock
US5709110A (en) * 1996-10-07 1998-01-20 Greenfield; Jack Security system for a lap-top computer
US6044669A (en) * 1998-05-08 2000-04-04 Levi; Clark Strap lock
US6510717B1 (en) 2000-07-10 2003-01-28 Clark Levi Strap lock, a strap lock body for a strap lock, a strap for a strap lock and a strap lock assembly
US6477870B1 (en) * 2002-01-04 2002-11-12 Jay S. Derman Cable end tubular lock
US6725692B2 (en) 2002-09-26 2004-04-27 Weinraub Enterprises, Inc. Firearm lock assembly
US20040194515A1 (en) * 2002-09-26 2004-10-07 Weinraub Adam S. Firearm lock assembly
US6810698B2 (en) * 2002-09-26 2004-11-02 Weinraub Enterprises, Inc. Firearm lock assembly
US20040231376A1 (en) * 2003-05-20 2004-11-25 Se-Kure Controls, Inc . Cable security system
US7021091B2 (en) * 2003-05-20 2006-04-04 Se-Kure Controls, Inc. Cable security system
US20050183475A1 (en) * 2004-02-20 2005-08-25 Mo Liu Cable lock
US20050262904A1 (en) * 2004-05-27 2005-12-01 Ling Renny T Bonding lock
US20050268674A1 (en) * 2004-06-03 2005-12-08 Christopher Marszalek Apparatus, a system and a method for securing a device to a fixture
US7387003B2 (en) * 2004-06-03 2008-06-17 Sennco Solutions, Inc Apparatus, a system and a method for securing a device to a fixture
WO2006110951A1 (en) * 2005-04-19 2006-10-26 Tyson Security Pty Ltd Armoured cable assemblies, locking assemblies, mounting systems and anchors
US20090025433A1 (en) * 2005-04-19 2009-01-29 Tyson Security Pty Limited Armoured Cable Assemblies, Locking Assemblies, Mounting Systems and Anchors
US8429940B2 (en) 2005-04-19 2013-04-30 Tyson Security Pty Limited Armoured cable assemblies, locking assemblies, mounting systems and anchors
US20080067818A1 (en) * 2006-08-09 2008-03-20 Hartwell Corporation Bifurcated latching system
US8016327B2 (en) * 2006-08-09 2011-09-13 Hartwell Corporation Bifurcated latching system
US8925979B2 (en) 2006-11-30 2015-01-06 Hartwell Corporation Command latch and pin latch system
US10472862B2 (en) * 2014-10-28 2019-11-12 Zeal Innovation Ltd. Security locks
US9243428B1 (en) 2014-12-12 2016-01-26 Darrell Miracle Bicycle lock
US9506274B1 (en) 2014-12-12 2016-11-29 Darrell Miracle Bicycle lock
US10196837B2 (en) 2016-09-01 2019-02-05 Schlage Lock Company Llc Ceramic spine security cable
US10563431B2 (en) 2016-09-01 2020-02-18 Schlage Lock Company Llc Ceramic spine security cable
US11428029B2 (en) * 2017-03-01 2022-08-30 Carrier Corporation Collet latch
NL2020645A (en) * 2017-04-03 2018-10-10 Diskus 186 Beteiligungs Gmbh Modular attachment element
US20190210509A1 (en) * 2018-01-09 2019-07-11 Ford Global Technologies, Llc Truck Box Cable Lock Assembly
US20210238891A1 (en) * 2018-05-30 2021-08-05 Legutec Iniciativas Tecnicas, S.L. Configurable safety device and procedure for its configuration
US11866960B2 (en) * 2018-05-30 2024-01-09 Legutec Iniciativas Tecnicas, S.L. Configurable safety device and procedure for its configuration
US20210131145A1 (en) * 2019-11-01 2021-05-06 The Eastern Company Pull Through Cable Lock
US11629530B2 (en) * 2019-11-01 2023-04-18 The Eastern Company Pull through cable lock
US11808060B2 (en) 2019-11-01 2023-11-07 The Eastern Company Lock with sliding lock body portions

Also Published As

Publication number Publication date
CA949345A (en) 1974-06-18

Similar Documents

Publication Publication Date Title
US3765196A (en) Armored cable-type lock assembly with special end fittings for the armored cable thereof
US3933015A (en) Armored cable-type lock assembly with special means for rendering it tamper-proof
US3696647A (en) Cable-type lock assembly
US2800821A (en) Angularly adjustable, reversible ratchet wrench
US3975040A (en) Snap ring lock seal
US4272871A (en) Hose coupling
US4645373A (en) Quick release connectors
US3675499A (en) Coupling
PH26949A (en) Cylinder lock
US4944073A (en) Plug fastener
US2691288A (en) Padlock
US3209568A (en) Retainer for spring biased tumblers of a cylinder lock
US1347515A (en) Clasp for necklaces and the like
US2536172A (en) Ratchet wrench for turnbuckles
US3220757A (en) Quick-disconnect coupling
US3828550A (en) Coupling link
US4530559A (en) Locking means for a plug and receptacle connector
US3455142A (en) Tube bending mandrel
US3481169A (en) Releasable carrying means for a key
US2352190A (en) Padlock
DE60121863T2 (en) Coupling with locking bevels
US4014195A (en) Pillar lock
US2810595A (en) Turnbuckles
US11564460B2 (en) Key-ring
US3532368A (en) Couplings for tubes,bars and the like

Legal Events

Date Code Title Description
AS Assignment

Owner name: J. J. TOUREK MFG. CO., 1800 TOUHY AVENUE, ELK GROV

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE DEC. 2, 1983;ASSIGNOR:BALICKI, STANLEY C.;REEL/FRAME:004304/0713

Effective date: 19831202