US3762885A - Diffusion coating of metals - Google Patents

Diffusion coating of metals Download PDF

Info

Publication number
US3762885A
US3762885A US00224256A US3762885DA US3762885A US 3762885 A US3762885 A US 3762885A US 00224256 A US00224256 A US 00224256A US 3762885D A US3762885D A US 3762885DA US 3762885 A US3762885 A US 3762885A
Authority
US
United States
Prior art keywords
coating
aluminum
metal
pack
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00224256A
Inventor
K Speirs
M Weinstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chromalloy Gas Turbine Corp
Original Assignee
Chromalloy American Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chromalloy American Corp filed Critical Chromalloy American Corp
Application granted granted Critical
Publication of US3762885A publication Critical patent/US3762885A/en
Assigned to CHROMALLOY GAS TURBINE CORPORATION, A DE. CORP. reassignment CHROMALLOY GAS TURBINE CORPORATION, A DE. CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CHROMALLOY AMERICAN CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/938Vapor deposition or gas diffusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12465All metal or with adjacent metals having magnetic properties, or preformed fiber orientation coordinate with shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe

Definitions

  • An article of manufacture comprising a thermally aluminum-coated structural element of chromium-containing steel having a substantially uniform diffused layer of aluminum on the substrate thereof, said substrate being characterized by compressive stresses introduced by shot peening before applying the coating, the compressive stresses at the substrate together with the overlying diffused layer of aluminum providing improved resistance to fatigue coupled with improved resistance to corrosion and oxidatlon.
  • This invention relates to the pack cementation diffusion coating of metals into the surface of metal articles, such as chromium containing steels, embedded and heated in a diffusion coating pack, and more particularly, to. techniques and compositions whereby a cleansing and transport-inducing agent is included in the pack to promote the diffusion of the coating metal from the pack into the surface of the articles being coated, the diffusion being greatly facilitated at a particular coating temperature and/or satisfactory diffusion coatings being obtained at coating temperatures lower than those normally required with conventional diffusion coating processes.
  • the diffusion coating processes to which the invention relates include those in which the metal articles to be coated and protected against corrosion, e.g., turbine vanes, shrouds and the like, are embedded in a powder pack which contains the coating metal (e.g. aluminum, chromium, etc.), usually an inert filler (such as powdered alumina), and an energizer component (such as a halide, e.g. Nl-LI) for aiding the transport or transfer of the coating metal from the powdered pack to the surface of the articles to be coated.
  • the coating metal e.g. aluminum, chromium, etc.
  • an inert filler such as powdered alumina
  • an energizer component such as a halide, e.g. Nl-LI
  • the pack with the embedded articles is heated in a closed retort (usually in the partial absence of oxygen) to relatively high temperatures for a sufficient time to produce the diffusion of the coating metal into the surface of the articles to a desired depth.
  • a closed retort usually in the partial absence of oxygen
  • Such processes are employed to enhance the oxidation resistance of the articles at elevated temperatures and to enhance erosion and corrosion resistance for a variety of purposes and uses.
  • the conventional pack cementation diffusion coating techniques may require that the coating step be prolonged for many hours, or for even more than a day, at relatively high temperatures, usually in excess of 1,200F and as high as 1,800F to 2,000F, depending upon the particular metal substrate, the thickness of coating desired and other characteristics.
  • metals and alloys the physical or mechanical properties of which tend to be altered or adversely affected when they are heated above, for example, 1000F for any reason.
  • metals or alloys are precipitation hardenable stainless steels, such as l7-4Pl-l(l7% Cr, 4% Ni, 3% Cu, smaller amounts of Co, Mn, Si and the balance essentially iron), type 410 (11.5 to l3.5% Cr, 1% Si max, 1% Mn max, 0.l5 carbon max and the balance essentially iron), and AMS 5616 (13% Cr, 2% Ni, 3% W and the balance essentially iron), among many others.
  • tempering temperature for the foregoing type of conventional precipitation hardenable steels may range from 875F to l,l50F.
  • diffusion coating temperatures of over 1,200F would have an adverse affect on the hardness of the steels to the extent of altering the physical properties and to the extent of rendering the articles unsuitable for use.
  • the component is capable of being used for relatively prolonged periods of time, provided that the original physical properties have not been substantially adversely affected by the coating process. This is particularly important in the case of those components which are shot peened in order to enhance their physical properties. As is well known, shot peening produces residual compressive loading into the metal surface which improves the high cycle fatigure performance of the components, and particularly enables the recovery of fatigue properties of previously corrosion damaged hardware.
  • One method which has been proposed for lowering the metal coating and diffusion temperatures to desirable levels comprises mixing with the powdered cementation pack an accelerator component, preferably a metal which is substantially volatile at the coating temperature, such as cadmium, lead, tin.and zinc. While the accelerator metal substantially facilitated diffusion coating at desirably lower temperature, for example, temperatures in the neighborhood of about 900F, it had certain drawbacks. The metals cadmium and lead presented the problem of toxicity and thus extreme caution had to be taken to avoid fumes from reaching the working environment. Another drawback resided in the fact that the accelerator metal, e.g. zinc, would tend to deposit out with the coating metal, despitethe fact that the coating material comprised substantially the coating. This is undesirable where optimum resistance to corrosion and fatigue is required; Thus, inhomogeniety in the ultimate coating had to be avoided.
  • an accelerator component preferably a metal which is substantially volatile at the coating temperature, such as cadmium, lead, tin.and zinc.
  • FIG. 1 is a plot showing the endurance limit in corroded and shot peened specimens after coating at 795F for 42 hours using a cementation pack provided by the invention containing 80 percent aluminum of 60 140 mesh screen size and percent alumina, the pack containing about 3 percent by weight of dry aluminum chloride intimately mixed therewith;
  • FlGS. 2, 2A and 2B are electron microprobe compositional profile charts ofa particular basis metal such as AMS 5616 steel treated in accordance with the invention showing the aluminum profile in the coating relative to the constituents of the steel substrate, the microprobe trace being determined across the coating and into the steel substrate, the aluminum coating being produced at 795F for 38 hours;
  • AMS 5616 steel treated in accordance with the invention showing the aluminum profile in the coating relative to the constituents of the steel substrate, the microprobe trace being determined across the coating and into the steel substrate, the aluminum coating being produced at 795F for 38 hours;
  • FIGS. 3, 3A and 3B is a similar electron microprobe profile chart obtained on aluminum coated AMS 5616 steel produced in accordance with the invention at 875F showing an increase in the amount of aluminum by using a metal coating and diffusion temperature for 28 hours at 875F;
  • FIG. 4 is a time-temperature profile chart illustrating the effect of a relatively fast and a relatively slow heat up cycle on the production of aluminum coatings.
  • the invention employs a cementation pack comprised of particulate aluminum, preferably though not limited to coarse aluminum powder, the cementation pack having uniformly mixed therewith an amount of dry aluminum chloride powder as a cleansing and transport-inducing agent effect to promote the deposition and diffusion of aluminum onto the steel article at the desirable metal coating and diffusion temperature.
  • the aluminum chloride is characterized by substantial vapor pressure when heated to above ambient temperature and below the metal coating and diffusion temperature.
  • the steel article is completely embedded into the cementation pack confined in a closed retort and the assembly subjected to a timetemperature heating cycle in which the pack is brought up from ambient temperature to the desired metal coating and diffusion temperature, preferably below the temperature which adversely affects the physical properties of steel, at a rate characterized by an endothermic arrest at a temperature below the metal coating and diffusion temperature, whereby substantial outgassing occurs during the period of endothermic arrest, the heating being continued to and at the preferred temperature until the desired aluminum coating thickness has been obtained.
  • the aforementioned preferred embodiment provides a pack cementation process with markedly improved activity at substantially lower temperatures than hereto possible by known methods.
  • the process greatly decreases the incubation period which normally prevails in prior processes due to contamination of the metal substrate by surface oxides, residues, and the like, and due also to the surface contamination (e.g., oxides) of the particulate coating metal itself.
  • the rate of transport of the coating metal at a given temperature from the pack source is greatly enhanced coincidentally with the elimination of the incubation period which is related to the removal of surface oxides, residues or other contami nants from both the surface of the substrate and the surfaces of the particulate coating metal in the pack, which contaminants on the coating powder otherwise inhibit the transport of the coating metal to the metal substrate, the contaminants on the metal substrate inhibiting diffusion.
  • the promoter added to the cementation pack is referred to as the cleansing and transport-inducing agent in that it provides a two-fold function in a one-step operation depending upon the heating rate employed. It is acleansing agent in that during the endothermic arrest, large amounts of a halogencontaining gas are evolved at substantially below the metal coating and diffusion temperature which cleanses the surfaces of the contaminants and thereby enhances the transport rate of the aluminum from the pack to the substrate and, when the desired diffusion temperature is reached, greatly enhances the diffusion rate of the aluminum into the already cleaned substrate of the steel article.
  • the invention provides a self-cleaning pack composition which cleans the aluminum particles of oxide, organics etc., as well as clean (flux) the surface of the steel of Fe,.O, and/or alloy oxides such as Cr,.O, etc. Cleaning of pack metal particles allows the use of larger particles of, for
  • the promoter is a transport-inducing agent in that it triggers and sustains the cycle of metal transport from the pack to the substrate. That is to say, the promoter, which may comprise other metal halides or even iodine, must be compatible to the extent of reacting with the clean aluminum and produce gaseous aluminum compounds which are then transported to the clean metal substrate for diffusion thereinto.
  • the invention is applicable to other metal substrates besides steel or ferrous alloys and to other coating metals besides aluminum, such aszinc, antimony, cadmium, etc.
  • the invention comprises providing a cementation pack comprised of particulate coating metal having mixed intimately therewith an amount of a dry cleansing and transport-inducing agent selected from the group consisting of metal halides and iodine effective to promote the deposition of the coating metal at a desired elevated metal coating and diffusion temperature, the agent being characterized by substantial vapor pressure when heated to above ambient temperature and below the desired metal coating and diffusion temperature.
  • the metal article is completely embedded into the cementation pack confined in a closed retort and the assembly then subjected to a heating cycle by heating the pack to the desired metal coating and diffusion temperature at a rate characterized by an endothermic arrest at a temperature below the metal coating and diffusion temperature, whereby substantial outgassing occurs during the endothermic arrest and the heating of the pack to and at the metal coating and diffusion temperature continued until the desired coating thickness is obtained.
  • the metal component of the metal halide constituting the cleansing and transport-inducing agent be the same as the coating metal in the pack; however, the metal component of the agent need not be the same, as it may be desirable in some instances to deposit an alloy coating, that is the metal component from the cleansing and transport-inducing agent together with a different coating metal from the pack.
  • the process provided by the invention is particularly advantageous in that relatively coarse. particles of coating metal may be employed which avoid explosion hazards.
  • the invention cannot be employed with finerv powders, such as -325 mesh aluminum, provided the necessary precautions are taken to avoid conditions which may cause explosions.
  • the pack has been stated as being essentially comprised of particulate coating metal, it is to be understood that the pack may comprise the coating metal itself (particularly where coarse particles are employed), or the pack may be a blend of the coating metal in major amounts with Y particulate inert material.
  • the coating material as the major constituent of the pack may range from about 60 percent to 100 percent by weight and the balance essentially the inert material. Examples of inert material are alumina, thoria, calcia, zirconia and other stable and inert refractory oxides and mixtures thereof.
  • any particle size may be employed in the pack, we find it advantageous for our purposes to work at particle sizes larger than 200 mesh, more preferably, above I50 mesh, and generally from about -60 mesh to +150 mesh.
  • the inert material may have the same particle size range as the coating metal and, generally speaking, we prefer that both the coating metal and the inert material be coarse because of ease of handling, mixing, and the like.
  • a previously corroded test specimen (that is a specimen which had been subjected to a salt spray test) exhibited the fatigue rating(about 5O KSI) illustrated by curve C.
  • the corroded specimen was shot peened, its fatigue rating was remarkedly improved to the level (about KSI) shown by curve B.
  • the shot peened steel part was coated with aluminum in accordance with the invention, the quality of the coating as well as the substrate upon which it was deposited was so markedly improved that the fatigue rating was augmented to the still higher level of about KSI. (Note curve A).
  • the alu minum content of the pack could be varied from to 60 percent and, when less than I00 percent metal content is employed in the pack, aluminum oxide is selected as the inert material.
  • the oxide has a mesh size which is similar to the metal particles, for example, 60 to +140, but it has been found that the -325 mesh aluminum oxide can also be used.
  • the aluminum chloride is added to the pack in the range of about 1 to 3 percent, although up to about 5 percent can be employed.
  • Processing of the coating compound is preferably carried out under humidity control conditions with a relative humidity less than 60 percent or, more advantageously, 45 percent or lower employed to prevent undesirable reaction with moisture. Freshly blended powder is preferably burnt out prior to being used for the coating cycle.
  • the burn-out cycle is accomplished by heating the pack comprising aluminum, aluminum oxide, aluminum chloride powders in a retort for times sufficient to expel any residual moisture in the aluminum or aluminum oxide. This drying may be effected at about 795 to 900F for times of 12 hours or longer.
  • the burnt out powder or a previously used batch of powder can then be used for coating by simply adding dry aluminum chloride to it. Metal retorts of steel or aluminum are used to hold the powder and the parts are completely embedded in the coating compound.
  • the retort is covered with a lid and a gasket of asbestos or multiple layers of aluminum foil is used to effect a seal between the lid and the retort body, the seal being sufficient to keep out air but permit the outgassing of generated halogencontaining gases.
  • Shot peened hardware or items requiring minimal coating buildup can be processed at 795F for times of 38 hours.
  • the chemical profile (electron microprobe trace) of a 13% Cr steel (AMS 5616) coated in this manner is shown in FIGS. 2, 2A and 2B. In cases where a thicker case depth is sought and no consideration need be given to shot peening, a satisfactory coating cycle has been found to be 875F for 28 hours.
  • the resulting chemistry of the ironaluminum intermetallic as determined by the electron microprobe is shown in FIGS. 3, 3A and 3B.
  • the retorts are removed and cooled in an area free of moisture.
  • any adhering powder is immediately blown off or rinsed off with water to prevent the possibility of reactions between the compound and the coating in the presence of moisture.
  • a coating thickness of about three-quarters of a thousandth of an inch containing a peak amount of about 54.6 percent aluminum is produced at the relatively low temperature of about 795F for 38 hours.
  • a cross-sectional piece of the coating and substrate is cut from the specimen and the coated face side plated with nickel.
  • the electron beam trace is made over a span of 0.00] inch from the substrate side to the nickel plate interface as shown graphically at the top of the drawing.
  • the chromium level in the coating has dropped from 1.4.5 percent to about 6.8 percent chromium due to the diluting effect of the diffused aluminum.
  • the iron level in the same piece has dropped from 82.3 to 39.8 percent iron in the coating.
  • the coating retained the level of 2 percent nickel present in the substrate steel.
  • endothermic arrest is meant that condition that obtains when the rate of temperature rise is arrested or decreased due to the absorption of heat energy by virtue of the latent heat of vaporization of the cleansing and transportinducing agent, e.g., aluminum chloride.
  • Chromium Nickel Aluminum Copper Iron effects on the fatigue life of the steel part in actual ser vice.
  • the endothermic arrest E in the case of aluminum chloride is shown in FIG. 4 to occur at approximately 350F from about 1 to 2 hours from the initiation of the heating cycle, another arrest occurring at about 735F, both arrests occurring below the metal coating and diffusion temperature.
  • FIG. 4 shows the comparison of heat up rates for a retort placed in a cold furnace then raised to temperature and a retort placed into a furnace already heated to the desired temperature.
  • the greater heat capacity of the hotter furnance produced a condition where the temperature arrest at 350F was eliminated (Note curve F).
  • This un-desirable condition is considered to be the result of excessive decomposition of the aluminum chloride to products including aluminum oxide.
  • the importance of this arrest at 350F in terms of the coating produced has been confirmed by metallographic sectioning of specimens. Fast heat up produced minimal case depth due to improper cleaning, whereas, a satisfactory coating thickness resulted when the re tort was heated up at a slower rate.
  • the necessary aluminum chloride addition to the pack has been found to range from about 1 percent and up toabout 5 percent.
  • the reuse of the coating compound only requires an aluminum chloride addition.
  • the 1 percent chloride level is a preferred minimum requirement, but 2 percent is normally employed.
  • the aluminum chloride has three functions in the pack.
  • the first involves the cleaning action which takes place on the surface to be coated on the aluminum powder surface and also on the walls of the container holding the pack. This reaction is dependent on the availability of dry compound and dry aluminum chloride. In the case where quantities of moisture are present, undesirable room temperature reactions will occur which involve the generation of hydrochloric acids, the formation of hydrogen chloride vapors, or hydrolysis to a basic aluminum chloride compound.
  • the effectiveness of the chloride cleaning is especially important when coating temperatures are to be in the region of 800F and is a function of the action obtained during the heat up cycle in the 350F region. This corresponds to the melting point or volatilization temperature of the cleansing and transport inducing agent.
  • any moisture present on the compound will tend to form the hydrated chloride which is believed to undergo decompostion as follows: AlCl 611 0 decomposing to aluminum oxide and hydrochloric acid.
  • the compound in the pack will undergo reactions as it is heated up toward the sublimation temperature. The main one is believed to involve the moisture present and aluminum chloride as follows:
  • Too rapid a heat up rate of the alluminum chloride will tend to produce excessive decomposition to HCl and the M 0 products.
  • the desired reactions can be described as followsfiavailable oxygen and may initially be of the A10, A1 form but, because of the oxygen level in the pack, A1 0 will be the final product.
  • a compound analogous to l-IAlCl may probably also exist.
  • the dimer chloride will decompose to the monomer.
  • This reaction is Al2Cl6 52-53 2AlCl At the coating temperatures.
  • the aluminum vapor coating potential is derived from the following reactions.
  • AlCl 111% AlCl 2HCI The aluminum chloride AlCl will react in the presence of the aluminum particles to give the following coating potential:
  • halides examples include TiBr TiCl WCl WBr WBr WI etc.
  • EXAMPLE 1 The pack is mixed in a vibrating blender for from about 5 to 10 minutes. If the charge is a fresh charge, it is subjected to burn-out at 795825F for 36 hours. However, if the charge has been previously used, burnout is not required.
  • the pack is placed in a dry condition in an aluminum lined retort with the parts to be treated, such as compressor blades (e.g. AMS 5616 steel), completely embedded in the pack.
  • the cover is sealed to the retort body with multiple layers of aluminum foil in the form of a gasket sufficient to prevent air from getting in but to allow outgassing of gaseous byproducts.
  • the retort is placed in an oven at ambient temperature and the temperature allowed to rise to the desired coating temperature by the application of heat. As the temperature rises, it goes through an endothermic arrest at about 350F and then allowed to reach a range of about 795825F and the retort maintained at substantially that temperature range for about 36 hours.
  • the retort Upon completion of the heating cycle, the retort is removed from the oven and allowed to cool approximately 400F, after which it is placed in a dry environment for cooling to ambient temperature.
  • the cooled retort is then placed in a humidity control cabinet the cover removed and the parts removed from the cementation pack.
  • the parts are then cleaned of adhering coating compound by blowing with dry air and immersed in water to remove fine dust and other residues
  • the compressor blades exhibited a very clean deposit of aluminum.
  • Example 2 The method of Example 1 is repeated except that steel parts made of l74PH stainless (l7% Cr, 4% Ni, 3% Cu and the balance essentially iron) are coated with zinc.
  • the pack is carefully prepared as described in Example 1 except that it is composed of 60 percent by weight of -60 mesh zinc, 40 percent by weight of Al O to which is added and blended dry zinc chloride in an amount of 3 percent by weight of the foregoing pack composition.
  • Substantially the same heating cycle is employed as Example 1 except that the retort is maintained at a temperature of about 775F for about 24 hours.
  • the steel part produced in this manner will have a uniform and clean coating of zinc covering the surface thereof.
  • EXAMPLE 3 Maraging steels have excellent high strength in the age hardened condition.
  • a nominal composition of one such steel is 18.5% Ni, 8.5% Co, 3.5% MO, 0.03% C, 0.25% Ti, 0.15% Al and the balance essentially iron.
  • This steel is substantially fully hardened by heating it at a temperature of about 900F for about 3 to 6 hours.
  • the method of the invention may be employed using an aluminum AI O pack of the type described in Example 1 except that 3 percent by weight of dry ferric chloride is added to the pack as the cleansing and transportinducing agent.
  • the same heating cycle as that of Example l is employed except that the part is heated to 850F and maintained at that temperature for about 36 hours. This process produces a uniform coating comprised substantially of aluminum which markedly improves the resistance of the maraging steels to temperatures of up to 900F while maintaining substantially its original hardness.
  • Heat resisting alloy articles may likewise be treated by the invention.
  • an adherent aluminum coating may be produced using a final temperature of l,lF for 24 hours.
  • the cementation pack may be stored under conditions of relatively low humidity, e.g. below 60 or 45 percent humidity in plastic bags.
  • One such composition comprises 60 to 100 percent aluminum, and the balance alumina over a particle size range of -60 to +150 mesh, the dry aluminumchloride added to the mixture ranging from about 1 to percent by weight of the pack.
  • such steels may contain about 5 to 25 percent chromium, up to about 5 percent tungsten, up to about 5 percent nickel, up to about 4 percent copper, up to about 3 percent aluminum, up to about 2 percent titanium, and the balance essentially iron, and include, in particular, precipitation hardenable chromiumcontaining stainless steels.
  • the invention may be employed on iron-base, nickel-base and cobalt-base alloys, refractory metals, such as tungsten, molybdenum, titanium, and the like.
  • the term metal base or base metal article is meant to include the foregoing metals and alloys.
  • a particular advantage of the invention is the relatively low temperature range over which high quality coatings can be achieved.
  • Such low coating temperatures can range from about 750 to 900F, and, more advantageously, from about 775 to 850F.
  • coating metals which may be employed in carting out the invention in addition to aluminum are Cd, Zn, Sb, Cu, Fe, Mn and In, among others.
  • the invention provides as one of its embodiments, a metal product characterized by improved resistance to failure by fatigue coupled with improved resistance to corrosion and oxidation.
  • the invention is particularly applicable to the production of structural elements or components made of chromium-containing steels for aircraft, which elements in service are subjected to thermal shock, vibration, centrifugal force, and the like, at temperatures of upwards of 850F or 900F.
  • structural elements produced from chromium-containing steels are turbine vanes, shrouds, compressor blades, casings, and the like. In order to insure adequate resistance to failure by fatigue, the elements are shot peened to build up compressive stresses in the substrate. As pointed out in FIG.
  • shot peening has a marked effect on upgrading the resistance of structural elements to fatigue, even where the element in use has already been corroded by the environment as illustrated by curve C of FIG. 1.
  • shot peening up-grades the fatigue resistance to the markedly high level of curve B, which resistance is further optimized by thermally coating the substrate with aluminum as shown by curve A, due to the cleaning action of the aluminum coating process, particularly in providing a clean interface between the substrate and the coating.
  • the invention enables reworking and upgrading previously used structural elements and parts, such as compressor blades, nozzle vane shrouds, etc., to the extent that they compare favorably in properties to new parts.
  • the invention provides as an article of manufacture, a thermally aluminum-coated structural element of chromiumcontaining steel having a coating comprising a heat diffused layer of aluminum in the substrate thereof, said substrate being characterized by compressive stresses introduced by shot peening, the compressive stresses at the substrate, which may extend up to about 0.1 inch in depth, together with the overlying diffused layer of aluminum, providing improved resistance to fatigue coupled with improved resistance to corrosion and oxidation at temperatures up to about 850 or 900F.
  • a thermally aluminum-coated structural element of chromiumcontaining steel having a substantially non-porous high quality thermally diffused layer of aluminum on the substrate thereof obtained at a temperature between 750F and 900F, said substrate being characterized at the surface thereof by compressive stresses introduced by shot peening before the application of said aluminum coating, the compressive stresses at the substrate together with the overlying diffused layer of aluminum providing improved resistance to fatigue coupled with improved resistance to corrosion and oxidation, said aluminum coating being also characterized by the presence of an iron-aluminum intermetallic compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

An article of manufacture is provided comprising a thermally aluminum-coated structural element of chromium-containing steel having a substantially uniform diffused layer of aluminum on the substrate thereof, said substrate being characterized by compressive stresses introduced by shot peening before applying the coating, the compressive stresses at the substrate together with the overlying diffused layer of aluminum providing improved resistance to fatigue coupled with improved resistance to corrosion and oxidation.

Description

United States Patent 11 1 Speirs et al. Oct. 2, 1973 54] DIFFUSION COATING 0F METALS 2,303,869 12/1942 Quinlan et al. 117/71 2,818,360 12 1957 Porter 29 1962 [75] Inventors Ke'mflh Spurs Umversal 3,226,207 12 1965 Bungardt et all 29/1962 Martin Weinstein, San Antonio, both of Tex.
Assignee: The Chromalloy American Corporation, New York, NY.
Filed: Feb. 7, 1972 Appl. No.: 224,256
Related US. Application Data [62] Division of Ser. No. 878,596, Nov. 2], i969,
abandoned.
[52] US. Cl. 29/1962 [51] Int. Cl B23p 3/12 58] Field of Search 29/1962; 148/315 [56] References Cited UNITED STATES PATENTS 3,400,010 9/l968 Keating 29/l96.2
Primary ExaminerW. W. Stallard Att0rneyNichol M. Sandoe ct al:
57 ABSTRACT An article of manufacture is provided comprising a thermally aluminum-coated structural element of chromium-containing steel having a substantially uniform diffused layer of aluminum on the substrate thereof, said substrate being characterized by compressive stresses introduced by shot peening before applying the coating, the compressive stresses at the substrate together with the overlying diffused layer of aluminum providing improved resistance to fatigue coupled with improved resistance to corrosion and oxidatlon.
l Claim, 8 Drawing Figures cannoosqsuor PEENED and con TED 17, a: t; g; 75 2 1'; BARE, cannon/s0 70 sno'r PEENED -1=*= no FAILURE connooeo ur I0 I I-b CYCLES PATENTED BET 2 73 SHEET 2 BF 5 MANN; Wk
.6 muzEmB l Nov! 6 WON/N077 NOE W39. k T b5 wuav MB l I I I I l I I I I I II PATENTEUUBT 21975 3.762.885
SHEET 50F 5 a g 400 Q s Ewan/mule u Aeessr COLD FURNACE HOT FURNACE THE TIME TEMPE RA TURE PROF/L E 0/ COMM/VD PZACED IN A FURNACE WHERE A 510W HEAT UP 475 ALLOWED A CHEM/CAL REAC 7' ION 0/-'' THE CHLOE/DE M0"; 70 occup.
00; 1 l l l l 0 HR. 2HRS. 3 H95 4 #25 67/23. 6 HRS TIME FIGA
DIFFUSION COATING OF METALS This application is a division of US. application Ser. No. 878,596, filed Nov. 21, 1969 and now abandoned.
This invention relates to the pack cementation diffusion coating of metals into the surface of metal articles, such as chromium containing steels, embedded and heated in a diffusion coating pack, and more particularly, to. techniques and compositions whereby a cleansing and transport-inducing agent is included in the pack to promote the diffusion of the coating metal from the pack into the surface of the articles being coated, the diffusion being greatly facilitated at a particular coating temperature and/or satisfactory diffusion coatings being obtained at coating temperatures lower than those normally required with conventional diffusion coating processes.
The Field of the Invention The diffusion coating processes to which the invention relates include those in which the metal articles to be coated and protected against corrosion, e.g., turbine vanes, shrouds and the like, are embedded in a powder pack which contains the coating metal (e.g. aluminum, chromium, etc.), usually an inert filler (such as powdered alumina), and an energizer component (such as a halide, e.g. Nl-LI) for aiding the transport or transfer of the coating metal from the powdered pack to the surface of the articles to be coated. The pack with the embedded articles is heated in a closed retort (usually in the partial absence of oxygen) to relatively high temperatures for a sufficient time to produce the diffusion of the coating metal into the surface of the articles to a desired depth. Such processes are employed to enhance the oxidation resistance of the articles at elevated temperatures and to enhance erosion and corrosion resistance for a variety of purposes and uses. The conventional pack cementation diffusion coating techniques may require that the coating step be prolonged for many hours, or for even more than a day, at relatively high temperatures, usually in excess of 1,200F and as high as 1,800F to 2,000F, depending upon the particular metal substrate, the thickness of coating desired and other characteristics.
The Problem Confronting the Art There are a variety of metals and alloys the physical or mechanical properties of which tend to be altered or adversely affected when they are heated above, for example, 1000F for any reason. Examples of such metals or alloys are precipitation hardenable stainless steels, such as l7-4Pl-l(l7% Cr, 4% Ni, 3% Cu, smaller amounts of Co, Mn, Si and the balance essentially iron), type 410 (11.5 to l3.5% Cr, 1% Si max, 1% Mn max, 0.l5 carbon max and the balance essentially iron), and AMS 5616 (13% Cr, 2% Ni, 3% W and the balance essentially iron), among many others. The tempering temperature for the foregoing type of conventional precipitation hardenable steels may range from 875F to l,l50F. As will be obviously apparent, diffusion coating temperatures of over 1,200F would have an adverse affect on the hardness of the steels to the extent of altering the physical properties and to the extent of rendering the articles unsuitable for use.
As a more specific illustration of commerical articles in which maintenance of physical properties during environmental use is an important and necessary requisite, attention is directed to certain components of the compressor portions of jet aircraft engines. .These componcnts are made of high strength steels so that they can withstand the tremendous mechanical stresses resulting from centrifugal force, thermal shock, and vibrations at temperatures which may range as high as about 850F and not exceeding 900F. While such temperatures are not considered high when compared to the elevated temperatures (l,600F to l,800F) to which superalloy aircraft components are subjected, nevertheless the steel compressor components must be coated in order to protect the substrate metal in highly saline environments which prevail when low flying aircraft operate at or near the seashore, the atmosphere of which may also include substantial amounts of sand and coral dust which tend to be highly erosive. Thus, by providing a surface diffusion coating of aluminum which produces an iron-aluminum intermetallic compound on the steel substrate of the compressor component which coating is galvanically sacrificial and at the same time resistant to dust erosion and/or saline corrosion, the component is capable of being used for relatively prolonged periods of time, provided that the original physical properties have not been substantially adversely affected by the coating process. This is particularly important in the case of those components which are shot peened in order to enhance their physical properties. As is well known, shot peening produces residual compressive loading into the metal surface which improves the high cycle fatigure performance of the components, and particularly enables the recovery of fatigue properties of previously corrosion damaged hardware.
Now shot peening is effective only if subsequent processing temperatures do not relieve the required level v of compressive stresses which may penetrate into the surface to a depth of as much as ten thousandths of an inch.
One method which has been proposed for lowering the metal coating and diffusion temperatures to desirable levels comprises mixing with the powdered cementation pack an accelerator component, preferably a metal which is substantially volatile at the coating temperature, such as cadmium, lead, tin.and zinc. While the accelerator metal substantially facilitated diffusion coating at desirably lower temperature, for example, temperatures in the neighborhood of about 900F, it had certain drawbacks. The metals cadmium and lead presented the problem of toxicity and thus extreme caution had to be taken to avoid fumes from reaching the working environment. Another drawback resided in the fact that the accelerator metal, e.g. zinc, would tend to deposit out with the coating metal, despitethe fact that the coating material comprised substantially the coating. This is undesirable where optimum resistance to corrosion and fatigue is required; Thus, inhomogeniety in the ultimate coating had to be avoided.
Another problem that presented itself, and this was true of the conventional techniques as well, and that is the fact that the particulate coating metal generally had ously and exothermically and/or ignite. The US. Bureau of Mines rates such explosibility hazards as severe. The concentration of the aluminum powder that produces such hazards is indicated as being approximately 0.04 oz. per cubic foot of air. Reducing the metal content the cementation pack does not eliminate the problem. The explosibility hazard is minimal when the particle size is greater than about 80 or 100 microns, e.g., greater than 200 or, more preferably 150 mesh. However, those skilled in the art prefer to use fine particles of high packing density to assure enhanced coating surface finish and improved throwing power. On the other hand, coarse metal coating particles does not provide such advantages but, on the contrary, the coating tends to be unsatisfactory.
Summarizing the problem, it thus became apparent that a method was required for producing a galvanically sacrificial coating on steel substrates at temperatures below 850F where compressive stresses introduced into the surface of the substrate by shot peening could be retained and also without adversely affecting the particular temper of the steel.
It would be particularly desirable to provide a method which could utilize coarse non-explosive aluminum powder (e.g., plus 150 mesh) and provide an aluminum iron intermetallic coating which would be sacrificial to the basis material and yet would not degrade in any way the fatigue properties of the basis metal. Obviously, to achieve the foregoing, the system would have to be one that will produce a celan coating base metal interface. I
With the foregoing objects in mind, the invention will now be described in more detail, and other objects and advantages will be apparent from the following disclosure and the appended drawings, wherein:
FIG. 1 is a plot showing the endurance limit in corroded and shot peened specimens after coating at 795F for 42 hours using a cementation pack provided by the invention containing 80 percent aluminum of 60 140 mesh screen size and percent alumina, the pack containing about 3 percent by weight of dry aluminum chloride intimately mixed therewith;
FlGS. 2, 2A and 2B are electron microprobe compositional profile charts ofa particular basis metal such as AMS 5616 steel treated in accordance with the invention showing the aluminum profile in the coating relative to the constituents of the steel substrate, the microprobe trace being determined across the coating and into the steel substrate, the aluminum coating being produced at 795F for 38 hours;
FIGS. 3, 3A and 3B is a similar electron microprobe profile chart obtained on aluminum coated AMS 5616 steel produced in accordance with the invention at 875F showing an increase in the amount of aluminum by using a metal coating and diffusion temperature for 28 hours at 875F; and
FIG. 4 is a time-temperature profile chart illustrating the effect of a relatively fast and a relatively slow heat up cycle on the production of aluminum coatings.
STATEMENT OF THE INVENTION In its more preferred aspect, we provide an improved method for diffusion coating aluminum into the surface of chromium-containing steels by pack cementation wherein the steel article is embedded in a cementation pack and heated to an elevated metal coating and diffusion temperature to effect diffusion of aluminum in the steel article, the diffusion temperature being advantageously below (but not limited thereto) that temperature which would be detrimental to the physical properties of the steel. The invention employs a cementation pack comprised of particulate aluminum, preferably though not limited to coarse aluminum powder, the cementation pack having uniformly mixed therewith an amount of dry aluminum chloride powder as a cleansing and transport-inducing agent effect to promote the deposition and diffusion of aluminum onto the steel article at the desirable metal coating and diffusion temperature. The aluminum chloride is characterized by substantial vapor pressure when heated to above ambient temperature and below the metal coating and diffusion temperature. The steel article is completely embedded into the cementation pack confined in a closed retort and the assembly subjected to a timetemperature heating cycle in which the pack is brought up from ambient temperature to the desired metal coating and diffusion temperature, preferably below the temperature which adversely affects the physical properties of steel, at a rate characterized by an endothermic arrest at a temperature below the metal coating and diffusion temperature, whereby substantial outgassing occurs during the period of endothermic arrest, the heating being continued to and at the preferred temperature until the desired aluminum coating thickness has been obtained.
The aforementioned preferred embodiment provides a pack cementation process with markedly improved activity at substantially lower temperatures than hereto possible by known methods. In essence, the process greatly decreases the incubation period which normally prevails in prior processes due to contamination of the metal substrate by surface oxides, residues, and the like, and due also to the surface contamination (e.g., oxides) of the particulate coating metal itself. Thus, by employing the invention, the rate of transport of the coating metal at a given temperature from the pack source is greatly enhanced coincidentally with the elimination of the incubation period which is related to the removal of surface oxides, residues or other contami nants from both the surface of the substrate and the surfaces of the particulate coating metal in the pack, which contaminants on the coating powder otherwise inhibit the transport of the coating metal to the metal substrate, the contaminants on the metal substrate inhibiting diffusion.
It is to this extent that the promoter added to the cementation pack is referred to as the cleansing and transport-inducing agent in that it provides a two-fold function in a one-step operation depending upon the heating rate employed. It is acleansing agent in that during the endothermic arrest, large amounts of a halogencontaining gas are evolved at substantially below the metal coating and diffusion temperature which cleanses the surfaces of the contaminants and thereby enhances the transport rate of the aluminum from the pack to the substrate and, when the desired diffusion temperature is reached, greatly enhances the diffusion rate of the aluminum into the already cleaned substrate of the steel article. Thus, in effect, the invention provides a self-cleaning pack composition which cleans the aluminum particles of oxide, organics etc., as well as clean (flux) the surface of the steel of Fe,.O, and/or alloy oxides such as Cr,.O, etc. Cleaning of pack metal particles allows the use of larger particles of, for
example, aluminum since the smaller available surface area of large particles relative to small particles is over compensated by the available active surface produced by the cleansing and transport-inducing agent (e.g., AlCl The promoter is a transport-inducing agent in that it triggers and sustains the cycle of metal transport from the pack to the substrate. That is to say, the promoter, which may comprise other metal halides or even iodine, must be compatible to the extent of reacting with the clean aluminum and produce gaseous aluminum compounds which are then transported to the clean metal substrate for diffusion thereinto.
Thus, in its morebroad aspects, the invention is applicable to other metal substrates besides steel or ferrous alloys and to other coating metals besides aluminum, such aszinc, antimony, cadmium, etc. Broadly stated, the invention comprises providing a cementation pack comprised of particulate coating metal having mixed intimately therewith an amount of a dry cleansing and transport-inducing agent selected from the group consisting of metal halides and iodine effective to promote the deposition of the coating metal at a desired elevated metal coating and diffusion temperature, the agent being characterized by substantial vapor pressure when heated to above ambient temperature and below the desired metal coating and diffusion temperature. The metal article is completely embedded into the cementation pack confined in a closed retort and the assembly then subjected to a heating cycle by heating the pack to the desired metal coating and diffusion temperature at a rate characterized by an endothermic arrest at a temperature below the metal coating and diffusion temperature, whereby substantial outgassing occurs during the endothermic arrest and the heating of the pack to and at the metal coating and diffusion temperature continued until the desired coating thickness is obtained.
We prefer that the metal component of the metal halide constituting the cleansing and transport-inducing agent be the same as the coating metal in the pack; however, the metal component of the agent need not be the same, as it may be desirable in some instances to deposit an alloy coating, that is the metal component from the cleansing and transport-inducing agent together with a different coating metal from the pack.
As stated hereinabove, the process provided by the invention is particularly advantageous in that relatively coarse. particles of coating metal may be employed which avoid explosion hazards. However, it is not to be construed that the invention cannot be employed with finerv powders, such as -325 mesh aluminum, provided the necessary precautions are taken to avoid conditions which may cause explosions. Thus, while the pack has been stated as beingessentially comprised of particulate coating metal, it is to be understood that the pack may comprise the coating metal itself (particularly where coarse particles are employed), or the pack may be a blend of the coating metal in major amounts with Y particulate inert material. The coating material as the major constituent of the pack may range from about 60 percent to 100 percent by weight and the balance essentially the inert material. Examples of inert material are alumina, thoria, calcia, zirconia and other stable and inert refractory oxides and mixtures thereof.
While any particle size may be employed in the pack, we find it advantageous for our purposes to work at particle sizes larger than 200 mesh, more preferably, above I50 mesh, and generally from about -60 mesh to +150 mesh. The inert material may have the same particle size range as the coating metal and, generally speaking, we prefer that both the coating metal and the inert material be coarse because of ease of handling, mixing, and the like.
DETAILS OF THE INVENTION The more preferred aspects of the invention will be discussed relative to the use of aluminum chloride as the cleansing and transport-inducing agent in the production of aluminum coatings on a precipitation hardenable stainless steel, it being understood that what is said about aluminum coatings will hold generally for other metals, keeping in mind the usual variations that may have to be made to suit a particular coating metal.
Tests conducted on a shot peened steel specimen of AMS 5616 steel (13% Cr, 2% Ni, 3% W and the balanceessentially iron) indicated that the invention was particularly applicable to such steels without substantially adversely affecting the compressive stresses induced by shot peening, thus maintaining the fatigue re sistance level of the part and in some instances augmenting it to still higher levels because of the exceptionally good quality coating deposited on the steel part. In addition, the hardness of the part was maintained at relatively the same level.
One testing using aluminum chloride as the cleansing and transport-inducing agent revealed that a 795F for 42 hour coating cycle provided retention of sufficient compressive stresses to sustain the same endurance limit as that shown by the compressively stressed speci mens with no thermal treatment. Typical results are shown in FIG. 1. The desired properties of the coating were also obtained on type 410 stainless steel using the same time and temperature cycle.
Referring to FIG. 1, a previously corroded test specimen (that is a specimen which had been subjected to a salt spray test) exhibited the fatigue rating(about 5O KSI) illustrated by curve C. However, when the corroded specimen was shot peened, its fatigue rating was remarkedly improved to the level (about KSI) shown by curve B. On the other hand, when the shot peened steel part was coated with aluminum in accordance with the invention, the quality of the coating as well as the substrate upon which it was deposited was so markedly improved that the fatigue rating was augmented to the still higher level of about KSI. (Note curve A).
In carrying out the process, it was found that the alu minum content of the pack could be varied from to 60 percent and, when less than I00 percent metal content is employed in the pack, aluminum oxide is selected as the inert material. Preferably, the oxide has a mesh size which is similar to the metal particles, for example, 60 to +140, but it has been found that the -325 mesh aluminum oxide can also be used. The aluminum chloride is added to the pack in the range of about 1 to 3 percent, although up to about 5 percent can be employed. Processing of the coating compound is preferably carried out under humidity control conditions with a relative humidity less than 60 percent or, more advantageously, 45 percent or lower employed to prevent undesirable reaction with moisture. Freshly blended powder is preferably burnt out prior to being used for the coating cycle.
The burn-out cycle is accomplished by heating the pack comprising aluminum, aluminum oxide, aluminum chloride powders in a retort for times sufficient to expel any residual moisture in the aluminum or aluminum oxide. This drying may be effected at about 795 to 900F for times of 12 hours or longer. The burnt out powder or a previously used batch of powder can then be used for coating by simply adding dry aluminum chloride to it. Metal retorts of steel or aluminum are used to hold the powder and the parts are completely embedded in the coating compound. The retort is covered with a lid and a gasket of asbestos or multiple layers of aluminum foil is used to effect a seal between the lid and the retort body, the seal being sufficient to keep out air but permit the outgassing of generated halogencontaining gases. Shot peened hardware or items requiring minimal coating buildup can be processed at 795F for times of 38 hours. The chemical profile (electron microprobe trace) of a 13% Cr steel (AMS 5616) coated in this manner is shown in FIGS. 2, 2A and 2B. In cases where a thicker case depth is sought and no consideration need be given to shot peening, a satisfactory coating cycle has been found to be 875F for 28 hours. The resulting chemistry of the ironaluminum intermetallic as determined by the electron microprobe is shown in FIGS. 3, 3A and 3B.
Upon completion of the coating cycle, the retorts are removed and cooled in an area free of moisture. When the coated parts are unpacked, any adhering powder is immediately blown off or rinsed off with water to prevent the possibility of reactions between the compound and the coating in the presence of moisture.
Referring to the chemical profile of FIGS. 2, 2A and 2B, it will be noted that a coating thickness of about three-quarters of a thousandth of an inch containing a peak amount of about 54.6 percent aluminum is produced at the relatively low temperature of about 795F for 38 hours. In preparing the specimen for the electron microprobe analysis, a cross-sectional piece of the coating and substrate is cut from the specimen and the coated face side plated with nickel. The electron beam trace is made over a span of 0.00] inch from the substrate side to the nickel plate interface as shown graphically at the top of the drawing. As will be noted, the chromium level in the coating has dropped from 1.4.5 percent to about 6.8 percent chromium due to the diluting effect of the diffused aluminum.
In FIG. 2A, the iron level in the same piece has dropped from 82.3 to 39.8 percent iron in the coating. In FIG. 2B, the coating retained the level of 2 percent nickel present in the substrate steel.
As stated hereinabove, higher levels of aluminum are obtainable at higher temperatures as illustrated in FIGS. 3, 3A and 3B. As will be noted, when the coating was produced on AMS 5616 steel at 875F for 28 hours, a coating thickness of approximately 0.001 inch was obtained containing a peak amount of aluminum of about 60.3 percent, the chromium content in the steel of 14.3 percent being diluted in the coating to a level of about 5.8 percent chromium, the nickel being diluted from 1.9 to 1 percent (FIG. 3A), and the iron from 82.6 to 34.8 percent (FIG. 3B). The coating obtained was of particular high quality, considering that the temperature of 875F employed is still substantially below the temperatures employed in the more conventional cementation packs. Such high quality coatings are inherently substantially non-porous. This markedly improved result is due to the self-cleaning characteristics of the pack.
As stated hereinbefore, by assuring an endothermic arrest during the heating up cycle, whereby outgassing of a halogen-containing gas occurs below the metal coating and diffusion temperature, the coating metal particles and the steel substrate are cleaned so that when the desired temperature is reached, efficient transport of the coating metal and diffusion into the substrate occurs with improved ease. By endothermic arrest is meant that condition that obtains when the rate of temperature rise is arrested or decreased due to the absorption of heat energy by virtue of the latent heat of vaporization of the cleansing and transportinducing agent, e.g., aluminum chloride.
When aluminum chloride is used as the activeagent, the following system behavior has been observed. As the dry mixture of aluminum, aluminum oxide and aluminum chloride is heated to the desired coating temperature, a pronounced outgassing is observed at 35 0 This closely corresponds to the melting point or the sublimation temperature of AICL, which are 374.4F and 356.4F, respectively. During outgassing, vast quantities of a halogen-containing gaseous product under considerable pressure are released from the retort through the gasket. Pressure within the retort, which is not designed specifically to contain the gas, has been measured as high as 5 pounds. This will be understood when it is realized that pressures of 2 atmospheres at 370F have been reported as the vapor pressure of aluminum chloride. Continued heating results in a decrease and finally, an absence of this gaseous product which has been determined to be obstensibly hydrogen chloride.
During the period when vapors are being expelled, a very fine residue is observed to form on the outer walls of the retort. This has been sampled and determined by spectrographic examination to be predominantly aluminum or a compound of aluminum plus other trace elements. The insolubility of the product in acids, and subsequent X-ray diffraction studies have established that the aluminum compound is most probably aluminum oxide. A complete spectrographic analysis of the residue appears to indicate that the trace elements may be metal removed from the metal substrate due to an etching action of aluminum chloride as is indicated by the following comparison of the trace elements found in the residue and actual elements present in AMS 5616 substrate.
Trace Elements Found by Spectrographic Analysis Manganese Silicon Elements present in AMS 56l6 Manganese Silicon Phosphorous Sulphur Chromium Nickel Molybedenum Tungsten Aluminum Copper Tin Iron
Chromium Nickel Aluminum Copper Iron effects on the fatigue life of the steel part in actual ser vice.
The endothermic arrest E in the case of aluminum chloride is shown in FIG. 4 to occur at approximately 350F from about 1 to 2 hours from the initiation of the heating cycle, another arrest occurring at about 735F, both arrests occurring below the metal coating and diffusion temperature. By advantageously starting the heating cycle by placing the charged retort in a cold furnace, the desired heating rate is assured for taking full advantage of the endothermic arrest in a one-step coating process. Generally, with the more conventional high temperature cementation packs, it is not uncommon to place a charged retort into a hot furnace in order to speed up the production rate.
FIG. 4 shows the comparison of heat up rates for a retort placed in a cold furnace then raised to temperature and a retort placed into a furnace already heated to the desired temperature. The greater heat capacity of the hotter furnance produced a condition where the temperature arrest at 350F was eliminated (Note curve F). This un-desirable condition is considered to be the result of excessive decomposition of the aluminum chloride to products including aluminum oxide. The importance of this arrest at 350F in terms of the coating produced has been confirmed by metallographic sectioning of specimens. Fast heat up produced minimal case depth due to improper cleaning, whereas, a satisfactory coating thickness resulted when the re tort was heated up at a slower rate.
The necessary aluminum chloride addition to the pack has been found to range from about 1 percent and up toabout 5 percent. The reuse of the coating compound only requires an aluminum chloride addition. The 1 percent chloride level is a preferred minimum requirement, but 2 percent is normally employed.
The mechanisms which are believed to explain the effect of the aluminum chloride in production of aluminum coatings are as follows, it being understood we are not to be held to this explanation:
The aluminum chloride has three functions in the pack. The first involves the cleaning action which takes place on the surface to be coated on the aluminum powder surface and also on the walls of the container holding the pack. This reaction is dependent on the availability of dry compound and dry aluminum chloride. In the case where quantities of moisture are present, undesirable room temperature reactions will occur which involve the generation of hydrochloric acids, the formation of hydrogen chloride vapors, or hydrolysis to a basic aluminum chloride compound. The effectiveness of the chloride cleaning is especially important when coating temperatures are to be in the region of 800F and is a function of the action obtained during the heat up cycle in the 350F region. This corresponds to the melting point or volatilization temperature of the cleansing and transport inducing agent. In this case, it is believed that the AlCl, removes metal surface layers even from 13 percent chromium steels. In this way, it is possible to prepare the surface of chromium bearing steels for the subsequent coating cycle. Surface contamination in many cases is also removed in the form of distillates by the reaction with the aluminum chloride. Further evidence of the cleaning action was obtained by comparing the coating extent, as a function of heat-up rate. One retort was placed in the furnace and given a normal heat up rate while a second retort was placed in a furnace where the heat up rate was at least twice as slow as the first.
All other conditions were identical. The arrest in the heat up rate, as indicated in FIG. 4, was noted only for the slowly heated retort. After the coating cycle, weight gains were all greater for the slow cycle. The results are listed below:
Specimens Slow heat up Fast heat up Wt. Gained Wt. Gained mg/cm AMS 5616 Compressor Blade 2.35 mg/cm 2.00 mg/cm Vane (AMS 5508) [.84 mg/cm 0.85 mg/cm Tab (AMS 5508) 1.63 mg/cm 1.24 mg/cm AMS 6304 Slug (l) 3.99 trig/cm 3.26 mg/cm AMS 6304 Slug (2) 4. l9 mg/cm 3.33 mg/cm AMS 6304 Slug (3) 3.95 mg/cm 3.32 mtg/cm AMS 5616 Compressor Blade 3.43 mg/cm 1.47 mg/cm AMS 5616 Compressor Blade 3.38 mg/cm 1.86 mg/cm The foregoing effect can be explained by the efficient cleaning available because of the prolonged time the chloride vapors were available from the sublimation and melting process at below the metal coating and diffusion temperature. In cases wherethe heat-up rate was too rapid, only a partial cleaning resulted, and this was reflected in the lower coating thickness obtained. The importance of the cleaning action is especially of prime consideration in 13 percent chromium steels and other alloys which form passive layers when exposed to air. This layer must be removed to provide a fully compatible surface for coating. The absence of passive layers in chromium free steels allows substantial coating thicknesses to be formed in comparison to stainless materials in which the passive layer inhibits metal diffusion.
The cleaning activity of the pack was also substantiated by studying the effects of various additions. Urea NH CONH which decomposes to form an ammonia and a carbon dioxide atmosphere completely inhibited the coating process and a dark discolored surface resulted. Ammonium chloride also eliminated the formation of the coating.
indications are that numerous reactions occur in the aluminum coating process. A number of these are listed below but other chemical processes may be significant. For example, the distillates formed by aluminum chloride, oils and residues on the surface of the steels may strongly influence coating.
Any moisture present on the compound will tend to form the hydrated chloride which is believed to undergo decompostion as follows: AlCl 611 0 decomposing to aluminum oxide and hydrochloric acid. The compound in the pack will undergo reactions as it is heated up toward the sublimation temperature. The main one is believed to involve the moisture present and aluminum chloride as follows:
Too rapid a heat up rate of the alluminum chloride will tend to produce excessive decomposition to HCl and the M 0 products.
The desired reactions can be described as followsfiavailable oxygen and may initially be of the A10, A1 form but, because of the oxygen level in the pack, A1 0 will be the final product. A compound analogous to l-IAlCl may probably also exist.
As the temperafdre bF fi 615- is approached the dimer chloride will decompose to the monomer. This reaction is Al2Cl6 52-53 2AlCl At the coating temperatures. the aluminum vapor coating potential is derived from the following reactions.
AlCl 111% AlCl 2HCI The aluminum chloride AlCl will react in the presence of the aluminum particles to give the following coating potential:
Al (pack 2AlCl 2A1 TClz As will be apparent from the foregoing description, the explosibility hazard occasioned by the use of fine (325 mesh) aluminum particles in the conventional pack cementation process can be eliminated by using coarse particles. The advantage of using a relatively coarse powder pack is that the powder charge is free flowing and allows the coating of complex shaped parts by eliminating packing difficulties. This is particularly true in the case of a vane and shroud assembly having a plurality of narrow channels.
While the invention has been described with specific reference to aluminum chloride, it will be apparent that numerous other cleansing and transport-inducing agents can be employed. The following systems were tested using a pack mixture containing 90% Al and [0 percent aluminum oxide to which were added separately 2 percent by weight of the pack one of each of the following:
Bismuth Triiodide Bismuth Chloride Ferric Chloride Aluminum Chloride Aluminum Bromide Aluminum Iodide Cadmium Iodide Nickel Iodide Cobalt Chloride Titanium Tetraiodide Nickelous Chloride Tungsten Hexachloride Lead Iodide Trichloracetic Acid Cadmium Chloride Mg 0 Iodine Ammonium Bromide Ammonium Chloride Ammonium iodide Alumium Chloride (hydrated) These systems were studied to deten'nined the potential activity of each system at 900F for 24 hours. It was found that suitable coatings were produced on substantially all of the promoters except MgO, NH,,Cl,
AlCL,XH,O, NH Br and NHJ. it was observed that with all of the successful promoters, large volumes of gaseous products were evolved even though O-rings and ceramic cements were used to contain the atmosphere within the retort.
Examples of other halides are TiBr TiCl WCl WBr WBr WI etc.
Illustrative examples of the invention are as follows:
EXAMPLE 1 The pack is mixed in a vibrating blender for from about 5 to 10 minutes. If the charge is a fresh charge, it is subjected to burn-out at 795825F for 36 hours. However, if the charge has been previously used, burnout is not required. The pack is placed in a dry condition in an aluminum lined retort with the parts to be treated, such as compressor blades (e.g. AMS 5616 steel), completely embedded in the pack. The cover is sealed to the retort body with multiple layers of aluminum foil in the form of a gasket sufficient to prevent air from getting in but to allow outgassing of gaseous byproducts.
The retort is placed in an oven at ambient temperature and the temperature allowed to rise to the desired coating temperature by the application of heat. As the temperature rises, it goes through an endothermic arrest at about 350F and then allowed to reach a range of about 795825F and the retort maintained at substantially that temperature range for about 36 hours.
Upon completion of the heating cycle, the retort is removed from the oven and allowed to cool approximately 400F, after which it is placed in a dry environment for cooling to ambient temperature.
The cooled retort is then placed in a humidity control cabinet the cover removed and the parts removed from the cementation pack. The parts are then cleaned of adhering coating compound by blowing with dry air and immersed in water to remove fine dust and other residues The compressor blades exhibited a very clean deposit of aluminum.
EXAMPLE 2 The method of Example 1 is repeated except that steel parts made of l74PH stainless (l7% Cr, 4% Ni, 3% Cu and the balance essentially iron) are coated with zinc. The pack is carefully prepared as described in Example 1 except that it is composed of 60 percent by weight of -60 mesh zinc, 40 percent by weight of Al O to which is added and blended dry zinc chloride in an amount of 3 percent by weight of the foregoing pack composition. Substantially the same heating cycle is employed as Example 1 except that the retort is maintained at a temperature of about 775F for about 24 hours. The steel part produced in this manner will have a uniform and clean coating of zinc covering the surface thereof.
EXAMPLE 3 Maraging steels have excellent high strength in the age hardened condition. A nominal composition of one such steel is 18.5% Ni, 8.5% Co, 3.5% MO, 0.03% C, 0.25% Ti, 0.15% Al and the balance essentially iron. This steel is substantially fully hardened by heating it at a temperature of about 900F for about 3 to 6 hours. Unfortunately, the steel does not have desirable resistance to oxidation at elevated temperatures. The method of the invention may be employed using an aluminum AI O pack of the type described in Example 1 except that 3 percent by weight of dry ferric chloride is added to the pack as the cleansing and transportinducing agent. The same heating cycle as that of Example l is employed except that the part is heated to 850F and maintained at that temperature for about 36 hours. This process produces a uniform coating comprised substantially of aluminum which markedly improves the resistance of the maraging steels to temperatures of up to 900F while maintaining substantially its original hardness.
EXAMPLE 4 Heat resisting alloy articles may likewise be treated by the invention. A nickel-base superalloy known by the trademark lnco 700 containing 45% Ni, 15% Cr, 30% Co, 3% M0, 3.2% Al, 2.2% Ti, 1% Fe, 0.13% C and the balance residuals, such as Mn, Si, etc., is illustrative of such alloys that can be treated. Using the same heating cycle of Example 1 and the same cementation pack composition, an adherent aluminum coating may be produced using a final temperature of l,lF for 24 hours.
One of the advantages of the invention is that the cementation pack may be stored under conditions of relatively low humidity, e.g. below 60 or 45 percent humidity in plastic bags. One such composition comprises 60 to 100 percent aluminum, and the balance alumina over a particle size range of -60 to +150 mesh, the dry aluminumchloride added to the mixture ranging from about 1 to percent by weight of the pack.
While the invention hasbeen particularly described with respect to protecting chromium-containing steels, such steels may contain about 5 to 25 percent chromium, up to about 5 percent tungsten, up to about 5 percent nickel, up to about 4 percent copper, up to about 3 percent aluminum, up to about 2 percent titanium, and the balance essentially iron, and include, in particular, precipitation hardenable chromiumcontaining stainless steels. It will also be appreciated that the invention may be employed on iron-base, nickel-base and cobalt-base alloys, refractory metals, such as tungsten, molybdenum, titanium, and the like. The term metal base or base metal article is meant to include the foregoing metals and alloys.
As has been pointed out hereinbefore, a particular advantage of the invention is the relatively low temperature range over which high quality coatings can be achieved. Such low coating temperatures can range from about 750 to 900F, and, more advantageously, from about 775 to 850F. Examples of coating metals which may be employed in carting out the invention in addition to aluminum are Cd, Zn, Sb, Cu, Fe, Mn and In, among others.
it will be understood that while the invention has been described in its details, specifically with reference to preferred embodiments thereof, changes and modifications can be made without departing from the spirit and scope of the invention.
For example, the invention provides as one of its embodiments, a metal product characterized by improved resistance to failure by fatigue coupled with improved resistance to corrosion and oxidation. As has been stated herein, the invention is particularly applicable to the production of structural elements or components made of chromium-containing steels for aircraft, which elements in service are subjected to thermal shock, vibration, centrifugal force, and the like, at temperatures of upwards of 850F or 900F. Examples of structural elements produced from chromium-containing steels are turbine vanes, shrouds, compressor blades, casings, and the like. In order to insure adequate resistance to failure by fatigue, the elements are shot peened to build up compressive stresses in the substrate. As pointed out in FIG. 1, shot peening has a marked effect on upgrading the resistance of structural elements to fatigue, even where the element in use has already been corroded by the environment as illustrated by curve C of FIG. 1. As will be noted, shot peening up-grades the fatigue resistance to the markedly high level of curve B, which resistance is further optimized by thermally coating the substrate with aluminum as shown by curve A, due to the cleaning action of the aluminum coating process, particularly in providing a clean interface between the substrate and the coating. Thus, the invention enables reworking and upgrading previously used structural elements and parts, such as compressor blades, nozzle vane shrouds, etc., to the extent that they compare favorably in properties to new parts. Thus, summarizing the foregoing, the invention provides as an article of manufacture, a thermally aluminum-coated structural element of chromiumcontaining steel having a coating comprising a heat diffused layer of aluminum in the substrate thereof, said substrate being characterized by compressive stresses introduced by shot peening, the compressive stresses at the substrate, which may extend up to about 0.1 inch in depth, together with the overlying diffused layer of aluminum, providing improved resistance to fatigue coupled with improved resistance to corrosion and oxidation at temperatures up to about 850 or 900F.
What is claimed is:
1. As an article of manufacture a thermally aluminum-coated structural element of chromiumcontaining steel having a substantially non-porous high quality thermally diffused layer of aluminum on the substrate thereof obtained at a temperature between 750F and 900F, said substrate being characterized at the surface thereof by compressive stresses introduced by shot peening before the application of said aluminum coating, the compressive stresses at the substrate together with the overlying diffused layer of aluminum providing improved resistance to fatigue coupled with improved resistance to corrosion and oxidation, said aluminum coating being also characterized by the presence of an iron-aluminum intermetallic compound.
US00224256A 1972-02-07 1972-02-07 Diffusion coating of metals Expired - Lifetime US3762885A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22425672A 1972-02-07 1972-02-07

Publications (1)

Publication Number Publication Date
US3762885A true US3762885A (en) 1973-10-02

Family

ID=22839894

Family Applications (1)

Application Number Title Priority Date Filing Date
US00224256A Expired - Lifetime US3762885A (en) 1972-02-07 1972-02-07 Diffusion coating of metals

Country Status (1)

Country Link
US (1) US3762885A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904789A (en) * 1974-04-24 1975-09-09 Chromalloy American Corp Masking method for use in aluminizing selected portions of metal substrates
US5490195A (en) * 1994-05-18 1996-02-06 Fatigue Management Associates Llc Method for measuring and extending the service life of fatigue-limited metal components
US5625664A (en) * 1994-05-18 1997-04-29 Fatigue Management Associates Llc Methods for the design, quality control, and management of fatigue-limited metal components
US5981089A (en) * 1995-05-19 1999-11-09 Matsushita Electric Works, Ltd. Ferrous alloy with Fe-Al diffusion layer and method of making the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904789A (en) * 1974-04-24 1975-09-09 Chromalloy American Corp Masking method for use in aluminizing selected portions of metal substrates
US5490195A (en) * 1994-05-18 1996-02-06 Fatigue Management Associates Llc Method for measuring and extending the service life of fatigue-limited metal components
US5625664A (en) * 1994-05-18 1997-04-29 Fatigue Management Associates Llc Methods for the design, quality control, and management of fatigue-limited metal components
US5981089A (en) * 1995-05-19 1999-11-09 Matsushita Electric Works, Ltd. Ferrous alloy with Fe-Al diffusion layer and method of making the same

Similar Documents

Publication Publication Date Title
US3978251A (en) Aluminide coatings
JP3027005B2 (en) Method for re-polishing corroded superalloy or heat-resistant steel member and re-polished member
US3649225A (en) Composite coating for the superalloys
US3961098A (en) Coated article and method and material of coating
EP0267143B1 (en) Method for applying aluminide coatings to superalloys
US5688607A (en) Platinum group silicide modified aluminide coated metal superalloy body
EP1740736B1 (en) Coatings for turbine blades
US6146696A (en) Process for simultaneously aluminizing nickel-base and cobalt-base superalloys
US3415672A (en) Method of co-depositing titanium and aluminum on surfaces of nickel, iron and cobalt
US3764373A (en) Diffusion coating of metals
JPS6130024B2 (en)
US3540863A (en) Art of protectively metal coating columbium and columbium - alloy structures
US3958047A (en) Diffusion treatment of metal
US3837901A (en) Diffusion-coating of nickel-base superalloy articles
US3957454A (en) Coated article
US3801353A (en) Method for coating heat resistant alloys
US4066806A (en) Diffusion coating of ferrous metals
US3762885A (en) Diffusion coating of metals
US3622374A (en) Diffusion coating of ferrous articles
US4528215A (en) Diffusion aluminizing of cobalt-base superalloys
US3622402A (en) Erosion-corrosion resistant coating
US3577268A (en) Method of coating iron,nickel or cobalt alloy with aluminum
US3953193A (en) Coating powder mixture
US3936539A (en) High temperature resistant diffusion coating
US3694255A (en) Method for coating heat resistant alloys

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHROMALLOY GAS TURBINE CORPORATION, A DE. CORP., N

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004862/0635

Effective date: 19880311

Owner name: CHROMALLOY GAS TURBINE CORPORATION, BLAISDELL ROAD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004862/0635

Effective date: 19880311