US3762900A - Method and apparatus for making incadescent lamps - Google Patents

Method and apparatus for making incadescent lamps Download PDF

Info

Publication number
US3762900A
US3762900A US00147747A US3762900DA US3762900A US 3762900 A US3762900 A US 3762900A US 00147747 A US00147747 A US 00147747A US 3762900D A US3762900D A US 3762900DA US 3762900 A US3762900 A US 3762900A
Authority
US
United States
Prior art keywords
tubes
sleeve
heat
beads
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00147747A
Inventor
D Belknap
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3762900A publication Critical patent/US3762900A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K3/00Apparatus or processes adapted to the manufacture, installing, removal, or maintenance of incandescent lamps or parts thereof

Definitions

  • Tubular lamp envelopes have a glass center section and metal end sections heat-sealed thereto.
  • Envelopes are produced in quantity by a machine having magazines loaded with envelope components, the components being automatically assembled and united by heat sealing.
  • Envelopes of larger size may employ glass-beaded metal end sections formed before the end sections are assembled with the center section. Rotation of the envelope components while suspending the assembly from the end sections during heat sealing ensures seal uniformity and concentricity.
  • This invention relates to incandescent lamps and to methods and apparatus for manufacturing the same.
  • the invention is more particularly concerned with lamps of axial geometry, with the manufacture of filament units and lamp envelopes, and with the precise alignment of the filaments in the envelopes.
  • Lamps of microminiature size now being manufactured have an envelope comprising two pieces of metal tubing sealed into the ends of a central glass sleeve.
  • the filament consists of a tungsten helix dragged into the envelope through the end pieces and positioned so as to be approximately centered with respect to the central glass sleeve and to have an end extending into each piece of metal tubing.
  • the lamp is sealed by cold-weld pinch-offs through the pieces of metal tubing and the ends of the filament helix extending therein.
  • Such lamps are disclosed in the applicants prior application, Ser. No. 846,466, filed July 31, 1969.
  • Such lamp construction and method of filament insertion have made possible the economical production of microminiature size lamps by eliminating costly hand labor on each lamp.
  • a further object of the invention is to provide improved filament structures having accurately controllable light output and electrical characteristics and which are suited to axial-geometry lamps, not only in microminiature size but also in larger sizes as well.
  • a further object of the invention is to provide filament units which are self-centering in the lamp envelopes and which may be mass produced with different ratings for insertion in a common size envelope.
  • Another object of the invention is to provide filament structures employing continuously wound filament wire without straight wire sections, change in helix pitch, or special adaptations.
  • Still another object of the invention is to provide im proved filaments manufactured and fixed within a lamp envelope by means of cold-weld pinch-offs alone, and without affecting the vacuum tightness of envelopes.
  • Another object of the invention is to provide improved apparatus and methods for manufacturing axial-geometry lamp envelopes, with improved glass-tometal and glass-to-glass sealing and improved axialsymmetry of the central glass section.
  • Another object of the invention is to provide improved apparatus and methods for manufacturing envelopes with glass-beaded metal end sections.
  • Still another object of the invention is to provide improved automatic operation in an envelope-making machine.
  • axial-geometry incandescent lamps in accordance with the invention have a tubular envelope with a glass central section and metal end sections.
  • the filament units comprise a length of helical wire joined at its ends to relatively massive terminal members which are mechanically deformed to grip the helical wire.
  • the terminal members serve to align the filament with the axis of the envelope and are fixed to the tubular end pieces of the envelope by cold-weld pinch-offs through the end pieces.
  • the envelopes are assembled seriatim from components dispensed from magazines.
  • lengths of metal tubing which will constitute the end pieces are inserted through corresponding glass beads, which are then heat-sealed to the tubing.
  • These assemblies are then inserted into opposite ends ofa length of glass tubing, and the glass beads are heat-sealed to the glass tubing.
  • the components are rotated about their axis to ensure concentricity and uniform sealing.
  • FIGS. I 7 are fragmentary vertical sectional views illustrating the manufacture of filament units
  • FIGS. 8 12 are vertical sectional views illustrating the insertion of the filament unit within an envelope and the completion of a lamp
  • FIGS. I3 I5 are vertical sectional views of modified forms of lamps
  • FIG. I6 is a perspective view of a machine for manufacturing lamp envelopes
  • FIG. I? is a side elevation view illustrating the manner in which finished envelopes are discharged from the transport of the machine of FIG. I6;
  • FIG. I8 is a fragmentary end elevation view of the lower portion of the transport illustrating the drive pulleys
  • FIG. I9 is a fragmentary perspective view illustrating an envelope-supporting portion of the transport
  • FIG. 20 is an fragmentary end elevation view of the apparatus of FIG. 19;
  • FIG. 2I is a side elevation view illustrating a portion of the apparatus of FIG. I9 in greater detail;
  • FIG. .22 is a fragmentary end elevation view illustrating the manner in which lengths of tubing are inserted into glass beads and placed upon the transport;
  • FIG. 23 is a vertical sectional view illustrating a portion of the apparatus of FIG. 22 in greater detail
  • FIGS. 28 32 are diagrammatic views illustrating the steps in the manufacture of an envelope
  • FIG. 33 is a fragmentary end elevation view illustrating the manner in which glass beads are guided at the bottom of the bead magazine
  • FIG. 34 is a fragmentary side elevation view illustrating the guiding of a glass bead at the bottom of the bead magazine
  • FIG. 35 is a fragmentary side elevation view illustrating one form ofjunction between a filament coil and an end terminal
  • FIG. 36 is asectional view taken along line 36-36 in FIG. 35;
  • FIGQ37 is a fragmentary vertical sectional view illustrating another form of filament coil and end terminal junction.
  • FIG. 38 is a longitudinal sectional view of a lamp having a filament unit of the type shown in FIG. 35.
  • filament units of the invention may be manufactured from helically coiled filament wire 10, such as tungsten wire of 0.00025 hich diameter wound upon a mandrel of 0.002 inch diameter.
  • the helically coiled filament wire may be stored upon a spool 12 and drawn off as needed or it may be stored in individual lengths of helically coiled wire.
  • I filament wire from the spool 12 is passed through an opening in a guide 14 toward the end of a length of metal tubing 16 supported upon a table 18.
  • the tubing may be nickel metal tubing, 0.400 inch in length, 0.015 inch in O.
  • the filament wire is inserted a short distance into the end of the metal tubing, and then the smoothly rounded end of an indenting tool 20 is brought downwardly into engagement with the tubing.
  • the tool 20 deforms the tubing as shown at 22 in FIG. 3, several turns being compressed and gripped. The number of turns within the tubing is determined by the insertion.
  • the tubing is moved to the right as shown in FIG. 4 to draw a length of filament wire from the spool, and then the wire is cut or burned as indicated by the cutting tool 24 in order to sever a length of wire A from the spool supply.
  • the unit comprising the length of wire 10A and the metal tubing 16 is then placed in the position shown in FIG. 5, with the filament wire protruding through an opening in a guide 26.
  • a further length of metal tubing 28 supported upon a table 30 is moved to the right so as to insert the free end of the coiled wire 10A into the tubing 28.
  • the rounded nose of the tool is brought downwardly upon tubing 28 as shown in FIG. 6 to deform the tubing and cause it to grip the corresponding end of the wire 10A.
  • the finished filament unit 32 is shown in FIG. 7.
  • FIG. 8 illustrates the filament unit being inserted into an envelope 34 in accordance with the invention.
  • the envelope comprises a central section 36, which may be a glass sleeve of uniform wall thickness, for example, and a pair of tubular end pieces 38 and 40 which are heat-sealed to the ends of the glass section 36.
  • the wall thickness of the glass section is quite small compared to the inner diameter of the glass section, and the length of the glass section is substantially greater than its outer diameter.
  • the filament unit 32 can be inserted into the envelope 34 horizontally or dropped in vertically.
  • the filament unit may be slightly longer than the envelope to facilitate insertion, and a wire may be pinched into one end terminal to permit the filament unit to be pulled into the envelope. For vertical insertion the wire may be bent over like a hook to support the filament unit within the envelope temporarily, or one of the tubular terminals of the filament unit may be bent in this manner.
  • the relatively massive end terminals of the filament unit serve to align the filament coil with the axis of the envelope when the filament coil is positioned symmetrically within the glass section. Indenting tools of the type described above then deform the end tubes of the envelope as shown at 42 in FIG.
  • FIGS. 13 l5 illustrate three types of envelopes 34A, 34B, and 34C.
  • FIG. 13 the outer diameter of the metal end pieces is close to the inner diameter of the glass sleeve 36.
  • the outer diameter of the metal end pieces 38 and 40 is considerably smaller than the inner diameter of the glass sleeve 36A, and glass beads 48 are sealed between the end pieces 38 and 40 and the glass sleeve 36A.
  • FIG. 15 there is a still greater disparity between the maximum diameter of the glass section and the metal end pieces, the glass section having ends of reduced diameter to engage the beaded metal tubing.
  • FIG. 37 illustrates in greater detail the manner in which a metal terminal sleeve 28 may be deformed to grip the end of the helical filament wire 10A and provide excellent mechanical and electrical contact.
  • opposite sides of the metal tubing are shown deformed symmetrically.
  • FIGS. 35 and 36 illustrate cylindrical solid end terminals which are inserted into the ends of the helical coil and then flattened locally at 50 to embed the filament wire into the end terminal, the filament coil becoming flattened also at the end so as to protrude laterally from the end terminal as shown in FIG. 36.
  • a finished lamp 34D employing a filament unit 32A with solid leads 28A and 16A is shown in FIG. 38.
  • FIG. 16 illustrates a machine 52 for manufacturing envelopes in accordance with the invention.
  • the components of the envelopes are stacked in magazines.
  • magazines 54 and 56 contain stacked metal tubing for the end sections of the envelopes;
  • magazine 58 contains two stacks of glass beads;
  • magazine 60 contains a stack of glass sleeves for the central section of the envelope.
  • the transport which carries the components of the envelopes through the successive manufacturing steps is shown at 62. It comprises an arm bifurcated at the top and bottom and pivotally supported at the bottom for movement in a vertical plane about a horizontal axis.
  • the pivot pin is shown at 64 in FIG. 18 supported by a U-shaped bracket 66 upon the frame 68 of the machine.
  • the lower bifurcations 70 and 72 of the transport arm are themselves bifurcated to embrace pulleys 74 and 76 fixed to the pin 64.
  • a central pulley 78 is also fixed to the pivot pin and is driven by a belt 80 from an electric motor (not shown) as indicated in FIG. 17, thereby to drive both of pulleys 74 and 76.
  • the pivot pin 64 is free to turn within journals upon the lower bifurcations 70 and 72, so that the rotation of the pivot pin does not affect the motion of the transport arm.
  • the transport arm is moved forwardly by a rod 82 and rearwardly by a spring 84 as indicated in FIG. 17.
  • One end of the spring is attached to a tang 86 fixed to the rear surface of the transport, and the other end is fixed to the frame.
  • the rear end of rod 82 is driven by a cam ofa conventional cam drive87 indicated in FIG. 16, dash line 88 designating the connection from the cam drive to rod 82, which is supported on the frame for forward and backward reciprocating movement.
  • cam drives are conventional in the machinery arts, a typical drive being illustrated in the applicants aforesaid application Ser. No. 846,466.
  • the cam drive may comprise a horizontal shaft extending laterally at the rear of the machine and having a series of parallel cams fixed thereto, the shaft being driven by an electric motor (separate from the motor which drives the belt 80 of FIG. 17), and the cams being shaped and phased tomove cam follower shafts at the proper times in accordance with predeter mined patterns.
  • rod 82 and the associated cam causes the transport62 to move incrementally from a rearward position to a forward position, the movement being interrupted at different stations for the purpose of operations to be described. Thereafter, the transport is retracted to the rearward position bythe spring 84.
  • Pulleys 74 and 76 drive belts 90 and 92, which pass over and turn corresponding pulleys 94 and 96 at the top of the transport. (See FIGS. 16 and 17.)
  • the upper bifurcations 98 and 100 see FIG. 22) are, like the lower bifurcations, again bifurcated to embrace the pulleys 94 and 96, which are fixed to hubs 102 and 104 journaled in the upper bifurcations. See FIGS. 19, 20 and 23.
  • the hubs are provided with central bores 106 and 108 (for a purpose to be described) and carry eccentric platforms 110 and 112 at their inner ends.
  • each platform has a longitudinal groove, such as the groove 114 shown in FIGS. 1% 21, the groove constituting an extension of the corresponding hub bore.
  • a magnet 1l6 Set into the hub below the groove is a magnet 1l6, the groove being defined between a pair of plates 117 screwed to the surface of the platform.
  • each platform is provided with a vertical plate 118 supported for pivotal movement by a pin 120. This movement is limited by a slot 122 in the plate through which a stud 124 extends from the platform.
  • a spring 126 normally urges the plate 118 to the position illustrated in FIG. 21, one end of the spring being attached to a screw 128 fixed to theplatform, and the other end of the spring being fixed to a horizontal tang 130 struck from the plate 118 as shown in FIG. 20.
  • the spring 126 passes about the cylindrical surface of the platform.
  • the spring 126 being stressed during this pivotal movement of the plate relative to the platform 110 and retracting the plate to the position shown in FIG. 21 when the plate is released.
  • the plate is bifurcated to provide a slot 132 between a longer arm 134 and a shorter arm 136.
  • the plate 118 normally rotates with the platform 1111 until it is held from such movev ment as will be described later.
  • FIGS. 17 32 illustrate diagrammatically the operations performed for different positions of the transport 62. Details of the steps performed will be described hereinafter, but it is helpful to understanding of the manufacturing process of the invention to describe the steps broadly at this point.
  • metal tubing and glass beads are loaded upon the transport.
  • the tubing is shown at 38 and 46 in FIG. 28 andthe beads at 418.
  • the glass beads are heat sealed to the metal tubing. This is indicated in FIG. 29, heat being supplied by the tiny flames 138.
  • position 3 glass tubing is loaded upon the transport and the beaded metal tubing is inserted into the ends of the glass tubing as shown in FIG. 31).
  • the glass tubing is heat sealed to the beads, as indicated in FIG. 31, heat being supplied by the tiny flames 140.
  • the completed envelope unit (shown in FIG. 32) is unloaded from the transport.
  • FIGS. 22 and 23 illustrate the operation at position 1.
  • the transport 62 is stationary, with the bores 1116 and 1118 aligned with push rods 142 and 144.
  • the push rods reciprocate in the corresponding horizontal bores of blocks M6 and 148 supported upon the frame of the machine.
  • the push pins extend from bases 150 and 152 which are moved toward and away from the outer end of the blocks 116 and 14S, respectively, by rods 15% and 156.
  • the rods are mounted hor izontally on the machine frame for pivotal movement in a horizontal plane.
  • the rods extend rearwardly, where they are pivotally mounted and driven from the cam drive 67 (FIG. 16) as indicated by the dash lines 158 and 16111.
  • the base portions 151) and 152 of the push pins are engaged by yokes 162 and 164 freely piv' oted upon the corresponding rods for movement about a vertical axis.
  • yokes 162 and 164 freely piv' oted upon the corresponding rods for movement about a vertical axis.
  • FIG. 23 illustrates the push pins 142 and M4 in their retracted position, that is, with the base portions 150 and 152 remote from the blocks 1 16 and 148.
  • the push pins are ready to engage lengths of metal tubing loaded in the magazines 54 and 56.
  • a table 166 or 168 which supports the lowermost piece of metal tubing in the magazine.
  • the push pins 142 and 144 move toward each other and engage the lowermost piece of tubing in each of the magazines 54 and 56, pushing the tubing through the bores 106 and 108 of the transport and on to the grooves 114 of the transport platforms (see FIGS. 19-21) where they are held by the magnets 116.
  • the width of the grooves 114 is such as to align the tubing precisely with corresponding glass beads at the bottom of the magazine 58.
  • the bottom of the magazine 58 is provided with a cantilevered guide block 170 and a pair of forwardly extending channels 172 and 174. Openings 176 and 178 are provided below the front plate 180 of the magazine to permit glass beads to enter the channels 172 and 174.
  • the metal tubing is inserted into a glass bead at the entrance of the channels as shown in FIG. 33. Then, as the transport 62 moves forwardly from position 1 toward position 2 (FIG. 27), the.
  • the glass beads are guided by the channels, the metal tubing moving along the curved upper edges 182 and 184 of the guide block 170, the curvature of these edges (see FIG. 34) accommodating the arcuate movement of the transport 62 indicated in FIG. 27.
  • the push pins 142 and 144 must, of course, be withdrawn to the position illustrated in FIG. 23.
  • tiny flames 138 are provided for heat sealing the glass beads to the metal tubing. These flames are provided by a burner 186 (FIG. 22) located centrally of the bifurcations 98 and 100 of the transport 62 so that the transport may pass by the burner. A similar burner 188 is shown in greater detail in FIG. 16 and will be referred to hereinafter. Both burners are supported upon the longitudinally extending member 190 and are fed from a longitudinally extending gas pipe 192.
  • the glass beads 48 be uniformly and concentrically sealed to the metal tubing 38 or 40.
  • the platforms are rotated during the heat-sealing operations so that the pieces of metal tubing turn about their axes. Such rotation is indicated in FIG. 19.
  • the motor which drives belt 80 (FIG. 17) is started and stopped by a cam of the cam drive to effect rotational movement of the component platforms 110 and 112 at the heatsealing positions and when the completed envelope units are to be unloadedfrom the transport.
  • FIG. 24 The operation at position 3 (FIG. 27) is illustrated in FIG. 24.
  • push pins 194 and 196 insert the beaded metal tubing into a glass sleeve.
  • the beaded metal tubing 38 and 40 is shown supported upon the platforms 110 and 112 and the push pins 194 and 196 are shown retracted.
  • the push pins move toward each other, engage the ends of the metal tubing, and insert the metal tubing into a glass sleeve at the bottom of the magazine 60.
  • the push pins 194 and 196 reciprocate in horizontal bores of blocks 198 and 200 (FIG. 16) supported upon the frame with the bores aligned with the bottom of the magazine 60.
  • Push pins 194 and 196 project from base portions 202 and 204 supported by members 206 and 208 upon rods 210 and 212 in the manner previously described with respect to the operation at position 1.
  • the rear ends of rods 210 and 212 are fixed to vertical pins 214 (only one of which is shown in FIG. 16) journaled upon the frame.
  • the lower ends of pins 214 are fixed to cranks 216 driven from the cam drive 87 as indicated by the dash lines 218 and 220.
  • the bottom of magazine 60 is provided with a guide block 222 having a central channel 224 for guiding the glass sleeves. Openings 226 and 228 are provided at the bottom of magazine 60 to permit the beaded metal tubing to be inserted into the ends of a glass sleeve at the bottom of the magazine.
  • the glass sleeve is guided by channel 224, and the metal tubing passes over the edges 230 and 232 of the guide block, the edges being contoured to accommodate the arcuate movement of the transport 62 between position 3 and position 4 (FIG. 27).
  • the heat-sealing of the glass tubing to the glass beads (position 4 of FIG. 27) illustrated in FIG. 31 is accomplished by MEANS OF THE BURNER (FIG. 16).
  • the tiny flames 140 are located at the apertures 234 and are simply tiny gas flames.
  • the platforms 110 and 112 of the transport are rotated to ensure uniform and concentric seals. Although the platforms may be rotated continually during the manufacturing steps, it is preferred' to interrupt the rotation to prevent the glass beads from walking" upon the metal tubing prior to scaling thereto and to prevent similar walking" of the glass sleeve prior to sealing to the glass beads.
  • Unloading of the complete envelope unit from the transport is accomplished at position 5 (FIG. 27).
  • an unloading mechanism 236 is mounted on the frame.
  • the unloading mechanism comprises a plate 238 extending upwardly and rearwardly from the frame and having a tip 240 adapted to engage the tip 242 of the longer arm 134 of each plate 1 18.
  • the platforms are kept rotating as the transport approaches the unloading mechanism, and when the tips 242 of the plates 118 engage the tip 240 of plate 238, the plates 118 are held against rotation while the platforms continue to rotate.
  • the platforms turn until the studs 124 move to the opposite ends of slots 122, biasing the springs 126, and then the belts and 92 and/or the belt 80 merely slip as the driving motor continues to rotate.
  • the turning of the platforms and 112 relative to the plates 118 causes the slots 132 to turn away from parallelism with the platforms and thus to pull the metal tubing of the finished envelope unit away from the holding magnets 116.
  • the envelope unit thus freed from the magnets slides down the inclined slots 132 onto a ramp 244 suspended from plate 238 and drops from this ramp into a receptacle 246.
  • a typical lamp envelope in accordance with the invention may have a glass central section 7.5 mm long and 5 mm in diameter and 3 mil wall thickness.
  • the metal end sections may have 0.045 inch O.D. and 0.028 inch ID. and may project 2.5 mm out from the glass section.
  • the spacing between the inner ends of the end sections may be 1.6 mm.
  • the length of the exposed portion of the helical filament coil may be 1 mm and the outer diameter 0.25 mm, there being 16 turns.
  • Typical tubing diameters for the metal end sections and corresponding filament lead diameters are as follows: Filament Leads Envelope Ends Solid .002 in.Nickel Wire .015 in. O.D. X .005 in.
  • the outer diameter of the filament leads is slightly less than the inner diameter of the envelope ends, thus ensuring self-centering when the envelope ends are symmetrically pinched onto the filament leads.
  • the filament units are made without soldering, brazing, welding, skipforming, or hooking, and without requiring special end terminals.
  • The'envelopes of the invention are complete before insertion of the filament unit, except for the end pinchoffs, and the filament units are complete before insertion in the envelopes, thus facilitating automated manufacturing of the lamps.
  • No brazing, soldering, welding, or heat-sealing is required to complete the lamps after the filament units are inserted, and in fact the only heating required utilizes tiny localized flames at one side of the components of the envelope, so that there is no melting and deformation beyond the regions to be sealed.
  • the invention thus provides incandescent lamps or the like of great precision, economically, and in a wide range of sizes.
  • a method of making a lamp envelope or the like comprising inserting adjacent ends of longitudinally aligned spaced tubes into beads, respectively, heatsealing the beads to the tubes while rotating the tubes about their axis, inserting the beaded ends of the tubes into corresponding ends of a sleeve, horizontally suspending the sleeve from the beaded ends, and heatsealing the beaded ends of the tubes to the adjacent sleeve ends while rotating the tubes about their axes.
  • a method of manufacturing envelopes for incandescent lamps or the like which comprises providing a sleeve, providing a pair of tubes of outer diameter substantially less than the inner diameter of said sleeve, inserting an end of each tube into a corresponding bead having an outer diameter slightly less than the inner di ameter of said sleeve and an inner diameter slightly greater than the outer diameter of said tubes, heat sealing the beads to the tubes while rotating the tubes about their axis, inserting the beaded ends of said tubes axially into opposite ends of the sleeve, horizontally suspending the sleeve from said beaded ends, and heatsealing the beads to said opposite ends of the sleeve while rotating the tubes about their axis.
  • a method of making a series of tubular envelopes for incandescent lamps or the like comprising providing two stacks of insulating beads heat-sealable to metal, providing a pair of stacks of metal tubes at opposite sides of said two stacks, the metal tubes having an outer diameter less than the inner diameter of the beads, aligning an insulating bead at one end of each of said two stacks with a corresponding metal tube at one end of each of said pair of stacks, inserting an end of the aligned metal tubes into the aligned insulating beads to form two assemblies, transferring heat to said assemblies sufficient to seal the metal tubes to the insulating beads, providing a stack of sleeves of insulating material heat-scalable to said beads, aligning an insulating sleeve at one end of the stack of insulating sleeves with the beaded end of a metal tube at each end of the insulating sleeve, inserting the beaded ends into the aligned insulating sleeve to form an assembly, horizontally suspending the s
  • Apparatus for manufacturing lamp envelopes or the like comprising a first assembly station, a first heatsealing station, a second assembly station, a second heat-sealing station, and an unloading station in sequence, transport means for transporting components from station to station, a pair of magazines located at said first assembly station for receiving stacks of tubes, said transport means being arranged to move between said magazines and having a pair of spaced componentreceiving platforms alignable with an end of said magazines, respectively, a further magazine between said platforms at said first assembly station for containing two stacks of beads, a pair of pusher means for pushing a tube from the end of each stack of tubes onto said platforms, respectively, for inserting an end of each such tube into a corresponding bead from one of the stacks of said further magazine, respectively, and for placing said tubes upon said platforms in alignment with a common axis, said platforms being supported upon rotatable hubs on said transport means, said hubs having axial bores through which said tubes are pushed onto said platforms along said platforms

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

Axial-geometry incandescent lamps with accurately aligned, selfcentering helical filaments are disclosed, the filaments having heavy end sections which are mechanically deformed to grip a helical center section. Tubular lamp envelopes have a glass center section and metal end sections heat-sealed thereto. Envelopes are produced in quantity by a machine having magazines loaded with envelope components, the components being automatically assembled and united by heat sealing. Envelopes of larger size may employ glass-beaded metal end sections formed before the end sections are assembled with the center section. Rotation of the envelope components while suspending the assembly from the end sections during heat sealing ensures seal uniformity and concentricity.

Description

United States Patent Belknap 1 1 Oct. 2, 1973 [54] METHOD AND APPARATUS FOR MAKING 3,282,671) 11/1966 Chanowitz et a1. H 65/59 [NCANDESCENT LAMPS 2,984,046 5/1961 Brewer et a1, 65/154 2,439,916 4/1948 Werner et a1 65/57 [75} Inventor: Donald .1. Belknap, Mountain Home,
[73] Assignees: Nelson H. Shapiro, Rockville, Md.;
' Milton M. Field, Alexandria, Va.
I part interest to each [22] Filed: May 28, 1971 [21] Appl. No.: 147,747
[52] US. Cl 65/59, 29/25.19, 65/36, 65/42, 65/154 [51] Int. Cl. C03c 27/02, C03c 29/00 [58] Field of Search 65/59, 155, 154, 65/36, 42, 57; 29/25.19
[56] Rel'erences Cited UNITED STATES PATENTS 2,177,498 10 1939 Payne 65/59 3,164,459 1/1965 Bower 65/155 3,178,275 4/1965 Boyd, 65/155 3,365,284 1/1968 Alessi i 65/59 3,166,825 1/1965 Tazelaar et a1. 65/155 Primary Examiner-S. Leon Bashore Assistant Examiner-Kenneth- M. Schor Attorney-Shapiro and Shapiro [57] ABSTRACT Axial-geometry incandescent lamps with accurately aligned, self-centering helical filaments are'disclosed. the filaments having heavy cnd sections which are mechanically deformed to grip a helical center section Tubular lamp envelopes have a glass center section and metal end sections heat-sealed thereto. Envelopes are produced in quantity by a machine having magazines loaded with envelope components, the components being automatically assembled and united by heat sealing. Envelopes of larger size may employ glass-beaded metal end sections formed before the end sections are assembled with the center section. Rotation of the envelope components while suspending the assembly from the end sections during heat sealing ensures seal uniformity and concentricity.
6 Claims, 38 Drawing Figures 326A 96 /4O 108 J96 PAIENIED 21975 3. 762.900
sum 10! a FIG 1 z 1 p r n I u I r HT IOA '6 p o 1 u FIG. 2
g N h F/Gi4 'lllllllllq I": 7 III'IIIII a I IIIII'IIIII'IIIIA I II I IOA INVENTOR 7 DONALD J BELKNAP 5/70 2170 and fba az'm ATTORNEYS PAIENIEU 2W5 3.762.900
sum ear 8 PAIENIED Elm 3.762.900
SHEET a or a PAIENTEU 11m 21973 3.762.900
sum 5 0F 8 illll .llll
PAIENTEU 0m 2 913 SHEET 6 BF 8 FIG 22 FIG 23 PATENTEDHBI 21973 SHEET 7 OF 8 FIG. 24
IOA
m 'IIIIII/ 'II 6 50 IOA fimrim 56 28A PATENTEU 2 973 SHEET 8 OF 8 POSITION s GLASS TUBING POSITION 2 LOADED osmow 4 GLASS BEADS GLASS TUBEING SEALED 60 SEALED osmou l I40 POSlTlON 5 METAL TUBING 0nd GLASS BEADS LOADED COMPLETED UNIT UNLOADED Bea n I m Fla 3/ 36A W140 MOW 38 EED? 40 3487 FIG. 32
BACKGROUND OF THE INVENTION This invention relates to incandescent lamps and to methods and apparatus for manufacturing the same. The invention is more particularly concerned with lamps of axial geometry, with the manufacture of filament units and lamp envelopes, and with the precise alignment of the filaments in the envelopes.
Lamps of microminiature size now being manufactured have an envelope comprising two pieces of metal tubing sealed into the ends of a central glass sleeve. The filament consists of a tungsten helix dragged into the envelope through the end pieces and positioned so as to be approximately centered with respect to the central glass sleeve and to have an end extending into each piece of metal tubing. The lamp is sealed by cold-weld pinch-offs through the pieces of metal tubing and the ends of the filament helix extending therein. Such lamps are disclosed in the applicants prior application, Ser. No. 846,466, filed July 31, 1969. Such lamp construction and method of filament insertion have made possible the economical production of microminiature size lamps by eliminating costly hand labor on each lamp. However, because of variations in the very small end openingsof the pieces of metal tubing after cutting and processing, neither the points where the ends of the helix contact the metal tubing nor the number of helix turns between the two pieces of tubing can be controlled precisely. This makes it necessary to select and group the lamps from even the same production run according to light output and electrical characteristics.
- The applicant has previously disclosed apparatus and methods for making microminiature lamp envelopes of axial geometry in which the metal end pieces are inserted axially into the central glass sleeve from opposite ends and are then heat-sealed to the glass section. Such apparatus and methods are disclosed in the applicants prior application, Ser. No. 760,852, now U.S. Pat. No. 3,578,429. While these apparatus and methods perform admirably in the production of microminiature envelopes, it is difficult to obtain even heating of the joints for larger size envelopes and to maintain concentricity.
BRIEF DESCRIPTION OF THE PRESENT INVENTION It is accordingly a principal object of the present in vention to provide improved incandescent lamps, improved filament structures, and improved apparatus and methods for making incandescent lamps and the like.
A further object of the invention is to provide improved filament structures having accurately controllable light output and electrical characteristics and which are suited to axial-geometry lamps, not only in microminiature size but also in larger sizes as well.
A further object of the invention is to provide filament units which are self-centering in the lamp envelopes and which may be mass produced with different ratings for insertion in a common size envelope.
Another object of the invention is to provide filament structures employing continuously wound filament wire without straight wire sections, change in helix pitch, or special adaptations.
Still another object of the invention is to provide im proved filaments manufactured and fixed within a lamp envelope by means of cold-weld pinch-offs alone, and without affecting the vacuum tightness of envelopes.
Another object of the invention is to provide improved apparatus and methods for manufacturing axial-geometry lamp envelopes, with improved glass-tometal and glass-to-glass sealing and improved axialsymmetry of the central glass section.
Another object of the invention is to provide improved apparatus and methods for manufacturing envelopes with glass-beaded metal end sections.
Still another object of the invention is to provide improved automatic operation in an envelope-making machine.
Briefly stated, axial-geometry incandescent lamps in accordance with the invention have a tubular envelope with a glass central section and metal end sections. The filament units comprise a length of helical wire joined at its ends to relatively massive terminal members which are mechanically deformed to grip the helical wire. The terminal members serve to align the filament with the axis of the envelope and are fixed to the tubular end pieces of the envelope by cold-weld pinch-offs through the end pieces. The envelopes are assembled seriatim from components dispensed from magazines. In one embodiment lengths of metal tubing which will constitute the end pieces are inserted through corresponding glass beads, which are then heat-sealed to the tubing. These assemblies are then inserted into opposite ends ofa length of glass tubing, and the glass beads are heat-sealed to the glass tubing. During the heat sealing operations the components are rotated about their axis to ensure concentricity and uniform sealing.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be further described in conjunction with the accompanying drawings, which illustrate preferred and exemplary embodiments, and wherein:
FIGS. I 7 are fragmentary vertical sectional views illustrating the manufacture of filament units;
FIGS. 8 12 are vertical sectional views illustrating the insertion of the filament unit within an envelope and the completion of a lamp;
FIGS. I3 I5 are vertical sectional views of modified forms of lamps;
FIG. I6 is a perspective view of a machine for manufacturing lamp envelopes;
FIG. I? is a side elevation view illustrating the manner in which finished envelopes are discharged from the transport of the machine of FIG. I6;
FIG. I8 is a fragmentary end elevation view of the lower portion of the transport illustrating the drive pulleys;
FIG. I9 is a fragmentary perspective view illustrating an envelope-supporting portion of the transport;
FIG. 20 is an fragmentary end elevation view of the apparatus of FIG. 19;
FIG. 2I is a side elevation view illustrating a portion of the apparatus of FIG. I9 in greater detail;
FIG. .22 is a fragmentary end elevation view illustrating the manner in which lengths of tubing are inserted into glass beads and placed upon the transport;
FIG. 23 is a vertical sectional view illustrating a portion of the apparatus of FIG. 22 in greater detail;
FIGS. 28 32 are diagrammatic views illustrating the steps in the manufacture of an envelope;
FIG. 33 is a fragmentary end elevation view illustrating the manner in which glass beads are guided at the bottom of the bead magazine;
FIG. 34 is a fragmentary side elevation view illustrating the guiding of a glass bead at the bottom of the bead magazine;
FIG. 35 is a fragmentary side elevation view illustrating one form ofjunction between a filament coil and an end terminal;
FIG. 36 is asectional view taken along line 36-36 in FIG. 35;
FIGQ37 is a fragmentary vertical sectional view illustrating another form of filament coil and end terminal junction; and
FIG. 38 is a longitudinal sectional view of a lamp having a filament unit of the type shown in FIG. 35.
DETAILED DESCRIPTION OF THE INVENTION Referring to the drawings, and initially to FIGS. 1 6, filament units of the invention may be manufactured from helically coiled filament wire 10, such as tungsten wire of 0.00025 hich diameter wound upon a mandrel of 0.002 inch diameter. The helically coiled filament wire may be stored upon a spool 12 and drawn off as needed or it may be stored in individual lengths of helically coiled wire. In the form shown in FIG. I filament wire from the spool 12 is passed through an opening in a guide 14 toward the end of a length of metal tubing 16 supported upon a table 18. The tubing may be nickel metal tubing, 0.400 inch in length, 0.015 inch in O. D., and 0.005 inch in I. D. As shown in FIG. 2 the filament wire is inserted a short distance into the end of the metal tubing, and then the smoothly rounded end of an indenting tool 20 is brought downwardly into engagement with the tubing. The tool 20 deforms the tubing as shown at 22 in FIG. 3, several turns being compressed and gripped. The number of turns within the tubing is determined by the insertion. Next the tubing is moved to the right as shown in FIG. 4 to draw a length of filament wire from the spool, and then the wire is cut or burned as indicated by the cutting tool 24 in order to sever a length of wire A from the spool supply.
The unit comprising the length of wire 10A and the metal tubing 16 is then placed in the position shown in FIG. 5, with the filament wire protruding through an opening in a guide 26. A further length of metal tubing 28 supported upon a table 30 is moved to the right so as to insert the free end of the coiled wire 10A into the tubing 28. Next the rounded nose of the tool is brought downwardly upon tubing 28 as shown in FIG. 6 to deform the tubing and cause it to grip the corresponding end of the wire 10A. The finished filament unit 32 is shown in FIG. 7.
FIG. 8 illustrates the filament unit being inserted into an envelope 34 in accordance with the invention. The
envelope comprises a central section 36, which may be a glass sleeve of uniform wall thickness, for example, and a pair of tubular end pieces 38 and 40 which are heat-sealed to the ends of the glass section 36. The wall thickness of the glass section is quite small compared to the inner diameter of the glass section, and the length of the glass section is substantially greater than its outer diameter. The filament unit 32 can be inserted into the envelope 34 horizontally or dropped in vertically. The filament unit may be slightly longer than the envelope to facilitate insertion, and a wire may be pinched into one end terminal to permit the filament unit to be pulled into the envelope. For vertical insertion the wire may be bent over like a hook to support the filament unit within the envelope temporarily, or one of the tubular terminals of the filament unit may be bent in this manner.
As shown in FIG. 9 the relatively massive end terminals of the filament unit serve to align the filament coil with the axis of the envelope when the filament coil is positioned symmetrically within the glass section. Indenting tools of the type described above then deform the end tubes of the envelope as shown at 42 in FIG.
10 to hold the filament unit in position within the envelope during the completion of the lamp. The lamp unit of FIG. 10 is baked in a vacuum, and then a cold-weld pinch-off tool pinches off one of the end tubes of the envelope as shown in FIG. 11 at 44, severing the end tube and forming a vacuum-tight seal mechanically as described in greater detail in applicants prior U.S. Pat. No. 3,505,556. The envelope may then be evacuated through the other end tube, and finally that end tube is pinched off in the same manner as shown at 46 in FIG. 12, thereby completing the lamp. FIGS. 13 l5 illustrate three types of envelopes 34A, 34B, and 34C. In
. FIG. 13 the outer diameter of the metal end pieces is close to the inner diameter of the glass sleeve 36. In FIG. 14 the outer diameter of the metal end pieces 38 and 40 is considerably smaller than the inner diameter of the glass sleeve 36A, and glass beads 48 are sealed between the end pieces 38 and 40 and the glass sleeve 36A. In FIG. 15 there is a still greater disparity between the maximum diameter of the glass section and the metal end pieces, the glass section having ends of reduced diameter to engage the beaded metal tubing.
FIG. 37 illustrates in greater detail the manner in which a metal terminal sleeve 28 may be deformed to grip the end of the helical filament wire 10A and provide excellent mechanical and electrical contact. In this instance opposite sides of the metal tubing are shown deformed symmetrically. FIGS. 35 and 36 illustrate cylindrical solid end terminals which are inserted into the ends of the helical coil and then flattened locally at 50 to embed the filament wire into the end terminal, the filament coil becoming flattened also at the end so as to protrude laterally from the end terminal as shown in FIG. 36. A finished lamp 34D employing a filament unit 32A with solid leads 28A and 16A is shown in FIG. 38.
FIG. 16 illustrates a machine 52 for manufacturing envelopes in accordance with the invention. The components of the envelopes are stacked in magazines. In the form shown magazines 54 and 56 contain stacked metal tubing for the end sections of the envelopes; magazine 58 contains two stacks of glass beads; and magazine 60 contains a stack of glass sleeves for the central section of the envelope. The transport which carries the components of the envelopes through the successive manufacturing steps is shown at 62. It comprises an arm bifurcated at the top and bottom and pivotally supported at the bottom for movement in a vertical plane about a horizontal axis. The pivot pin is shown at 64 in FIG. 18 supported by a U-shaped bracket 66 upon the frame 68 of the machine. The lower bifurcations 70 and 72 of the transport arm are themselves bifurcated to embrace pulleys 74 and 76 fixed to the pin 64. A central pulley 78 is also fixed to the pivot pin and is driven by a belt 80 from an electric motor (not shown) as indicated in FIG. 17, thereby to drive both of pulleys 74 and 76. The pivot pin 64 is free to turn within journals upon the lower bifurcations 70 and 72, so that the rotation of the pivot pin does not affect the motion of the transport arm.
The transport arm is moved forwardly by a rod 82 and rearwardly by a spring 84 as indicated in FIG. 17. One end of the spring is attached to a tang 86 fixed to the rear surface of the transport, and the other end is fixed to the frame. The rear end of rod 82 is driven by a cam ofa conventional cam drive87 indicated in FIG. 16, dash line 88 designating the connection from the cam drive to rod 82, which is supported on the frame for forward and backward reciprocating movement. Such cam drives are conventional in the machinery arts, a typical drive being illustrated in the applicants aforesaid application Ser. No. 846,466. As shown therein, the cam drive may comprise a horizontal shaft extending laterally at the rear of the machine and having a series of parallel cams fixed thereto, the shaft being driven by an electric motor (separate from the motor which drives the belt 80 of FIG. 17), and the cams being shaped and phased tomove cam follower shafts at the proper times in accordance with predeter mined patterns. As will be seen hereinafter, rod 82 and the associated cam causes the transport62 to move incrementally from a rearward position to a forward position, the movement being interrupted at different stations for the purpose of operations to be described. Thereafter, the transport is retracted to the rearward position bythe spring 84.
Pulleys 74 and 76 drive belts 90 and 92, which pass over and turn corresponding pulleys 94 and 96 at the top of the transport. (See FIGS. 16 and 17.) The upper bifurcations 98 and 100 see FIG. 22) are, like the lower bifurcations, again bifurcated to embrace the pulleys 94 and 96, which are fixed to hubs 102 and 104 journaled in the upper bifurcations. See FIGS. 19, 20 and 23. The hubs are provided with central bores 106 and 108 (for a purpose to be described) and carry eccentric platforms 110 and 112 at their inner ends.
The cross-section of each platform is semicircular (see FIG. 21) and each platform has a longitudinal groove, such as the groove 114 shown in FIGS. 1% 21, the groove constituting an extension of the corresponding hub bore. Set into the hub below the groove is a magnet 1l6, the groove being defined between a pair of plates 117 screwed to the surface of the platform.
As shown in FIGS. 19 21, the inner side of each platform is provided with a vertical plate 118 supported for pivotal movement by a pin 120. This movement is limited by a slot 122 in the plate through which a stud 124 extends from the platform. A spring 126 normally urges the plate 118 to the position illustrated in FIG. 21, one end of the spring being attached to a screw 128 fixed to theplatform, and the other end of the spring being fixed to a horizontal tang 130 struck from the plate 118 as shown in FIG. 20. The spring 126 passes about the cylindrical surface of the platform. By this arrangement the plate is capable of being turned about the pivot pin 121] until the stud 124 engages the end of the slot 122 opposite to that with which it is shown engaged in FIG. 21, the spring 126 being stressed during this pivotal movement of the plate relative to the platform 110 and retracting the plate to the position shown in FIG. 21 when the plate is released. The plate is bifurcated to provide a slot 132 between a longer arm 134 and a shorter arm 136. The plate 118 normally rotates with the platform 1111 until it is held from such movev ment as will be described later.
FIGS. 17 32 illustrate diagrammatically the operations performed for different positions of the transport 62. Details of the steps performed will be described hereinafter, but it is helpful to understanding of the manufacturing process of the invention to describe the steps broadly at this point. As shown in FIG. 27, at the rearward position of the transport 62, position 1, metal tubing and glass beads are loaded upon the transport. The tubing is shown at 38 and 46 in FIG. 28 andthe beads at 418. At position 2 the glass beads are heat sealed to the metal tubing. This is indicated in FIG. 29, heat being supplied by the tiny flames 138. At position 3 glass tubing is loaded upon the transport and the beaded metal tubing is inserted into the ends of the glass tubing as shown in FIG. 31). At position 4 the glass tubing is heat sealed to the beads, as indicated in FIG. 31, heat being supplied by the tiny flames 140. Finally, at position 5 the completed envelope unit (shown in FIG. 32) is unloaded from the transport.
FIGS. 22 and 23 illustrate the operation at position 1. At this position the transport 62 is stationary, with the bores 1116 and 1118 aligned with push rods 142 and 144. The push rods reciprocate in the corresponding horizontal bores of blocks M6 and 148 supported upon the frame of the machine. The push pins extend from bases 150 and 152 which are moved toward and away from the outer end of the blocks 116 and 14S, respectively, by rods 15% and 156. The rods are mounted hor izontally on the machine frame for pivotal movement in a horizontal plane. The rods extend rearwardly, where they are pivotally mounted and driven from the cam drive 67 (FIG. 16) as indicated by the dash lines 158 and 16111. The base portions 151) and 152 of the push pins are engaged by yokes 162 and 164 freely piv' oted upon the corresponding rods for movement about a vertical axis. Thus, limited pivotal movement of the rods I54 and 156 is converted to reciprocative movement of the push pins M2 and 1414.
FIG. 23 illustrates the push pins 142 and M4 in their retracted position, that is, with the base portions 150 and 152 remote from the blocks 1 16 and 148. In this position the push pins are ready to engage lengths of metal tubing loaded in the magazines 54 and 56. At the bottom of each magazine is a table 166 or 168 which supports the lowermost piece of metal tubing in the magazine. At the appropriate time the push pins 142 and 144 move toward each other and engage the lowermost piece of tubing in each of the magazines 54 and 56, pushing the tubing through the bores 106 and 108 of the transport and on to the grooves 114 of the transport platforms (see FIGS. 19-21) where they are held by the magnets 116. The width of the grooves 114 is such as to align the tubing precisely with corresponding glass beads at the bottom of the magazine 58.
As shown in FIG. 25, the bottom of the magazine 58 is provided with a cantilevered guide block 170 and a pair of forwardly extending channels 172 and 174. Openings 176 and 178 are provided below the front plate 180 of the magazine to permit glass beads to enter the channels 172 and 174. The metal tubing is inserted into a glass bead at the entrance of the channels as shown in FIG. 33. Then, as the transport 62 moves forwardly from position 1 toward position 2 (FIG. 27), the.
glass beads are guided by the channels, the metal tubing moving along the curved upper edges 182 and 184 of the guide block 170, the curvature of these edges (see FIG. 34) accommodating the arcuate movement of the transport 62 indicated in FIG. 27. Before the transport can move from position 1 toward position 2, the push pins 142 and 144 must, of course, be withdrawn to the position illustrated in FIG. 23.
As noted previously, at position 2 (FIG. 27) tiny flames 138 are provided for heat sealing the glass beads to the metal tubing. These flames are provided by a burner 186 (FIG. 22) located centrally of the bifurcations 98 and 100 of the transport 62 so that the transport may pass by the burner. A similar burner 188 is shown in greater detail in FIG. 16 and will be referred to hereinafter. Both burners are supported upon the longitudinally extending member 190 and are fed from a longitudinally extending gas pipe 192.
It is desired that the glass beads 48 be uniformly and concentrically sealed to the metal tubing 38 or 40. In order to accomplish this purpose the platforms are rotated during the heat-sealing operations so that the pieces of metal tubing turn about their axes. Such rotation is indicated in FIG. 19. The motor which drives belt 80 (FIG. 17) is started and stopped by a cam of the cam drive to effect rotational movement of the component platforms 110 and 112 at the heatsealing positions and when the completed envelope units are to be unloadedfrom the transport.
The operation at position 3 (FIG. 27) is illustrated in FIG. 24. Here push pins 194 and 196 insert the beaded metal tubing into a glass sleeve. In FIG. 24 the beaded metal tubing 38 and 40 is shown supported upon the platforms 110 and 112 and the push pins 194 and 196 are shown retracted. At the appropriate time the push pins move toward each other, engage the ends of the metal tubing, and insert the metal tubing into a glass sleeve at the bottom of the magazine 60. The push pins 194 and 196 reciprocate in horizontal bores of blocks 198 and 200 (FIG. 16) supported upon the frame with the bores aligned with the bottom of the magazine 60. During insertion of the beaded metal tubing into the glass sleeve, the bores 106 and 108 of the transport are of course aligned with the bores of the blocks 198 and 200. Push pins 194 and 196 project from base portions 202 and 204 supported by members 206 and 208 upon rods 210 and 212 in the manner previously described with respect to the operation at position 1. The rear ends of rods 210 and 212 are fixed to vertical pins 214 (only one of which is shown in FIG. 16) journaled upon the frame. The lower ends of pins 214 are fixed to cranks 216 driven from the cam drive 87 as indicated by the dash lines 218 and 220.
As shown in FIG. 26, the bottom of magazine 60 is provided with a guide block 222 having a central channel 224 for guiding the glass sleeves. Openings 226 and 228 are provided at the bottom of magazine 60 to permit the beaded metal tubing to be inserted into the ends of a glass sleeve at the bottom of the magazine. When the transport moves forwardly, the glass sleeve is guided by channel 224, and the metal tubing passes over the edges 230 and 232 of the guide block, the edges being contoured to accommodate the arcuate movement of the transport 62 between position 3 and position 4 (FIG. 27).
The heat-sealing of the glass tubing to the glass beads (position 4 of FIG. 27) illustrated in FIG. 31 is accomplished by MEANS OF THE BURNER (FIG. 16). The tiny flames 140 are located at the apertures 234 and are simply tiny gas flames. As noted above, during this heat-sealing operation the platforms 110 and 112 of the transport are rotated to ensure uniform and concentric seals. Although the platforms may be rotated continually during the manufacturing steps, it is preferred' to interrupt the rotation to prevent the glass beads from walking" upon the metal tubing prior to scaling thereto and to prevent similar walking" of the glass sleeve prior to sealing to the glass beads.
Unloading of the complete envelope unit from the transport is accomplished at position 5 (FIG. 27). As shown in FIGS. 16 and 17, at this position an unloading mechanism 236 is mounted on the frame. The unloading mechanism comprises a plate 238 extending upwardly and rearwardly from the frame and having a tip 240 adapted to engage the tip 242 of the longer arm 134 of each plate 1 18. The platforms are kept rotating as the transport approaches the unloading mechanism, and when the tips 242 of the plates 118 engage the tip 240 of plate 238, the plates 118 are held against rotation while the platforms continue to rotate. The platforms turn until the studs 124 move to the opposite ends of slots 122, biasing the springs 126, and then the belts and 92 and/or the belt 80 merely slip as the driving motor continues to rotate. The turning of the platforms and 112 relative to the plates 118 causes the slots 132 to turn away from parallelism with the platforms and thus to pull the metal tubing of the finished envelope unit away from the holding magnets 116. The envelope unit thus freed from the magnets slides down the inclined slots 132 onto a ramp 244 suspended from plate 238 and drops from this ramp into a receptacle 246. Then the transport 62 is retracted by the spring 84, and when the tips 242 of the plates 118 clear the tip 240 of plate 238, springs 126 return plates 118 to their original position (FIG. 21) at which the slots 132 are parallel to the platforms. The transport returns to position 1 to begin the manufacture of the next envelope.
A typical lamp envelope in accordance with the invention may have a glass central section 7.5 mm long and 5 mm in diameter and 3 mil wall thickness. The metal end sections may have 0.045 inch O.D. and 0.028 inch ID. and may project 2.5 mm out from the glass section. The spacing between the inner ends of the end sections may be 1.6 mm. The length of the exposed portion of the helical filament coil may be 1 mm and the outer diameter 0.25 mm, there being 16 turns. Typical tubing diameters for the metal end sections and corresponding filament lead diameters are as follows: Filament Leads Envelope Ends Solid .002 in.Nickel Wire .015 in. O.D. X .005 in. Solid .005 in.Nickel Wire .022 in. O.D. X .010 in. Tubular .015 O.D. X .005 I.D. .030 in. O.D. X .018 in. Tubular .022 O.D. X .010 I.D. .045 in. O.D. X .028 in. Tubular .030 O.D. X .018 ID. .060 in. O.D. X .040 in.
it is apparent that the outer diameter of the filament leads is slightly less than the inner diameter of the envelope ends, thus ensuring self-centering when the envelope ends are symmetrically pinched onto the filament leads. The filament units are made without soldering, brazing, welding, skipforming, or hooking, and without requiring special end terminals.
The'envelopes of the invention are complete before insertion of the filament unit, except for the end pinchoffs, and the filament units are complete before insertion in the envelopes, thus facilitating automated manufacturing of the lamps. No brazing, soldering, welding, or heat-sealing is required to complete the lamps after the filament units are inserted, and in fact the only heating required utilizes tiny localized flames at one side of the components of the envelope, so that there is no melting and deformation beyond the regions to be sealed.
The invention thus provides incandescent lamps or the like of great precision, economically, and in a wide range of sizes.
While preferred embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that changes can be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims.
The invention claimed is:
1. A method of making a lamp envelope or the like, comprising inserting adjacent ends of longitudinally aligned spaced tubes into beads, respectively, heatsealing the beads to the tubes while rotating the tubes about their axis, inserting the beaded ends of the tubes into corresponding ends of a sleeve, horizontally suspending the sleeve from the beaded ends, and heatsealing the beaded ends of the tubes to the adjacent sleeve ends while rotating the tubes about their axes.
2. A method in accordance with claim ll, wherein the heat-sealing involves applying heat to localized regions atone side of said tubes.
3. A method of manufacturing envelopes for incandescent lamps or the like, which comprises providing a sleeve, providing a pair of tubes of outer diameter substantially less than the inner diameter of said sleeve, inserting an end of each tube into a corresponding bead having an outer diameter slightly less than the inner di ameter of said sleeve and an inner diameter slightly greater than the outer diameter of said tubes, heat sealing the beads to the tubes while rotating the tubes about their axis, inserting the beaded ends of said tubes axially into opposite ends of the sleeve, horizontally suspending the sleeve from said beaded ends, and heatsealing the beads to said opposite ends of the sleeve while rotating the tubes about their axis.
4. The method of claim 3, wherein the heat-sealing is accomplished by rotating the regions to be sealed past heating means beside said regions.
5. A method of making a series of tubular envelopes for incandescent lamps or the like, comprising providing two stacks of insulating beads heat-sealable to metal, providing a pair of stacks of metal tubes at opposite sides of said two stacks, the metal tubes having an outer diameter less than the inner diameter of the beads, aligning an insulating bead at one end of each of said two stacks with a corresponding metal tube at one end of each of said pair of stacks, inserting an end of the aligned metal tubes into the aligned insulating beads to form two assemblies, transferring heat to said assemblies sufficient to seal the metal tubes to the insulating beads, providing a stack of sleeves of insulating material heat-scalable to said beads, aligning an insulating sleeve at one end of the stack of insulating sleeves with the beaded end of a metal tube at each end of the insulating sleeve, inserting the beaded ends into the aligned insulating sleeve to form an assembly, horizontally suspending the sleeve of the assembly from its beaded ends, heatsealing the beaded ends of the lastmentioned assembly to the insulating sleeve thereof, and continuing the aforesaid steps to form successive envelopes.
6. Apparatus for manufacturing lamp envelopes or the like, comprising a first assembly station, a first heatsealing station, a second assembly station, a second heat-sealing station, and an unloading station in sequence, transport means for transporting components from station to station, a pair of magazines located at said first assembly station for receiving stacks of tubes, said transport means being arranged to move between said magazines and having a pair of spaced componentreceiving platforms alignable with an end of said magazines, respectively, a further magazine between said platforms at said first assembly station for containing two stacks of beads, a pair of pusher means for pushing a tube from the end of each stack of tubes onto said platforms, respectively, for inserting an end of each such tube into a corresponding bead from one of the stacks of said further magazine, respectively, and for placing said tubes upon said platforms in alignment with a common axis, said platforms being supported upon rotatable hubs on said transport means, said hubs having axial bores through which said tubes are pushed onto said platforms along said axis by said pusher means, respectively, said first heat-sealing station having means for applying heat to the beads while the tubes are rotated about said axis, an additional magazine located at said second assembly station and containing a stack of sleeves, said platforms being arranged to have the tubes thereon aligned with a sleeve of said additional magazine at opposite sides thereof, additional pusher means for inserting the beaded ends of said tubes into a sleeve from the stack of sleeves and suspending the sleeve from the beaded ends, the second heat-sealing station having means for applying heat upon said platforms and removing the same therefrom. =0 v t =1! lk

Claims (5)

  1. 2. A method in accordance with claim 1, wherein the heat-sealing involves applying heat to localized regions at one side of said tubes.
  2. 3. A method of manufacturing envelopes for incandescent lamps or the like, which comprises providing a sleeve, providing a pair of tubes of outer diameter substantially less than the inner diameter of said sleeve, inserting an end of each tube into a corresponding bead having an outer diameter slightly less than the inner diameter of said sleeve and an inner diameter slightly greater than the outer diameter of said tubes, heat-sealing the beads to the tubes while rotating the tubes about their axis, inserting the beaded ends of said tubes axially into opposite ends of the sleeve, horizontally suspending the sleeve from said beaded ends, and heat-sealing the beads to said opposite ends of the sleeve while rotating the tubes about their axis.
  3. 4. The method of claim 3, wherein the heat-sealing is accomplished by rotating the regions to be sealed past heating means beside said regions.
  4. 5. A method of making a series of tubular envelopes for incandescent lamps or the like, comprising providing two stacks of insulating beads heat-sealable to metal, providing a pair of stacks of metal tubes at opposite sides of said two stacks, the metal tubes having an outer diameter less than the inner diameter of the beads, aligning an insulating bead at one end of each of said two stacks with a corresponding metal tube at one end of each of said pair of stacks, inserting an end of the aligned metal tubes into the aligned insulating beads to form two assemblies, transferring heat to said assemblies sufficient to seal the metal tubes to the insulating beads, providing a stack of sleeves of insulating material heat-sealable to said beads, aligning an insulating sleeve at one end of the stack of insulating sleeves with the beaded end of a metal tube at each end of the insulating sleeve, inserting the beaded ends into the aligned insulating sleeve to form an assembly, horizontally suspending the sleeve of the assembly from its beaded ends, heat-sealing the beaded ends of the last-mentioned assembly to the insulating sleeve thereof, and continuing the aforesaid steps to form successive envelopes.
  5. 6. Apparatus for manufacturing lamp envelopes or the like, comprising a first assembly station, a first heat-sealing station, a second assembly station, a second heat-sealing station, and an unloading station in sequence, transport means for transporting components from station to station, a pair of magazines located at said first assembly station for receiving stacks of tubes, said transport means being arranged to move between said magazines and having a pair of spaced component-receiving platforms alignable with an end of said magazines, respectively, a further magazine between said platforms at said first assembly station for containing two stacks of beads, a pair of pusher means for pushing a tube from the end of each stack of tubes onto said platforms, respectively, for inserting an end of each such tube into a corresponding bead from one of the stacks of said further magazine, respectively, and for placing said tubes upon said platforms in alignment with a common axis, said platforms being supported upon rotatable hubs on said transport means, said hubs having axial bores through which said tubes are pushed onto said platforms along said axis by said pusher means, respectively, said first heat-sealing station having means for applying heat to the beads while the tubes are rotated about said axis, an additional magazine located at said second assembly station and containing a stack of sleeves, said platforms being arranged to have the tubes thereon aligned with a sleeve of said additional magazine at opposite sides thereof, additional pusher means for inserting the beaded ends of said tubes into a sleeve from the stack of sleeves and suspending the sleeve from the beaded ends, the second heat-sealing station having means for applying heat to the opposite ends of said sleeve while the tubes are rotated about said axis, and the unloading station having means for engaging the components supported upon said platforms and removing the same therefrom.
US00147747A 1971-05-28 1971-05-28 Method and apparatus for making incadescent lamps Expired - Lifetime US3762900A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14774771A 1971-05-28 1971-05-28

Publications (1)

Publication Number Publication Date
US3762900A true US3762900A (en) 1973-10-02

Family

ID=22522731

Family Applications (1)

Application Number Title Priority Date Filing Date
US00147747A Expired - Lifetime US3762900A (en) 1971-05-28 1971-05-28 Method and apparatus for making incadescent lamps

Country Status (1)

Country Link
US (1) US3762900A (en)

Similar Documents

Publication Publication Date Title
US1821894A (en) Automatic mount making machine for incandescent lamps and similar articles
US4027363A (en) Methods of making incandescent lamps
US3762900A (en) Method and apparatus for making incadescent lamps
US4003125A (en) Apparatus for manufacturing dual in-line packages
US1947449A (en) Filament making machine
US4027804A (en) Lamp component transport device
US4017956A (en) Apparatus for making incandescent lamps and the like
US3779290A (en) Apparatus for untwisting and stripping twisted wire pair leads
US3914640A (en) Incandescent lamps having preformed filament units
GB2169441A (en) Apparatus for manufacturing electric lamps
US1612537A (en) Leading-in wire-locating device
US2039690A (en) Fin tube manufacture
US4159413A (en) Contact welding machine, particularly for automatic application of tiny contact plates to a substrate carrier
US2721373A (en) Automatic lead wire threading apparatus
US3516157A (en) Methods of and apparatus for assembling terminal strips
US2759498A (en) Apparatus for forming lamp filaments
US2694808A (en) Applicator for electrical connectors and the like
US2798514A (en) Machine for manufacturing tubular lamps
US3763390A (en) Miniature incandescent lamp and apparatus and method for making the same
US3988092A (en) Apparatus for making retractile cords
US3295183A (en) High speed automatic mounting and sealing machine
US1569185A (en) Machine and method for sealing incandescent lamps
US2491848A (en) Method of manufacturing a glass blank
US2298923A (en) Machine for winding coiled sections
US2244554A (en) Wire welding machine