US3759036A - Power generation - Google Patents

Power generation Download PDF

Info

Publication number
US3759036A
US3759036A US00119820A US3759036DA US3759036A US 3759036 A US3759036 A US 3759036A US 00119820 A US00119820 A US 00119820A US 3759036D A US3759036D A US 3759036DA US 3759036 A US3759036 A US 3759036A
Authority
US
United States
Prior art keywords
accordance
weight percent
gas
oxygen
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00119820A
Inventor
R White
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co filed Critical Chevron Research and Technology Co
Application granted granted Critical
Publication of US3759036A publication Critical patent/US3759036A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • H. Davies and T. Gale Jonghe ABSTRACT A process for gasifying waste material and producing energy which comprises contacting a solid organic waste material containing at least 10 weight percent 0xygen with steam in the presence of an alkali metal carbonate catalyst at an elevated temperature to obtain a gas, combusting at least a portion of said gas to obtain combusted gases, and expanding the combusted gases through a turbine to rotate the turbine.
  • the energy of the rotating turbine is used to drive an electricity generator.
  • a potassium carbonate catalyst in the gasification of the oxygen-containing waste material.
  • feedstocks include ordinary municipal refuse or garbage having the requisite oxygen content and usually having a more preferred oxygen content above at least 20 weight percent oxygen.
  • the two leading processes that is, the two processes which are most frequently used to generate hydrogen, are steam-hydrocarbon reforming and partial oxidation of hydrocarbons.
  • hydrocarbon feed is pretreated to remove sulfur compounds which are poisons to the reforming catalyst.
  • the desulfurized feed is mixed with steam and then is passed through tubes containing a nickel catalyst. While passing through the catalyst-filled tubes, most of the hydrocarbons react with steam to form hydrogen and carbon oxides.
  • the tubes containing the catalyst are located in a reforming furnace, which furnace heats the reactants in the tubes to temperatures of 1,200F. 1,700F. Pressures maintained in the reforming furnace tubes range from atmospheric to 450 psig. If a secondary reforming furnace or reactor is employed, pressures used for reforming may be as high as 450 psig to 700 psig.
  • a hydrocarbon is reacted with oxygen to yield hydrogen and carbon monoxide. Insufficient oxygen for complete combustion is used.
  • the reaction may be carried out with gaseous hydrocarbons or liquid or solid hydrocarbons, for example, with methane, the reaction is:
  • reaction may be represented as follows:
  • Suitable operating conditions include temperatures from 2,000F. up to about 3,200F. and pressures up to about 1200 psig, but generally pressures between and 600 psig are used.
  • Various specific partial oxidation processes are commercially available, such as the Shell Gasification Process, Fauser-Montecatini Process, and the Texaco Partial Oxidation Process.
  • CO shift conversion reaction is:
  • This reaction is typically effected by passing the carbon monoxide and 11,0 over a catalyst such as iron oxide activated with chromium.
  • the sulfide waste liquor produced in the manufacture of paper from wood chips and the like is a relatively well-defined waste material consisting mostly of lignin-type organic compounds and certain inorganic components, including at least 5 weight percent sulfur calculated as the element sulfur but present usually in the form of sulfur compounds.
  • catalysts such as potassium carbonate has been disclosed for the reaction of carbon with steam to form hydrogen as is discussed, for example, in Journal of the American Chemical Society, Vol. 43, page 2055 (1921).
  • catalysts such as potassium carbonate to catalyze the reaction of organic material containing substantial amounts of oxygen, particularly waste or garbage-type material with steam to form hydrogen does not appear to be disclosed or suggested in the prior art.
  • US. Pat. No. 3,471 ,275 discloses a method for converting refuse or garbage-type material to gases such as gases rich in hydrogen. According to the process disclosed in US. Pat. No. 3,471,275, the refuse is fed to a retort and heated therein to a temperature between about 1,650F.and 2,200F. The retort is externally heated. According to the 3,471,275 patent process, steam is not generally added to the retort. Any steam which is added to the retort according to the process disclosed in the 3,471,275 patent is added to the bottom of. the retort so that steam would flow countercurrent to the waste material which is introduced to the retort at the top of the retort. No catalyst is used in the 3,47 l ,275 patent process.
  • the present invention in addition to gasification relates to the production of energy by combusting the gases obtained from gasification and then expanding the gases through a turbine.
  • Gas turbines are described in Perrys Chemical Engineers Handbook, Fourth Edition, at page 24-77 to 24-80.
  • gas turbines can use a wide variety of fuels. Major fuel limitations are that it does not (1) form ashes which deposite on the blades and interfere with operation, (2) contain dust which will erode the blades, and (3) contain uninhibited vanadium.
  • Gas turbines are now operating on fuel gas (natural and refinery), blast-furnace gases, fuel oils (including heavy residuals), and at least one coalburning gas turbine is operating.
  • coal burning gas turbines are used at Lunen in West Germany to drive electricity generators.
  • carbon or coal can be gasified in the presence of oxygen and H at a temperature of 790C. (l,454F.).
  • Gases from the gasification zone, which consist of C0, are purified to remove coal dust and fly ash and also many other impurities such as vaporized ash, alkali, and chlorine which are detrimental to the operation of gas turbines.
  • the gases are then combusted with air and then expanded through a gas turbine which turbine is used to drive an electricitygenerator.
  • the amount of air introducedto the combustor chamber is adjusted so that the outlet temperature from the combustor and the inlet temperature to the gas turbine is about 820C. (l,508 F.).
  • the Rudolph report is directed to the gasification of coal and also mentions that other gasification plants are used to gasify similar material such as sub-bituminous coal and lignite.
  • the Rudolph report does not disclose the gasification of high oxygen content organic waste material in the presence of alkali metal catalysts.
  • the Rudolph report is hereby incorporated by reference into the present patentspecification.
  • a process for gasifying waste material and producing energy comprises contacting a solid organic waste material containing at least weight percent oxygen with steam in the presence of an alkali metal carbonate catalyst at an elevated temperature to obtain a gas, combusting at least a portion of said gas to obtain combusted gases and expanding the combusted gases through a turbine to rotate the turbine.
  • An important feature of the present invention is that the invention provides a process to convert large quantities of waste material, such as municipal garbage,
  • the reason for the fast reaction rate for the formation of combustible gases in the process of the present invention is not completely understood, but it is believed that an important factor is the oxygen content of the organic feed material in the process of the present invention.
  • the organic feed material which in this specification is to be understood to contain hydrogen, as well as carbon, must contain at least 10 weight percent oxygen which can be contrasted to the essentially nil amount of oxygen present in hydrocarbon feedstocks to synthesis gas-producing processes such as steam-light hydrocarbon reforming or hydrocarbon partial oxidation.
  • the presence of oxygen in the organic feed material in the process of the present invention may contribute to the relatively fast reaction rate by making the feed material more susceptible to reaction with additional steam to produce hydrogen than in the case of hydrocarbon material containing little or no oxygen. I have found that it is particularly preferable in the process of the present invention to produce a synthesis gas from organic feed material containing at least 20 weight percent oxygen and still more preferably, between about 35 and weight percent oxygen.
  • organic feed material containing the oxygen substantially in the form of polyhydroxylated compounds is particularly advantageous from the standpoint of high reaction rates with steam to form synthesis gas.
  • Feeds containing oxygen in the form of polyhydroxylated compounds are meant to include carbohydrates such as cellulose and sugars.
  • the oxygen and the hydrogen content in the organic feed material are to be understood as chemically combined oxygen and hydrogen, i.e., oxygen and hydrogen which are connected through one or more chemical bonds to the carbon present in the organic feed material.
  • Solid waste material which is largely cellulosic, as for example agricultural waste such as corn husks or solid municipal waste such as common garbage containing a large amount of paper, are particularly preferred feedstocks to the process of the present invention.
  • the oxygen in the solid waste feedstock to the process of the present invention is oxygen which is directly chemically bonded to carbon in the solid waste feedstock.
  • solid organic waste material is used herein to connote solid municipal waste or common garbage, sewage, industrial wastes such as sawdust, and agricultural wastes such as corn husks and other discarded cellulosic materials.
  • An important aspect of the present invention is the bringing together of the two concepts that garbage ma 'terial or solid municipal waste can be converted to a combustible gas and that the combustible gas can be converted to energy, most preferably electrical energy.
  • the electrical energy is generated by expanding combusted gases obtained from the gasification of solid wastes, such as solid municipal waste in a gas turbine with the gas tur- 'bine being used to drive an electricity generator.
  • This type of plant can be employed at various locations to solvethe increasing problem of solid municipal waste I of increasing amounts of municipal garbage.
  • Another very important aspect of the present invention which cooperates in the over-all process of the present invention to make the process of the present invention more economically feasible is the discovery of the surprising catalytic effect of alkali metals, particularly potassium, to accelerate the reaction of oxygen containing organic material and particularly to accelerate the gasification of solid municipal waste such as garbage. to produce a combustible gas which can be burned to supply the driving power for the gas turbine.
  • alkali metals particularly potassium
  • an organic oxygen containing feed material which contains less than 5 weight percent sulfur.
  • the sulfur is calculated as the element sulfur, although for those undesired and excluded feedstocks, the sulfur is usually present as a compound as, for example, an organic sulfur compound or an inorganic sulfur compound present in the feed material.
  • the organic feed material contacted with steam according to the process of the present invention is preferably free from a high percentage of inorganic or organic sulfur compounds, i.e., that the feed contains less than 5 weight percent sulfur either as sulfur. chemically combined with the organic feed material or as inorganic sulfur compounds physically mixed with the organic feed material. Feeds such as Kraft black liquor produced as a waste material in the manufacture of paper pulp are usually.
  • the catalyst used in the process of the present invention is preferably an alkali metal catalyst, as we have found particularly high reaction rates using alkali metal catalysts. Potassium carbonate has been found to be particularly preferable among the alkali metal catalysts.
  • Other catalysts comprising Group VIII metals such as nickel can be used in the process of the present invention, but nickel catalysts have been found to be relatively susceptible to sulfur poisoning even at relatively low sulfur contents for the organic feedstock to the process of the present invention.
  • Nickel catalysts are not soluble in water and thus cannot be readily recovered from the ash product from the reaction zone for reuse as a catalyst such as can be done with the alkali metal catalyst like potassium carbonate.
  • nickel catalysts such as nickel acetate i.e., Ni(Ac), nickel nitrate i.e., Ni(NO result in a very high reaction rate for combustible gas production from oxygen containing organic feedstocks .at temperatures between about l,200F. and l,400F
  • alkali metal catalysts such as the potassium carbonate catalysts are preferred because of their very low susceptibility to sulfur poisoning and because of their recoverability, for example, by removing them from gasification zone ash by dissolving them in water.
  • the alkali metal catalysts include lithium, sodium, potassium, rubidium and cesium.
  • the alkali metal is added to the reaction zone by contacting the feed to the reaction zone with a solution of a salt of the alkali metal catalyst.
  • the salts of the alkali metal catalyst include salts such as sulfates and chlorides.
  • it is preferred to add the alkali metal catalyst to the reaction zone in the form of a carbonate it is suitable to add the catalyst in other forms such as hydroxides or acetates, formates, sulfates, chlorides, or other alkali metal salts. It is believed these compounds will tend to be converted to carbonates in the reaction zone.
  • Preferred amounts of the catalyst as a weight percentage of the organic feed material are from 1 to 50 weight percent and particularly preferred amounts are from 5 to 20 weight percent.
  • Preferred amounts of the catalyst as a weight percentage of the organic feed material are from 1 to 50 weight percent and particularly preferred amounts are from 5 to 20 weight percent.
  • about 2 to 15 weight percent potassium carbonate is preferably impregnated into the feed before contacting the feed with steam in the reaction zone.
  • the organic feed material to the process present of the invention must contain a minimum amount of oxygen, namely at least 10 weight percent oxygen.
  • Particularly preferred feedstocks contain 20 percent or more combined oxygen.
  • the reason for the fast reaction rate for the formation of hydrogen-rich gas in the catalytic reaction according to the process of the present invention is not completely understood, but the oxygen content of the feedstock has been found to be a realted factor to the fast reaction when using the alkali metal catalyst.
  • progressively higher oxygen contents, particularly from 10 to 25 weight percent have been found to result in progressively faster reaction rates for the fonnation of hydrogen-rich gas in the process of the present invention.
  • An important advantage obtained in the process of the present invention compared to coal gasification processes using no alkali metal catalyst, is the essentially complete elimination of chlorides such as hydrogen chloride and many other acid gases excepting hydrogen sulfide by reaction of the added alkali metal catalyst used in accordance with the process of the present invention with acid constituents such as hydrogen chloride formed in the gasiflcation zone.
  • an oxygen-containing gas such as air or molecular oxygen
  • the heat for the reaction can also be'supplied by heating the steam fed to the reaction .zone to a sufficiently high temperature to supply the required amount of heat for the endothermic reaction of steam plus organic material to form synthesis gas.
  • the gasification reaction of the present invention can be carried out at temperatures between about 700 and 2,000F., it is strongly preferred to use a lower temperature, preferably between 1,000 and l,400F., and still more preferaby between l,l00 and l,300F.
  • the lower temperature is particularly made feasible in my process because of the relatively fast reaction rate obtained with oxygen-containing waste material using an alkali metal catalyst such as potassium carbonate.
  • Advantages achieved using the lower ternperature include greater life for the gasification reactor, better heat efficiency, less tendency to slagging of glass, and less expensive reactor metallurgy requirements. Therefore, the lower temperatures used in the process of the present invention compared to other gasification processes is a very important advantage.
  • the concept of the present invention also is extendable to generating energy, from high oxygen content solid waste material, in other manners as, for example, by generating a combustible gas from oxygencontaining solid waste material followed by combusting the gas in a steam boiler so as to obtain steam which can be used to drive a turbine, the energy of which turbine can be used to generate electrical power. Also, particularly since the gases obtained according to the process of the present invention are rich in hydrogen (especially at the low temperatures made feasible in the gasification zone of the present invention), the gases can be combusted in a fuel cell to convert the gases to electrical energy.
  • EXAMPLES l Fifty grams of simulated solid municipal waste composed of 50 weight percent paper, 10 weight percent sawdust, 3 weight percent wool, 2 weight percent plastic, 10 weight percent cotton, 10 weight percent iron, 2 weight percent aluminum, and 13 weight percent food peels such as orange peels, etc.
  • the oxygen content of this particular organic feed material was approximately 50 percent by weight excluding the metallic materials, i.e., iron and aluminum in the reactor charge.
  • the total gas production was approximately 22 liters.
  • the maximum gas production rate during the four-hour run period was about liters per hour.
  • the gas produced contained about 60 volume percent hydrogen with the remainder being mostly CO and CO.
  • the residue recovered after the run was about 12.2 grams composed of 5.4 grams iron and iron oxide, 0.8 grams aluminum and aluminum oxide, 1.5 grams water insoluble ash, and 3.2 grams sodium carbonate.
  • the amount of H 0 added during this run was about 16 milliliters per hour, compared to 14 milliliters per hour for the previous example wherein the potassium carbonate catalyst was used.
  • the process for gasifying waste material and producing energy which comprises:
  • alkali metal catalyst is potassium carbonate or sodium carbonate.
  • the process for gasifying waste material and producing energy which comprises forming a combustible synthesis gas by contacting a mixture of solid organic waste material containing at least 10 weight percent chemically combined oxygen and containing less than 5 weight percent sulfur, and l to 50 weight percent of a potassium carbonate catalyst with steam at a temperature between l,000F, and l,400F., combusting at least a portion of the combusting gas to obtain combusted gases, and expanding the combusted gases through a turbine.
  • organic feed material is solid waste material selected from the group consisting of solid municipal waste, industrial waste, or agricultural waste.
  • solid organic waste material feedstock is selected from the group consisting of municipal solid wastes, agricultural wastes and dried sewage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A process for gasifying waste material and producing energy which comprises contacting a solid organic waste material containing at least 10 weight percent oxygen with steam in the presence of an alkali metal carbonate catalyst at an elevated temperature to obtain a gas, combusting at least a portion of said gas to obtain combusted gases, and expanding the combusted gases through a turbine to rotate the turbine. Preferably, the energy of the rotating turbine is used to drive an electricity generator. It is strongly preferred to use a potassium carbonate catalyst in the gasification of the oxygen-containing waste material. Preferably feedstocks include ordinary municipal refuse or garbage having the requisite oxygen content and usually having a more preferred oxygen content above at least 20 weight percent oxygen.

Description

United States Patent [191 White 1 Sept. 18, 1973 POWER GENERATION [75] Inventor: Robert J. White, Pinole, Calif.
[73] Assignee: Chevron Research Company, San
Francisco, Calif.
[22] Filed: Mar. 1, 1970 [21] Appl. No.: 119,820
Related US. Application Data [63] Continuation-in-part of Ser. No. 34,834, May 5, 1970.
[52] US. Cl. 60/39.05, 60/39.]2, 48/209 UX, 210/63 [51] Int. Cl. F02g 3/00 [58] Field of Search 60/3905, 39.04, 60/3912; 210/63; 48/209 UX [56] References Cited UNITED STATES PATENTS 3,252,773 5/1966 Solomon et al. 48/209 UX 1,773,959 8/1930 Crow 201/21 X 2,614,915 10/1952 Hirsch 60/39.]2
2,773,026 12/1956 Cederquist 210/63 3,101,592 8/1963 Robertson et al. 60/3905 2,735,266 2/1956 Atherton 60/3912 2,944,396 7/l960 Barton et al. 60/3912 ORGANIC MATER|A| CATALYST SOLUTION SOLID WASTE 2,624,l72 l/l953 Houdry 60/3904 Primary Examiner-Carlton R. Croyle Assistant Examiner-Warren Olsen Attorney-J. A. Buchanan, Jr., G. F. Magdeburger, L.
H. Davies and T. Gale Jonghe ABSTRACT A process for gasifying waste material and producing energy which comprises contacting a solid organic waste material containing at least 10 weight percent 0xygen with steam in the presence of an alkali metal carbonate catalyst at an elevated temperature to obtain a gas, combusting at least a portion of said gas to obtain combusted gases, and expanding the combusted gases through a turbine to rotate the turbine. Preferably, the energy of the rotating turbine is used to drive an electricity generator. It is strongly preferred to use a potassium carbonate catalyst in the gasification of the oxygen-containing waste material. Preferably feedstocks include ordinary municipal refuse or garbage having the requisite oxygen content and usually having a more preferred oxygen content above at least 20 weight percent oxygen.
14 Claims, 1 Drawing Figure l m I/ 2 /5 HEAT GAS 6 RECOVERY PURIFICATION E L C02 14 27 O 25 19 CO 2/ i 2 l 9 H o GAS a I r SHIFT A v CONVERSION E 8 L SANITARY 7 A RESIDUE (ASH) l 24 AIR /0 H2 FLUE GAS GAS COMBUSTION HOT TURBINE ZONE GAS (POWER GENERATION) 1.. POWER GENERATION CROSS REFERENCES This application is a Continuation-in-Part of Ser. No. 34,834, filed May 5, 1970, entitled Catalytic Hydrogen Manufacture, the disclosure of which application is incorporated by reference in the present patent application.
BACKGROUND OF THE INVENTION steam-hydrocarbon reforming, partial oxidation of hydrocarbons, Lurgi heavy hydrocarbons gasification, the traditional steam, red-hot coke reaction, modified methods of reacting carbonaceous matter with steam and oxygen, such as described in US. Pat. No. 1,505,065, coal gasification and lignite gasification.
The two leading processes, that is, the two processes which are most frequently used to generate hydrogen, are steam-hydrocarbon reforming and partial oxidation of hydrocarbons.
In typical steam reforming processes, hydrocarbon feed is pretreated to remove sulfur compounds which are poisons to the reforming catalyst. The desulfurized feed is mixed with steam and then is passed through tubes containing a nickel catalyst. While passing through the catalyst-filled tubes, most of the hydrocarbons react with steam to form hydrogen and carbon oxides. The tubes containing the catalyst are located in a reforming furnace, which furnace heats the reactants in the tubes to temperatures of 1,200F. 1,700F. Pressures maintained in the reforming furnace tubes range from atmospheric to 450 psig. If a secondary reforming furnace or reactor is employed, pressures used for reforming may be as high as 450 psig to 700 psig. In secondary reformer reactors, part of the hydrocarbons in the effluent from the primary refon'ner is burned with oxygen. Because of the added expense, secondary reformers are generally not used in pure hydrogen manufacture, but are used where it is desirable to obtain a mixture of H and N as seen in ammonia manufacture. The basic reactions in the steam reforming process are:
In typical partial oxidation processes, a hydrocarbon is reacted with oxygen to yield hydrogen and carbon monoxide. Insufficient oxygen for complete combustion is used. The reaction may be carried out with gaseous hydrocarbons or liquid or solid hydrocarbons, for example, with methane, the reaction is:
With heavier hydrocarbons, the reaction may be represented as follows:
Both catalytic and noncatalytic partial oxidation pro cesses are in use. Suitable operating conditions include temperatures from 2,000F. up to about 3,200F. and pressures up to about 1200 psig, but generally pressures between and 600 psig are used. Various specific partial oxidation processes are commercially available, such as the Shell Gasification Process, Fauser-Montecatini Process, and the Texaco Partial Oxidation Process.
There is substantial carbon monoxide in the hydrogen-rich gas generated by either reforming or partial oxidation. To convert the carbon monoxide to hydrogen and carbon dioxide, one or more CO shift conversion stages are typically employed. The CO shift conversion reaction is:
CO-H-I O H t-CO This reaction is typically effected by passing the carbon monoxide and 11,0 over a catalyst such as iron oxide activated with chromium.
Production of hydrogen and other gases from waste substances produced in the manufacture of paper from wood chips, and the like has been discussed in the literature as, for example, in US. Pat. No. 3,317,292. In the manufacture of paper, wood chips are digested, for example, with an aqueous calcium sulfide liquid thereby fonning calcium lignin sulfonate waste product in solution, leaving wood pulp behind. As disclosed in US. Pat. No. 3,317,292, the waste substances containing lignin-derived organic components can be converted to a gas mixture comprising hydrogen by contacting the waste material with steam in a reaction zone at an elevated temperature at least of the order of several hundred degrees centigrade. The sulfide waste liquor produced in the manufacture of paper from wood chips and the like is a relatively well-defined waste material consisting mostly of lignin-type organic compounds and certain inorganic components, including at least 5 weight percent sulfur calculated as the element sulfur but present usually in the form of sulfur compounds. The use of catalysts such as potassium carbonate has been disclosed for the reaction of carbon with steam to form hydrogen as is discussed, for example, in Journal of the American Chemical Society, Vol. 43, page 2055 (1921). However, the use of catalysts such as potassium carbonate to catalyze the reaction of organic material containing substantial amounts of oxygen, particularly waste or garbage-type material with steam to form hydrogen does not appear to be disclosed or suggested in the prior art.
US. Pat. No. 3,471 ,275 discloses a method for converting refuse or garbage-type material to gases such as gases rich in hydrogen. According to the process disclosed in US. Pat. No. 3,471,275, the refuse is fed to a retort and heated therein to a temperature between about 1,650F.and 2,200F. The retort is externally heated. According to the 3,471,275 patent process, steam is not generally added to the retort. Any steam which is added to the retort according to the process disclosed in the 3,471,275 patent is added to the bottom of. the retort so that steam would flow countercurrent to the waste material which is introduced to the retort at the top of the retort. No catalyst is used in the 3,47 l ,275 patent process.
As indicated previously, the present invention in addition to gasification relates to the production of energy by combusting the gases obtained from gasification and then expanding the gases through a turbine. Gas turbines are described in Perrys Chemical Engineers Handbook, Fourth Edition, at page 24-77 to 24-80. As indicated in Perrys Handbook, gas turbines can use a wide variety of fuels. Major fuel limitations are that it does not (1) form ashes which deposite on the blades and interfere with operation, (2) contain dust which will erode the blades, and (3) contain uninhibited vanadium. Gas turbines are now operating on fuel gas (natural and refinery), blast-furnace gases, fuel oils (including heavy residuals), and at least one coalburning gas turbine is operating.
As described in a report titled: New Fossil-Fueled Power Plant Process Based on Lurgi Pressure Gasification of Coal by Paul F. H. Rudolph delivered at an ACS meeting on May 27, 1970, coal burning gas turbines are used at Lunen in West Germany to drive electricity generators. As disclosed in that report, carbon or coal can be gasified in the presence of oxygen and H at a temperature of 790C. (l,454F.). Gases from the gasification zone, which consist of C0, are purified to remove coal dust and fly ash and also many other impurities such as vaporized ash, alkali, and chlorine which are detrimental to the operation of gas turbines. After purification of the gases from the gasification step, the gases are then combusted with air and then expanded through a gas turbine which turbine is used to drive an electricitygenerator. The amount of air introducedto the combustor chamber is adjusted so that the outlet temperature from the combustor and the inlet temperature to the gas turbine is about 820C. (l,508 F.).
The Rudolph report is directed to the gasification of coal and also mentions that other gasification plants are used to gasify similar material such as sub-bituminous coal and lignite. The Rudolph report does not disclose the gasification of high oxygen content organic waste material in the presence of alkali metal catalysts. The Rudolph report is hereby incorporated by reference into the present patentspecification.
SUMMARY OF THE INVENTION According to the present invention, a process is provided for gasifying waste material and producing energy which process comprises contacting a solid organic waste material containing at least weight percent oxygen with steam in the presence of an alkali metal carbonate catalyst at an elevated temperature to obtain a gas, combusting at least a portion of said gas to obtain combusted gases and expanding the combusted gases through a turbine to rotate the turbine.
An important feature of the present invention is that the invention provides a process to convert large quantities of waste material, such as municipal garbage,
which currently presents a difficult disposal problem, to valuable energy, preferably electrical energy.
I have found that solid organic waste material containing at least 10 weight percent oxygen is converted at an unexpectedly high rate to combustible gases and that the defined organic feed material is converted at an unexpectedly high rate to combustible gas when the ent invention. We have found that the rate of conversion of the organic feed material is particularly fast disposal particularly the disposal conversion is carried out in accordance with the preswhen a potassium carbonate catalyst is used to accelerate the reaction rate.
The reason for the fast reaction rate for the formation of combustible gases in the process of the present invention is not completely understood, but it is believed that an important factor is the oxygen content of the organic feed material in the process of the present invention. The organic feed material, which in this specification is to be understood to contain hydrogen, as well as carbon, must contain at least 10 weight percent oxygen which can be contrasted to the essentially nil amount of oxygen present in hydrocarbon feedstocks to synthesis gas-producing processes such as steam-light hydrocarbon reforming or hydrocarbon partial oxidation. The presence of oxygen in the organic feed material in the process of the present invention may contribute to the relatively fast reaction rate by making the feed material more susceptible to reaction with additional steam to produce hydrogen than in the case of hydrocarbon material containing little or no oxygen. I have found that it is particularly preferable in the process of the present invention to produce a synthesis gas from organic feed material containing at least 20 weight percent oxygen and still more preferably, between about 35 and weight percent oxygen.
I have also found that organic feed material containing the oxygen substantially in the form of polyhydroxylated compounds is particularly advantageous from the standpoint of high reaction rates with steam to form synthesis gas. Feeds containing oxygen in the form of polyhydroxylated compounds are meant to include carbohydrates such as cellulose and sugars.
The oxygen and the hydrogen content in the organic feed material are to be understood as chemically combined oxygen and hydrogen, i.e., oxygen and hydrogen which are connected through one or more chemical bonds to the carbon present in the organic feed material. Solid waste material which is largely cellulosic, as for example agricultural waste such as corn husks or solid municipal waste such as common garbage containing a large amount of paper, are particularly preferred feedstocks to the process of the present invention. Usually and preferably, the oxygen in the solid waste feedstock to the process of the present invention is oxygen which is directly chemically bonded to carbon in the solid waste feedstock.
In general, the term solid organic waste material" is used herein to connote solid municipal waste or common garbage, sewage, industrial wastes such as sawdust, and agricultural wastes such as corn husks and other discarded cellulosic materials.
An important aspect of the present invention is the bringing together of the two concepts that garbage ma 'terial or solid municipal waste can be converted to a combustible gas and that the combustible gas can be converted to energy, most preferably electrical energy. In the process of the present invention, the electrical energy is generated by expanding combusted gases obtained from the gasification of solid wastes, such as solid municipal waste in a gas turbine with the gas tur- 'bine being used to drive an electricity generator. This type of plant can be employed at various locations to solvethe increasing problem of solid municipal waste I of increasing amounts of municipal garbage.
Another very important aspect of the present invention which cooperates in the over-all process of the present invention to make the process of the present invention more economically feasible is the discovery of the surprising catalytic effect of alkali metals, particularly potassium, to accelerate the reaction of oxygen containing organic material and particularly to accelerate the gasification of solid municipal waste such as garbage. to produce a combustible gas which can be burned to supply the driving power for the gas turbine.
It is preferred in the process of the present invention to use an organic oxygen containing feed material which contains less than 5 weight percent sulfur. The sulfur is calculated as the element sulfur, although for those undesired and excluded feedstocks, the sulfur is usually present as a compound as, for example, an organic sulfur compound or an inorganic sulfur compound present in the feed material. Thus, it is to be understood that the organic feed material contacted with steam according to the process of the present invention is preferably free from a high percentage of inorganic or organic sulfur compounds, i.e., that the feed contains less than 5 weight percent sulfur either as sulfur. chemically combined with the organic feed material or as inorganic sulfur compounds physically mixed with the organic feed material. Feeds such as Kraft black liquor produced as a waste material in the manufacture of paper pulp are usually. not suitable in the process of the present invention because of the relatively high content of sulfur compounds in the Kraft black liquor. It is undesirable to have substantial amounts of sulfur feed to the reaction zone in the process of the present invention because of the increased reactor cost and, more particularly, because of the increased problems in removing sulfur compounds from the synthesis gas produced in the reactor. It is preferred that the sulfur content of the organic feed material be below about 3 weight percent sulfur.
The catalyst used in the process of the present invention is preferably an alkali metal catalyst, as we have found particularly high reaction rates using alkali metal catalysts. Potassium carbonate has been found to be particularly preferable among the alkali metal catalysts. Other catalysts comprising Group VIII metals such as nickel can be used in the process of the present invention, but nickel catalysts have been found to be relatively susceptible to sulfur poisoning even at relatively low sulfur contents for the organic feedstock to the process of the present invention. Nickel catalysts are not soluble in water and thus cannot be readily recovered from the ash product from the reaction zone for reuse as a catalyst such as can be done with the alkali metal catalyst like potassium carbonate. Thus, although we have recently found that nickel catalysts such as nickel acetate i.e., Ni(Ac),, nickel nitrate i.e., Ni(NO result in a very high reaction rate for combustible gas production from oxygen containing organic feedstocks .at temperatures between about l,200F. and l,400F, alkali metal catalysts such as the potassium carbonate catalysts are preferred because of their very low susceptibility to sulfur poisoning and because of their recoverability, for example, by removing them from gasification zone ash by dissolving them in water.
The alkali metal catalysts include lithium, sodium, potassium, rubidium and cesium. Preferably, the alkali metal is added to the reaction zone by contacting the feed to the reaction zone with a solution of a salt of the alkali metal catalyst. The salts of the alkali metal catalyst include salts such as sulfates and chlorides. Although it is preferred to add the alkali metal catalyst to the reaction zone in the form of a carbonate, it is suitable to add the catalyst in other forms such as hydroxides or acetates, formates, sulfates, chlorides, or other alkali metal salts. It is believed these compounds will tend to be converted to carbonates in the reaction zone.
, Preferred amounts of the catalyst as a weight percentage of the organic feed material are from 1 to 50 weight percent and particularly preferred amounts are from 5 to 20 weight percent. When using the particularly preferred potassium carbonate catalyst, about 2 to 15 weight percent potassium carbonate is preferably impregnated into the feed before contacting the feed with steam in the reaction zone.
As indicated previously, the organic feed material to the process present of the invention must contain a minimum amount of oxygen, namely at least 10 weight percent oxygen. Particularly preferred feedstocks contain 20 percent or more combined oxygen. As indicated in my copending application Ser. No. 34,834, the reason for the fast reaction rate for the formation of hydrogen-rich gas in the catalytic reaction according to the process of the present invention is not completely understood, but the oxygen content of the feedstock has been found to be a realted factor to the fast reaction when using the alkali metal catalyst. Furthermore, progressively higher oxygen contents, particularly from 10 to 25 weight percent, have been found to result in progressively faster reaction rates for the fonnation of hydrogen-rich gas in the process of the present invention.
An important advantage obtained in the process of the present invention compared to coal gasification processes using no alkali metal catalyst, is the essentially complete elimination of chlorides such as hydrogen chloride and many other acid gases excepting hydrogen sulfide by reaction of the added alkali metal catalyst used in accordance with the process of the present invention with acid constituents such as hydrogen chloride formed in the gasiflcation zone.
In the process of the present invention, it is preferred to add an oxygen-containing gas such as air or molecular oxygen to the reaction zone to burn a portion of the organic feed material with steam to form synthesis gas and carbon oxides. The heat for the reaction can also be'supplied by heating the steam fed to the reaction .zone to a sufficiently high temperature to supply the required amount of heat for the endothermic reaction of steam plus organic material to form synthesis gas.
Although the gasification reaction of the present invention can be carried out at temperatures between about 700 and 2,000F., it is strongly preferred to use a lower temperature, preferably between 1,000 and l,400F., and still more preferaby between l,l00 and l,300F. The lower temperature is particularly made feasible in my process because of the relatively fast reaction rate obtained with oxygen-containing waste material using an alkali metal catalyst such as potassium carbonate. Advantages achieved using the lower ternperature include greater life for the gasification reactor, better heat efficiency, less tendency to slagging of glass, and less expensive reactor metallurgy requirements. Therefore, the lower temperatures used in the process of the present invention compared to other gasification processes is a very important advantage.
The concept of the present invention also is extendable to generating energy, from high oxygen content solid waste material, in other manners as, for example, by generating a combustible gas from oxygencontaining solid waste material followed by combusting the gas in a steam boiler so as to obtain steam which can be used to drive a turbine, the energy of which turbine can be used to generate electrical power. Also, particularly since the gases obtained according to the process of the present invention are rich in hydrogen (especially at the low temperatures made feasible in the gasification zone of the present invention), the gases can be combusted in a fuel cell to convert the gases to electrical energy.
EXAMPLES l. Fifty grams of simulated solid municipal waste composed of 50 weight percent paper, 10 weight percent sawdust, 3 weight percent wool, 2 weight percent plastic, 10 weight percent cotton, 10 weight percent iron, 2 weight percent aluminum, and 13 weight percent food peels such as orange peels, etc. The oxygen content of this particular organic feed material was approximately 50 percent by weight excluding the metallic materials, i.e., iron and aluminum in the reactor charge.
Fifty-three millileters of H was added to the quartz reactor over a 4-hour period. The internal reaction zone in the reactor was maintained at a temperature of about 1,200F. to 1,400F. during most of the reaction time. No catalyst was used in this laboratory run.
Over the four-hour period, the total gas production was approximately 22 liters. The maximum gas production rate during the four-hour run period was about liters per hour. The gas produced contained about 60 volume percent hydrogen with the remainder being mostly CO and CO.
Remaining from the 50 grams charge to the reactor was 1 1.8 grams of residue. 6.3 grams of this residue was iron and aluminum. The carbon, hydrogen, oxygen elemental analysis of the organic residue was about 85 weight percent C, about 1.4 weight percent H, and about 14 weight percent 0.
The above results illustrate that solid waste material can be converted to substantial amounts of combustible gases with the simultaneous production of a residue which is sanitary because of the high temperature treatment of the solid waste material and the breaking down of the solid waste material into various constituents. The results also illustrate that the combustible gas can be produced at a fairly high rate; the rate of combustible gas production from the garbage was surprisingly found to be considerably higher than the rate of combustible gas production from carbon by reacting carbon with H O under similar temperature conditions.
2. 1n a subsequent run, 50 grams of simulated solid municipal waste having the same composition as in the preceding example was reacted with steam in the presence of 16.6 weight percent potassium carbonate catalyst based on the 50 grams of solid municipal waste feed. The alkali metal catalyst resulted in a surprising increase in the hydrogen gas production. Compared to 22 liters of gas produced over 4 hours in the preceding example with no catalyst, 54.6 liters of gas were produced in this run using the alkali metal catalyst. Com- 5.2 volume percent C -C 2.1 volume percent CO 6.8 volume percent CO, 21.6 volume percent H, 64.3 volume percent The above gas analysis was based on approximately 18.1 liters of gas collected while the reaction zone was raised, by electrical heating of the reactor, from about 800 to 1,200F. When heating the solid waste feed from 1,200F. 1,400F., 27.6 liters of gas were recovered having the composition shown below:
C. 0.5 volume percent C -C Nil CO 17.2 volume percent CO,
63.6 volume percent The residue recovered after this run was about 12.4 grams composed of 5.6 grams iron and iron oxide, 0.8 grams aluminum and aluminum oxide, 5.0 grams potassium carbonate, and 1.0 grams water-insoluble ash.
3. Another run was carried out using 50 grams of simulated solid municipal waste having the same composition as in the preceding examples, but using 10 weight percent sodium carbonate catalyst. The sodium carbonate catalyst was found to be very effective in increasing the rate of hydrogen production. The maximum rate of combustible gas production during this run was 34 liters per hour compared to only 10 liters per hour in the Example 1 above, wherein no catalyst was used. The total amount of combustible gas produced in this run was 47.1 liters.
The temperature range during this run was essentially the same as that in the preceding examples with the maximum temperature being 1,425F.
The residue recovered after the run was about 12.2 grams composed of 5.4 grams iron and iron oxide, 0.8 grams aluminum and aluminum oxide, 1.5 grams water insoluble ash, and 3.2 grams sodium carbonate.
The amount of H 0 added during this run was about 16 milliliters per hour, compared to 14 milliliters per hour for the previous example wherein the potassium carbonate catalyst was used.
4. Fifty grams of dried Milwaukee sewage, commonly referred to as Milorganite, was'impregnated with about 10 weight percent sodium carbonate and then reacted with steam at a temperature within the range of about 1,200F. 1,440F. The reaction was carried out over a period of about 6 hours and 39 liters of gas were produced. The gas contained about 63 volume percent hydrogen and aboutl 1 percent CO. 12.3 grams of residue remained. About 2.5 grams of the residue was soluble in water and could be processed to recover a large amount of the sodium carbonate catalyst for re-use in the catalytic reaction. 5. If the gas produced in Example 2 were converted to kilowatt hours, a theoretical field of approximately 0.13 KWH can be produced from 50 gr. of organic feed. Thisis equal to 1,000 KWH/ton of organic feed, assuming a turbine efficiency of 42 percent.
Although various embodiments of the invention have been described, it is to be understood that they are 18.7 volume percent meant to be illustrative only and not limiting. Certain features may be changed without departing from the spirit or scope of the invention. It is apparent that the present invention has broad application to gasification of solid waste containing at least 10 weight percent chemically combined oxygen to obtain a combustible gas, followed by combusting the combustible gas and expanding the combusted gas through a gas turbine in order to obtain energy. The invention is not to be construed as limited to the specific embodiments or examples discussed but only as defined in the appended claims or substantial equivalents thereto.
I claim:
1. The process for gasifying waste material and producing energy which comprises:
1. forming a combustible synthesis gas by contacting a mixture of solid organic waste material and l to 50 weight percent, based on the weight of solid organic waste material, of an alkali metal carbonate catalyst, with steam at an elevated temperature;
2. combusting at least a portion of said gas; and
3. rotating a turbine by expanding said combusted gas through the turbine; and said organic waste material containing at least 10 weight percent chemically bonded oxygen and containing less than 5 weight percent sulfur.
2. The process in accordance with claim 1 wherein the turbine is used to drive an electricity generator.
3. The process in accordance with claim 1 wherein the alkali metal catalyst is potassium carbonate or sodium carbonate.
4. The process in accordance with claim 1 wherein the alkali metal catalyst is potassium carbonate.
5. The process in accordance with claim 1 wherein the temperature in the reaction zone is maintained between 700F. and 2,000F. I
6. The process in accordance with claim 1 wherein the temperature in the reaction zone is maintained between l,O00F. and 1,400F.
7. The process in accordance with claim 1 wherein a gas comprising oxygen is fed to the reaction zone and a portion of the solid organic waste feed material to the reaction zone is burned with the oxygen to provide at least a portion of the endothermic heat of reaction for the conversion of the organic feed material plus steam to combustible synthesis gas.
8. The process in accordance with claim 1 wherein the oxygen content of the solid organic waste feed material is at least 20 weight percent.
9. The process in accordance with claim 1 wherein the oxygen content in the organic feed material is be tween 35 and weight percent.
10. The process for gasifying waste material and producing energy which comprises forming a combustible synthesis gas by contacting a mixture of solid organic waste material containing at least 10 weight percent chemically combined oxygen and containing less than 5 weight percent sulfur, and l to 50 weight percent of a potassium carbonate catalyst with steam at a temperature between l,000F, and l,400F., combusting at least a portion of the combusting gas to obtain combusted gases, and expanding the combusted gases through a turbine.
11. The process in accordance with claim 10 wherein the turbine is used to drive an electrical generator to produce electrical power.
12. The process in accordance with claim 10 wherein the organic feed material is solid waste material selected from the group consisting of solid municipal waste, industrial waste, or agricultural waste. 13. The process in accordance with claim 1 wherein the solid organic waste material feedstock is selected from the group consisting of municipal solid wastes, agricultural wastes and dried sewage.
14. The process in accordance with claim 1 wherein the solid organic waste material feedstock is a cellulosic material.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION pa e t No, 3,759,036 ated September 18, 1973 Inventor-(s) Robert White It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
The term of this patent subsequent to Sept. 18, 1990, has been disclaimed.
Signed and sealed this let day of April 1975.
RUTH C. HAS 3-3 .flttesting Officer F ORM PO-1 050 (10-69) USCOMM-DC 60376-P69 U.5. GOVERNMENT PRINTING OFFICE: 869. 930

Claims (15)

  1. 2. The process in accordance with claim 1 wherein the turbine is used to drive an electricity generator.
  2. 2. combusting at least a portion of said gas; and
  3. 3. rotating a turbine by expanding said combusted gas through the turbine; and said organic waste material containing at least 10 weight percent chemically bonded oxygen and containing less than 5 weight percent sulfur.
  4. 3. The process in accordance with claim 1 wherein the alkali metal catalyst is potassium carbonate or sodium carbonate.
  5. 4. The process in accordance with claim 1 wherein the alkali metal catalyst is potassium carbonate.
  6. 5. The process in accordance with claim 1 wherein the temperature in the reaction zone is maintained between 700*F. and 2,000*F.
  7. 6. The process in accordance with claim 1 wherein the temperature in the reaction zone is maintained between 1,000*F. and 1,400*F.
  8. 7. The process in accordance with claim 1 wherein a gas comprising oxygen is fed to the reaction zone and a portion of the solid organic waste feed material to the reaction zone is burned with the oxygen to providE at least a portion of the endothermic heat of reaction for the conversion of the organic feed material plus steam to combustible synthesis gas.
  9. 8. The process in accordance with claim 1 wherein the oxygen content of the solid organic waste feed material is at least 20 weight percent.
  10. 9. The process in accordance with claim 1 wherein the oxygen content in the organic feed material is between 35 and 70 weight percent.
  11. 10. The process for gasifying waste material and producing energy which comprises forming a combustible synthesis gas by contacting a mixture of solid organic waste material containing at least 10 weight percent chemically combined oxygen and containing less than 5 weight percent sulfur, and 1 to 50 weight percent of a potassium carbonate catalyst with steam at a temperature between 1,000*F, and 1,400*F., combusting at least a portion of the combusting gas to obtain combusted gases, and expanding the combusted gases through a turbine.
  12. 11. The process in accordance with claim 10 wherein the turbine is used to drive an electrical generator to produce electrical power.
  13. 12. The process in accordance with claim 10 wherein the organic feed material is solid waste material selected from the group consisting of solid municipal waste, industrial waste, or agricultural waste.
  14. 13. The process in accordance with claim 1 wherein the solid organic waste material feedstock is selected from the group consisting of municipal solid wastes, agricultural wastes and dried sewage.
  15. 14. The process in accordance with claim 1 wherein the solid organic waste material feedstock is a cellulosic material.
US00119820A 1970-03-01 1970-03-01 Power generation Expired - Lifetime US3759036A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11982070A 1970-03-01 1970-03-01

Publications (1)

Publication Number Publication Date
US3759036A true US3759036A (en) 1973-09-18

Family

ID=22386593

Family Applications (1)

Application Number Title Priority Date Filing Date
US00119820A Expired - Lifetime US3759036A (en) 1970-03-01 1970-03-01 Power generation

Country Status (1)

Country Link
US (1) US3759036A (en)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866411A (en) * 1973-12-27 1975-02-18 Texaco Inc Gas turbine process utilizing purified fuel and recirculated flue gases
US3868817A (en) * 1973-12-27 1975-03-04 Texaco Inc Gas turbine process utilizing purified fuel gas
US3881430A (en) * 1973-12-03 1975-05-06 Phillips Petroleum Co Two-stage incinerator
JPS5096711A (en) * 1973-12-27 1975-08-01
US3916805A (en) * 1973-12-28 1975-11-04 Exxon Research Engineering Co Incineration of nitrogenous materials
US4007786A (en) * 1975-07-28 1977-02-15 Texaco Inc. Secondary recovery of oil by steam stimulation plus the production of electrical energy and mechanical power
US4019896A (en) * 1972-10-25 1977-04-26 Appleby Vernon L Trash disposal system
US4202167A (en) * 1979-03-08 1980-05-13 Texaco Inc. Process for producing power
US4506631A (en) * 1982-06-22 1985-03-26 Lawrence Waldemar Ihnativ Process to produce hydrogen and oxygen utilizing the energy content of waste materials
US4732091A (en) * 1985-09-30 1988-03-22 G.G.C., Inc. Pyrolysis and combustion process and system
US4732092A (en) * 1985-09-30 1988-03-22 G.G.C., Inc. Pyrolysis and combustion apparatus
WO1989002516A1 (en) * 1987-09-21 1989-03-23 Pfefferle William C Method for clean incineration of wastes
US5211002A (en) * 1991-02-14 1993-05-18 Tampella Power Oy Process and an equipment for the recovery of energy and chemicals in a sulphate process
US5611963A (en) * 1993-04-08 1997-03-18 Shell Oil Company Method of reducing halides in synthesis gas
US6032456A (en) * 1995-04-07 2000-03-07 Lsr Technologies, Inc Power generating gasification cycle employing first and second heat exchangers
EP1136542A1 (en) * 1998-11-05 2001-09-26 Ebara Corporation Power generation system based on gasification of combustible material
WO2002033317A1 (en) * 2000-10-18 2002-04-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for the stepped combustion of fuel
US20080282946A1 (en) * 2004-06-10 2008-11-20 Enzo Morandi Method and Apparatus for High Temperature Heat Treatment of Combustible Material in Particular Waste
US20090165384A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Continuous Process for Converting Carbonaceous Feedstock into Gaseous Products
US20090170968A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Processes for Making Synthesis Gas and Syngas-Derived Products
US20090165376A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Steam Generating Slurry Gasifier for the Catalytic Gasification of a Carbonaceous Feedstock
US20090165382A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Catalytic Gasification Process with Recovery of Alkali Metal from Char
US20090217588A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Co-Feed of Biomass as Source of Makeup Catalysts for Catalytic Coal Gasification
US20090217575A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Biomass Char Compositions for Catalytic Gasification
US20090229182A1 (en) * 2008-02-29 2009-09-17 Greatpoint Energy, Inc. Catalytic Gasification Particulate Compositions
US20090246120A1 (en) * 2008-04-01 2009-10-01 Greatpoint Energy, Inc. Sour Shift Process for the Removal of Carbon Monoxide from a Gas Stream
US20100038594A1 (en) * 2008-06-26 2010-02-18 Bohlig James W System and Method for Integrated Waste Storage
US20100043446A1 (en) * 2008-05-23 2010-02-25 Kosti Shirvanian Waste to energy process and plant
US20110031439A1 (en) * 2009-08-06 2011-02-10 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US7897126B2 (en) 2007-12-28 2011-03-01 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US7901644B2 (en) 2007-12-28 2011-03-08 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US7922782B2 (en) 2006-06-01 2011-04-12 Greatpoint Energy, Inc. Catalytic steam gasification process with recovery and recycle of alkali metal compounds
US7926750B2 (en) 2008-02-29 2011-04-19 Greatpoint Energy, Inc. Compactor feeder
US8114176B2 (en) 2005-10-12 2012-02-14 Great Point Energy, Inc. Catalytic steam gasification of petroleum coke to methane
US8123827B2 (en) 2007-12-28 2012-02-28 Greatpoint Energy, Inc. Processes for making syngas-derived products
DE102010041033A1 (en) * 2010-09-20 2012-03-22 Siemens Aktiengesellschaft Material utilization with electropositive metal
US8163048B2 (en) 2007-08-02 2012-04-24 Greatpoint Energy, Inc. Catalyst-loaded coal compositions, methods of making and use
US8202913B2 (en) 2008-10-23 2012-06-19 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8268899B2 (en) 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8328890B2 (en) 2008-09-19 2012-12-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8349039B2 (en) 2008-02-29 2013-01-08 Greatpoint Energy, Inc. Carbonaceous fines recycle
US8361428B2 (en) 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US8479834B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8479833B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8502007B2 (en) 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
US8648121B2 (en) 2011-02-23 2014-02-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
US8647402B2 (en) 2008-09-19 2014-02-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8653149B2 (en) 2010-05-28 2014-02-18 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8669013B2 (en) 2010-02-23 2014-03-11 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8709113B2 (en) 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US8728183B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8728182B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8734547B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
US8734548B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US8733459B2 (en) 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8748687B2 (en) 2010-08-18 2014-06-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8999020B2 (en) 2008-04-01 2015-04-07 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9162231B2 (en) 2011-06-03 2015-10-20 Accordant Energy, Llc Systems and methods for producing engineered fuel feed stocks from waste material
US9273260B2 (en) 2012-10-01 2016-03-01 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
CN112013638A (en) * 2020-07-30 2020-12-01 国网山东省电力公司电力科学研究院 Garbage drying system and method utilizing flue gas waste heat

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1773959A (en) * 1925-06-22 1930-08-26 Dittlinger Crow Process Compan Process of carbonizing solid vegetation
US2614915A (en) * 1947-11-24 1952-10-21 Gulf Research Development Co Manufacture of synthesis gas
US2624172A (en) * 1947-11-01 1953-01-06 Eugene J Houdry Process of generating power involving catalytic oxidation
US2735266A (en) * 1956-02-21 atherton
US2773026A (en) * 1953-07-02 1956-12-04 Stora Kopparbergs Bergslags Ab Removal of dissolved or dispersed organic material from aqueous solutions and suspensions
US2944396A (en) * 1955-02-09 1960-07-12 Sterling Drug Inc Process and apparatus for complete liquid-vapor phase oxidation and high enthalpy vapor production
US3101592A (en) * 1961-01-16 1963-08-27 Thompson Ramo Wooldridge Inc Closed power generating system
US3252773A (en) * 1962-06-11 1966-05-24 Pullman Inc Gasification of carbonaceous fuels

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735266A (en) * 1956-02-21 atherton
US1773959A (en) * 1925-06-22 1930-08-26 Dittlinger Crow Process Compan Process of carbonizing solid vegetation
US2624172A (en) * 1947-11-01 1953-01-06 Eugene J Houdry Process of generating power involving catalytic oxidation
US2614915A (en) * 1947-11-24 1952-10-21 Gulf Research Development Co Manufacture of synthesis gas
US2773026A (en) * 1953-07-02 1956-12-04 Stora Kopparbergs Bergslags Ab Removal of dissolved or dispersed organic material from aqueous solutions and suspensions
US2944396A (en) * 1955-02-09 1960-07-12 Sterling Drug Inc Process and apparatus for complete liquid-vapor phase oxidation and high enthalpy vapor production
US3101592A (en) * 1961-01-16 1963-08-27 Thompson Ramo Wooldridge Inc Closed power generating system
US3252773A (en) * 1962-06-11 1966-05-24 Pullman Inc Gasification of carbonaceous fuels

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019896A (en) * 1972-10-25 1977-04-26 Appleby Vernon L Trash disposal system
US3881430A (en) * 1973-12-03 1975-05-06 Phillips Petroleum Co Two-stage incinerator
US3868817A (en) * 1973-12-27 1975-03-04 Texaco Inc Gas turbine process utilizing purified fuel gas
JPS5096711A (en) * 1973-12-27 1975-08-01
US3866411A (en) * 1973-12-27 1975-02-18 Texaco Inc Gas turbine process utilizing purified fuel and recirculated flue gases
JPS5848739B2 (en) * 1973-12-27 1983-10-31 テキサコ デイベロツブメント コ−ポレ−シヨン Gastabinhou
US3916805A (en) * 1973-12-28 1975-11-04 Exxon Research Engineering Co Incineration of nitrogenous materials
US4007786A (en) * 1975-07-28 1977-02-15 Texaco Inc. Secondary recovery of oil by steam stimulation plus the production of electrical energy and mechanical power
US4202167A (en) * 1979-03-08 1980-05-13 Texaco Inc. Process for producing power
US4506631A (en) * 1982-06-22 1985-03-26 Lawrence Waldemar Ihnativ Process to produce hydrogen and oxygen utilizing the energy content of waste materials
US4732091A (en) * 1985-09-30 1988-03-22 G.G.C., Inc. Pyrolysis and combustion process and system
US4732092A (en) * 1985-09-30 1988-03-22 G.G.C., Inc. Pyrolysis and combustion apparatus
WO1989002516A1 (en) * 1987-09-21 1989-03-23 Pfefferle William C Method for clean incineration of wastes
US4918915A (en) * 1987-09-21 1990-04-24 Pfefferle William C Method for clean incineration of wastes
US5211002A (en) * 1991-02-14 1993-05-18 Tampella Power Oy Process and an equipment for the recovery of energy and chemicals in a sulphate process
US5611963A (en) * 1993-04-08 1997-03-18 Shell Oil Company Method of reducing halides in synthesis gas
US6032456A (en) * 1995-04-07 2000-03-07 Lsr Technologies, Inc Power generating gasification cycle employing first and second heat exchangers
EP1136542A4 (en) * 1998-11-05 2004-11-24 Ebara Corp Power generation system based on gasification of combustible material
EP1136542A1 (en) * 1998-11-05 2001-09-26 Ebara Corporation Power generation system based on gasification of combustible material
WO2002033317A1 (en) * 2000-10-18 2002-04-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for the stepped combustion of fuel
US20080282946A1 (en) * 2004-06-10 2008-11-20 Enzo Morandi Method and Apparatus for High Temperature Heat Treatment of Combustible Material in Particular Waste
US8114176B2 (en) 2005-10-12 2012-02-14 Great Point Energy, Inc. Catalytic steam gasification of petroleum coke to methane
US7922782B2 (en) 2006-06-01 2011-04-12 Greatpoint Energy, Inc. Catalytic steam gasification process with recovery and recycle of alkali metal compounds
US8163048B2 (en) 2007-08-02 2012-04-24 Greatpoint Energy, Inc. Catalyst-loaded coal compositions, methods of making and use
US20090165376A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Steam Generating Slurry Gasifier for the Catalytic Gasification of a Carbonaceous Feedstock
US9234149B2 (en) 2007-12-28 2016-01-12 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US7897126B2 (en) 2007-12-28 2011-03-01 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US20090165382A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Catalytic Gasification Process with Recovery of Alkali Metal from Char
US8123827B2 (en) 2007-12-28 2012-02-28 Greatpoint Energy, Inc. Processes for making syngas-derived products
US20090170968A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Processes for Making Synthesis Gas and Syngas-Derived Products
US20090165384A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Continuous Process for Converting Carbonaceous Feedstock into Gaseous Products
US7901644B2 (en) 2007-12-28 2011-03-08 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US20090217575A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Biomass Char Compositions for Catalytic Gasification
US8361428B2 (en) 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US7926750B2 (en) 2008-02-29 2011-04-19 Greatpoint Energy, Inc. Compactor feeder
US20090217588A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Co-Feed of Biomass as Source of Makeup Catalysts for Catalytic Coal Gasification
US8114177B2 (en) 2008-02-29 2012-02-14 Greatpoint Energy, Inc. Co-feed of biomass as source of makeup catalysts for catalytic coal gasification
US8349039B2 (en) 2008-02-29 2013-01-08 Greatpoint Energy, Inc. Carbonaceous fines recycle
US8366795B2 (en) 2008-02-29 2013-02-05 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US20090229182A1 (en) * 2008-02-29 2009-09-17 Greatpoint Energy, Inc. Catalytic Gasification Particulate Compositions
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8709113B2 (en) 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US8652222B2 (en) 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
US8192716B2 (en) 2008-04-01 2012-06-05 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
US8999020B2 (en) 2008-04-01 2015-04-07 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
US20090246120A1 (en) * 2008-04-01 2009-10-01 Greatpoint Energy, Inc. Sour Shift Process for the Removal of Carbon Monoxide from a Gas Stream
US8464540B2 (en) * 2008-05-23 2013-06-18 Pacific Waste, Inc. Waste to energy process and plant
US20100043446A1 (en) * 2008-05-23 2010-02-25 Kosti Shirvanian Waste to energy process and plant
US9217188B2 (en) * 2008-06-26 2015-12-22 Accordant Energy, Llc System and method for integrated waste storage
US20100038594A1 (en) * 2008-06-26 2010-02-18 Bohlig James W System and Method for Integrated Waste Storage
US9765269B2 (en) 2008-06-26 2017-09-19 Accordant Energy, Llc System and method for integrated waste storage
US10519389B2 (en) 2008-06-26 2019-12-31 Accordant Energy, Llc System and method for integrated waste storage
US8328890B2 (en) 2008-09-19 2012-12-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8647402B2 (en) 2008-09-19 2014-02-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8502007B2 (en) 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
US8202913B2 (en) 2008-10-23 2012-06-19 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8734548B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US8734547B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
US8728183B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8268899B2 (en) 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8728182B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US20110031439A1 (en) * 2009-08-06 2011-02-10 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8479834B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8479833B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8733459B2 (en) 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8669013B2 (en) 2010-02-23 2014-03-11 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
US8653149B2 (en) 2010-05-28 2014-02-18 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8748687B2 (en) 2010-08-18 2014-06-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
DE102010041033A1 (en) * 2010-09-20 2012-03-22 Siemens Aktiengesellschaft Material utilization with electropositive metal
US10151481B2 (en) 2010-09-20 2018-12-11 Siemens Aktiengesellschaft Material utilization with an electropositive metal
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8648121B2 (en) 2011-02-23 2014-02-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9879195B2 (en) 2011-06-03 2018-01-30 Accordant Energy, Llc Systems and methods for processing a heterogeneous waste stream
US10626340B2 (en) 2011-06-03 2020-04-21 Accordant Energy, Llc Systems and methods for producing engineered fuel feed stocks from waste material
US9162231B2 (en) 2011-06-03 2015-10-20 Accordant Energy, Llc Systems and methods for producing engineered fuel feed stocks from waste material
US9650584B2 (en) 2011-06-03 2017-05-16 Accordant Energy, Llc Systems and methods for producing engineered fuel feed stocks from waste material
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9273260B2 (en) 2012-10-01 2016-03-01 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
CN112013638A (en) * 2020-07-30 2020-12-01 国网山东省电力公司电力科学研究院 Garbage drying system and method utilizing flue gas waste heat

Similar Documents

Publication Publication Date Title
US3759036A (en) Power generation
JP5686803B2 (en) Method for gasifying carbon-containing materials including methane pyrolysis and carbon dioxide conversion reaction
Demirbaş Hydrogen production from biomass by the gasification process
US3759677A (en) Catalytic synthesis gas manufacture
Ptasinski Thermodynamic efficiency of biomass gasification and biofuels conversion
US3817724A (en) Gasification of solid carbonaceous waste material
US3874116A (en) Synthesis gas manufacture
Bhaskar et al. Thermochemical route for biohydrogen production
Ekström et al. Catalytic conversion of tars, carbon black and methane from pyrolysis/gasification of biomass
EP1080034A1 (en) Method and apparatus for the production of synthesis gas
US3890432A (en) Catalytic hydrogen manufacture
US20020121093A1 (en) Utilization of COS hydrolysis in high pressure gasification
JP2024100844A (en) Biomass gas and hydrogen production method
JP2008069017A (en) Method for producing hydrogen
US3823227A (en) Hydrogen manufacture
US3850588A (en) Production of synthesis gas rich in carbon monoxide
US3775072A (en) Gas production
JPH069967A (en) Gasification of waste
Schlinger Coal gasification development and commercialization of the texaco coal gasification process
JPH10130662A (en) Method for recycling waste into resources
Khan et al. Gasification of solid waste
RU2729785C2 (en) Method for cyclic production of valuable chemical products and energy from carbon-containing material
JP3912245B2 (en) Hydrogen production equipment
Sakai et al. A unique gasification technology towards commercialization of the plant:“Norin Green No. 1” and “Norin Biomass No. 3”
Rizkiana et al. Chemical looping coal gasification for IGCC process feed