US3758604A - Isomerization-fractionation process - Google Patents

Isomerization-fractionation process Download PDF

Info

Publication number
US3758604A
US3758604A US00234734A US3758604DA US3758604A US 3758604 A US3758604 A US 3758604A US 00234734 A US00234734 A US 00234734A US 3758604D A US3758604D A US 3758604DA US 3758604 A US3758604 A US 3758604A
Authority
US
United States
Prior art keywords
isomerization
process according
catalyst
butene
continuous process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00234734A
Inventor
N Sprecher
J Cotter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Application granted granted Critical
Publication of US3758604A publication Critical patent/US3758604A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • C07C11/09Isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/23Rearrangement of carbon-to-carbon unsaturated bonds
    • C07C5/25Migration of carbon-to-carbon double bonds
    • C07C5/2506Catalytic processes
    • C07C5/2562Catalytic processes with hydrides or organic compounds
    • C07C5/2581Catalytic processes with hydrides or organic compounds containing complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/005Processes comprising at least two steps in series

Definitions

  • the present invention relates to a continuous process of separating isobutylene from mixtures containing in addition butene-l.
  • This process comprises a limited number of isomerization steps and accompanying separation steps, each of the isomerization steps being conducted under such conditions and with such catalysts as to maximize the desired type of double bond isomerization and optimize separation of the desired product in a substantially pure form.
  • this invention contemplates a multistage isomerization-fractionation process where the isomerization steps are directed to isomerize hydrocarbons having boiling points near those of the desired product, to produce hydrocarbons having boiling points more removed from those of the desired product, hence facilitating the separation of the desired product from the hydrocarbon mixture.
  • the efficiency of the process depends very much on the quality of the isomerization catalyst, whichshould enable high conversion and high isomerization rate at low temperatures as well as-a long life-time. Even if such a catalyst is available, it is necessary to use the catalyst in a manner that will assure the most economic process which yields high purity isobutylene from various feeds and thus requires optimization regarding the number of isomerization and distillation steps.
  • -It is another object of the present invention to provide such a process wherein the isomerization steps may be conducted in either vapor or liquid phase operation at temperatures from about -50 C to about 200 C, at space velocities from about 0.4 to about 40 liquid volumes of olefin per volume of catalyst per hour, at pressures from about atmospheric toabout 250 psig.
  • this invention contemplates double bond isomerization reactions which are carried out at relatively low temperatures conditions, which are favourable to obtain a low butene-l level according to the thermodynamic equilibrium. Catalysts of high isomerization activity are generally applicable. Thus lowtemperature active isomerization catalysts are preferred which are active at temperatures below 200C,
  • the invention provides a continuous process for separating isobutylene from C,-mixtures containing butene-l insubstantial proportions, which process comprises the following steps:
  • the initial isomerization is carried-out in two steps, the first step under such-conditions that the butene-l level is substantially reduced and the second step under more favourable'conditions to reduce the butene-l level as far as possible, preferably below 5 or 4 percent from the butene-l content of the effluent' of the first reactor.
  • the catalysts employed in both steps need not be identical. It is possible to use in the first step a catalyst which is sufficiently active to lower the butene-l level to a value ,in the range of 5 15 percent of the original part of the isomerized content. With a'suitable catalyst this reaction may be conducted a wide temperature range from -50 C to +200 C. Conveniently, however, is a range from 0 C C; Preferably, however, the catalysts employed in both steps are identical and only the temperatures of both steps are different, higher in the first one.
  • the two-step isomerization process offers the advantage that one is less dependant on fluctuations in the catalyst and feed composition and heat of reaction is more easy removed.
  • the isomerizations can be carried out in one vessel with temperature control but it is preferred to carry them out in two separate vessels separated by a heat-exchanger.
  • the isomerization is exothermic and heat of reaction released will raise the temperature and affect the performance of the catalyst. Increasing temperature directionally limits the equilibrium butene-l conversion. Thus it is preferred to run the two stages substantially adiabatically with cooling between them.
  • the first stage will preferably be run in such a way that substantially 90 100 percent of the isomerization (compared with the thermodynamic equilibrium values) and correspondingly of the heat generation will occur.
  • the finishing operation will be conducted in the second stage where only a moderate temperature increase will be allowed, of no more than say C.
  • the two-stage initial isomerization provides an efficient way to reach the very high purity requirements which are at present demanded, that is the benefit of the invention will be especially obtained if butene-l levels of lower than 3 percent, down to 0.1 percent and even lower are desired.
  • the temperature in the first stage can be increased, if necessary, to. compensate for declining catalyst activity with time, provides a buffer zone to catch possible catalyst poisons and allows for flexibility in operation (spare first stage may be provided).
  • the isomerization of the top fraction is conveniently carried out at low temperatures with a low temperature active catalyst to ob-' tain optimal results.
  • the process is also applicable to feeds containing beside isobutylene and butene-l, isobutane and butadiene.
  • a separate fractionating step will be included after the initial isomerization and fractionation to remove the afore-mentioned components. Their presence during the initial isomerization and fractionation steps does not affect the efficiency of the process.
  • the composition of the feed, in particular, the ratio of isobutylem: to butene-l does not have an effect on the efficiency of the process. It is an advantage that in principle any feed with varying ratios of isobutylene to bu,- tene-i can be handled. For instance, refinery stream containing usually 50 wt of butene-l in combination with isobutylene which may vary in the same range can be treated according to the process of the inwere as follows:
  • the feed, a C blend, is introduced at 1 and pumped by means of pump 2 in the first isomerization reactor 3.
  • the reactor is filled with the isomerization catalyst (in this case a solid, heterogeneous catalyst) and operated at temperatures in the. range of -50 C to+200C but preferably in the range of 0 C C. This temperature as well as the throughput is adjusted to isomerize a substantial part of the butene-l, that is up to the equilibrium position at the given temperature, which is not the optimal one reachable with the lowtemperature active catalyst.
  • Heat exchanger 4 cools the effluent of reactor 3 to the desired low temperature for carrying out the second isomerization in reactor 5.
  • the isomerized stream is then introduced through pipes 6 and 7 into the fractionator 8.
  • the cis and trans butenes- 2 are removed in the bottom fraction at 9 and the top fraction 10 containing mainly isobutylene. and butene-l is cooled by cooler 11, condensed in condensor 12 and subjected to isomerization in the reactor 13.
  • Reactor 14 is a spare reactor which can be used if, for instance, the reactor 13 has operated a long time and the catalyst activity has decreased.
  • the effluent ofreactor 13 is partly recirculated through pipe 15 which is connected to pipe 7 to the fractionation tower 8.
  • the other part is fed through pipe 16 to fractionator 17 where isobutane is removed as the top-product at 18.
  • the heavier fraction containing isobutylene is fed by pipe 19 into fractionator 20, where 1 purified isobutylene is withdrawn at 21.
  • the heavy ends can be recirculated to fractionator 8 if desired (through pipe 22).
  • the catalyst consisted of. cobalt-lI-acetylacetonate, supported on Si0 and reduced by triisobutylaluminium, preferably in the presence of the olefins, as described in our copending Ser. No. application 54,162/70.
  • Another possible catalyst is sodium on alumina.
  • a pure butene-2 stream is available at 9, which is essentially free of isobutylene and butene-l'.
  • the isomerization conditions in the three reactors Iso-l Reactor 1 5215151 -2 Reactor Stage 1 Stage 2 Stage 3" Temperature ZO C KO C fi fi C- 45C 38C.
  • SpaceVelocity l7 VVH l7 VVH l3 VVH The fractionation temperature may be in the range of 40 C 150 C. and in this example was 65 C.
  • a continuous process for separating isobutylene from C mixtures containing butene-l comprising the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for separating isobutylene from C4 feeds by subjecting the feed to isomerization using a low-temperature active isomerization catalyst, reducing the butene-1 level followed by fractionation of the isomerized feed and again isomerizing the top fraction containing isobutylene and remaining butene-1 and isolating isobutylene therefrom. Preferably the isomerization of the feed is carried out in two stages under adiabatic conditions, with cooling in between.

Description

United States Patent [1 1 Sprecher et al.
I l 1 l 1 3,758,604
[ 1 Sept. 11, 1973 ISOMERlZATION-FRACTIONATION PROCESS 75] lnvcntors: NathanVSprecher, Waterloo,
Belgium; John Thomas Cotter, Randolph, NJ.
[73] Assignee: Esso Research and Engineering Company, Linden, NJ.
[22] Filed: Mar. 15, 1972 [21] Appl. No.: 234,734
[30] Foreign Application Priority Data Mar. 19, 1971 Great Britain 7,309/71 [52] US. Cl 260/677 A, 260/683.2, 260/683.65 ['51] Int. Cl C07c ll/12 [58] Field of Search 260/677 A, 683.65,
[56] References Cited UNITED STATES PATENTS 3,284,535 1 H1966 Edwards et al. 260/677 A 8/1966 Halliwell 260/677 A 2/1966 Clay 260/677 A Primary ExaminerDelbert E. Gantz Assistant Examiner-Juanita M. Nelson Attorney-Leon Chasan et al;
57 ABSTRACT 13 Claims, 1 Drawing Figure l ISOMERIZATlON-FRACTIONATION PROCESS This invention relates to olefin isomerization and more specifically to double bond isomerization.
In one of its more specific aspects, the present invention relates to a continuous process of separating isobutylene from mixtures containing in addition butene-l.
There has now been developed an improved isomerization process, the principal purpose of which is double bond isomerisation to facilitate separation of the desired product. This process comprises a limited number of isomerization steps and accompanying separation steps, each of the isomerization steps being conducted under such conditions and with such catalysts as to maximize the desired type of double bond isomerization and optimize separation of the desired product in a substantially pure form.
More specifically, this invention contemplates a multistage isomerization-fractionation process where the isomerization steps are directed to isomerize hydrocarbons having boiling points near those of the desired product, to produce hydrocarbons having boiling points more removed from those of the desired product, hence facilitating the separation of the desired product from the hydrocarbon mixture. In one specific embodiment of this invention, it is desirable to obtain a substantially pure isoolefin from a mixture containing also one or more close boiling normal olefins, but separation by fractional distillation is difficult and expensive. Other methods like azeotropic distillation, solvent extraction and chemical separation do not appear as economical as the present invention; More specifically, for instance, in the case of isobutylene present in C hydrocarbon mixtures, such as C steam-cracked naphtha or gas oil cuts separation of isobutylene from butene-l is almost impossible, both compounds boiling within 0.3" C. It has been proposed in order to facilitate separation to introduce an intermediary isomerization step, by which butene-l is converted into butenes-2 of which the boiling point is sufficiently apart from isobutylene to make subsequent distillationfeasible. Such proposals, unless optimized, suffer from the drawback that several isomerization-distillation steps would be needed to produce isobutylene meeting the present stringest requirements of purity, which go to levels of below 0.1 percent of butene-l impurities.
The efficiency of the process depends very much on the quality of the isomerization catalyst, whichshould enable high conversion and high isomerization rate at low temperatures as well as-a long life-time. Even if such a catalyst is available, it is necessary to use the catalyst in a manner that will assure the most economic process which yields high purity isobutylene from various feeds and thus requires optimization regarding the number of isomerization and distillation steps.
It is an important object of the present invention to provide an economic continuous process for separating isobutylene of'high purity from various feeds, especially C, feeds, using a low-temperature active isomerization catalyst with a minimum of isomerization and fractionation stages.
It is a further object of the invention to provide such a process wherein the isomerization and fractionation steps are separated from each other thereby allowing independent and optimum" performance, from each step.
It is another object of the invention to provide a process for separating isobutylene from various feeds wherein feed fluctuations are tolerated and do not affect the performance of the process.
-It is another object of the present invention to provide such a process wherein the isomerization steps may be conducted in either vapor or liquid phase operation at temperatures from about -50 C to about 200 C, at space velocities from about 0.4 to about 40 liquid volumes of olefin per volume of catalyst per hour, at pressures from about atmospheric toabout 250 psig.
Preferably, this invention contemplates double bond isomerization reactions which are carried out at relatively low temperatures conditions, which are favourable to obtain a low butene-l level according to the thermodynamic equilibrium. Catalysts of high isomerization activity are generally applicable. Thus lowtemperature active isomerization catalysts are preferred which are active at temperatures below 200C,
preferably below 100C in the range of -50 to +100C.
Anfexample of such a catalyst has been described in our copending application Ser. No. 54,162/; the disclosure from said application is herein incorporated by reference.
Accordingly, the invention provides a continuous process for separating isobutylene from C,-mixtures containing butene-l insubstantial proportions, which process comprises the following steps:
a'. isomerizing the C,-mixture by contacting it with an isomerization catalyst which converts butene-l into butenes-2 at a temperature in the range of 50 to 200C, in such a way and under such cooling conditions that at least during part of the isomerization reaction the C -mixture is contacted with a low-temperature active isomerization catalyst at temperatures below 200C to obtain an isomerized mixture with a butene-l level of at most 3 wt.'% of the initial n C -olefin content,
b. fractionating the isomerized blend into a top fraction comprising isobutylene and the remaining butene-l and a bottom fraction comprising butenes-2 .and other high-boiling compounds,
c. isomerizing the top fraction with .a lowtemperature activeisomerization catalyst at a temperature below 100C to reduce still further the butene-l level,
d. recirculating a substantial top fraction and v I e..subjecting the remaining part of the isomerized top fraction to further fractionation to isolate isobutyl- "ene containing less than'l wt.% butene-l.
l n a preferred modification of the process. according to the inventionthe initial isomerization is carried-out in two steps, the first step under such-conditions that the butene-l level is substantially reduced and the second step under more favourable'conditions to reduce the butene-l level as far as possible, preferably below 5 or 4 percent from the butene-l content of the effluent' of the first reactor.
The catalysts employed in both steps need not be identical. it is possible to use in the first step a catalyst which is sufficiently active to lower the butene-l level to a value ,in the range of 5 15 percent of the original part of the isomerized content. With a'suitable catalyst this reaction may be conducted a wide temperature range from -50 C to +200 C. Conveniently, however, is a range from 0 C C; Preferably, however, the catalysts employed in both steps are identical and only the temperatures of both steps are different, higher in the first one.
The two-step isomerization process offers the advantage that one is less dependant on fluctuations in the catalyst and feed composition and heat of reaction is more easy removed. The isomerizations can be carried out in one vessel with temperature control but it is preferred to carry them out in two separate vessels separated by a heat-exchanger. The isomerization is exothermic and heat of reaction released will raise the temperature and affect the performance of the catalyst. Increasing temperature directionally limits the equilibrium butene-l conversion. Thus it is preferred to run the two stages substantially adiabatically with cooling between them. Compared with the lowest level of butene-l possible under the most favourable reaction conditions using a low-temperature active catalyst, the first stage will preferably be run in such a way that substantially 90 100 percent of the isomerization (compared with the thermodynamic equilibrium values) and correspondingly of the heat generation will occur. The finishing operation will be conducted in the second stage where only a moderate temperature increase will be allowed, of no more than say C. The two-stage initial isomerization provides an efficient way to reach the very high purity requirements which are at present demanded, that is the benefit of the invention will be especially obtained if butene-l levels of lower than 3 percent, down to 0.1 percent and even lower are desired.
It also offers the advantages that the temperature in the first stage can be increased, if necessary, to. compensate for declining catalyst activity with time, provides a buffer zone to catch possible catalyst poisons and allows for flexibility in operation (spare first stage may be provided). After the isomerization has been completed at low temperature the mixture which contains less than 5 percent of the original butene-l content (preferably less than 4 percent) is fed into a fractionation tower operating at such a temperature that the feed is split into a top fraction containing the isobutylene and traces of butene-l and a bottom fraction containing the butenes-Z and other compounds.
It is preferred to carry out recirculation in combination with the second isomerization to keep thenumber of fractionation units to be absolute minimum.
Dependant on the final specification required the recirculation ratio will be adjusted. The isomerization of the top fraction is conveniently carried out at low temperatures with a low temperature active catalyst to ob-' tain optimal results.
The process is also applicable to feeds containing beside isobutylene and butene-l, isobutane and butadiene.
A separate fractionating step will be included after the initial isomerization and fractionation to remove the afore-mentioned components. Their presence during the initial isomerization and fractionation steps does not affect the efficiency of the process. The composition of the feed, in particular, the ratio of isobutylem: to butene-l does not have an effect on the efficiency of the process. It is an advantage that in principle any feed with varying ratios of isobutylene to bu,- tene-i can be handled. For instance, refinery stream containing usually 50 wt of butene-l in combination with isobutylene which may vary in the same range can be treated according to the process of the inwere as follows:
vention to separate an isobutylene stream containing less than 3 percent, and even less than 0.1 percent of butene-l.
The process of the invention will be more easily understood when explained in reference to the accompanying drawing in which one specific embodiment of the process is schematically represented. The isomerization step will be described as a liquid phase operation but could as well be operated in the vapor phase.
The feed, a C blend, is introduced at 1 and pumped by means of pump 2 in the first isomerization reactor 3. The reactor is filled with the isomerization catalyst (in this case a solid, heterogeneous catalyst) and operated at temperatures in the. range of -50 C to+200C but preferably in the range of 0 C C. This temperature as well as the throughput is adjusted to isomerize a substantial part of the butene-l, that is up to the equilibrium position at the given temperature, which is not the optimal one reachable with the lowtemperature active catalyst. Heat exchanger 4 cools the effluent of reactor 3 to the desired low temperature for carrying out the second isomerization in reactor 5. The isomerized stream is then introduced through pipes 6 and 7 into the fractionator 8. The cis and trans butenes- 2 are removed in the bottom fraction at 9 and the top fraction 10 containing mainly isobutylene. and butene-l is cooled by cooler 11, condensed in condensor 12 and subjected to isomerization in the reactor 13. Reactor 14 is a spare reactor which can be used if, for instance, the reactor 13 has operated a long time and the catalyst activity has decreased. The effluent ofreactor 13 is partly recirculated through pipe 15 which is connected to pipe 7 to the fractionation tower 8. The other part is fed through pipe 16 to fractionator 17 where isobutane is removed as the top-product at 18. The heavier fraction containing isobutylene is fed by pipe 19 into fractionator 20, where 1 purified isobutylene is withdrawn at 21. The heavy ends can be recirculated to fractionator 8 if desired (through pipe 22).
The following table illustrates the results with a par ticular C stream, having a typical C stream-cracked naphtha composition, after butadiene extraction.
The catalyst consisted of. cobalt-lI-acetylacetonate, supported on Si0 and reduced by triisobutylaluminium, preferably in the presence of the olefins, as described in our copending Ser. No. application 54,162/70. Another possible catalyst is sodium on alumina. A pure butene-2 stream is available at 9, which is essentially free of isobutylene and butene-l'.
The isomerization conditions in the three reactors Iso-l Reactor 1 5215151 -2 Reactor Stage 1 Stage 2 Stage 3" Temperature ZO C KO C fi fi C- 45C 38C. SpaceVelocity l7 VVH l7 VVH l3 VVH The fractionation temperature may be in the range of 40 C 150 C. and in this example was 65 C.
v -Weight percent Stream No 1 5 10 15 7 19 21 IsoC1 9.1 9.1v 23.5 23.5 15.1 1.8 1.8 29.0 29.0 14.3 74.3 48.4 95.2 98.0 37.9 2.4 1.5 0.054 1.1 0.08 0.08 2.7 2.7 0.1 0.1 1.1 0.10 0.10 14.4 42.5 0.45 1.47 24.8 1.86 0.05 0.9 14.5 0.005 0.51 9.1 0.68 0.001
What is claimed is:
l. A continuous process for separating isobutylene from C mixtures containing butene-l, comprising the following steps:
a. isomerizing the C, mixture by contacting it with an isomerization catalyst which converts butene-l into butenes-2 at a temperature in the range of -50 to 200C, in such a way and under such cooling conditions that at least during part of the isomerization reaction the C,-mixture is contacted with a low temperature active isomerization catalyst at temperatures below 100C to obtain an isomerized mixture with a butene-l level of at most 3 wt.% 0 the initial :1 C,-olefin content,
b. fractionating the isomerized blend into a top fraction comprising isobutylene and the remaining butene-l and a bottom fraction comprising butenes-Z and other high boiling compounds,
isomerizing the top fraction with a lowtemperature active isomerization catalyst at a temperature below 100C to reduce still further the butene-l level,
d. recirculating a substantial part of the isomerized top fraction and e. subjecting the remaining part of the isomerized top fraction to further fractionation to isolate isobutylene containing less than 1 wt.% butene-l.
2. A continuous process according to claim 1, wherein the isomerization of the C,-mixture is carried out in two steps and in the first step the major amount of butene-l is isomerized to butenes-2.
3. A continuous process according to claim 2, wherein 90 100 percent of the isomerization (compared with the thermo-dynamic equilibrium values) is carried out in the first step.
4. A continuous process according to claim 2, wherein the isomerization is carried out in two separate vessels separated by a heat-exchanger.
5. A continuous process according to claim 4, wherein the isomerizations are carried out under adiabatic conditions with cooling in between.
6. A continuous process according to claim 2, wherein the temperature rise in the second step is no more than 10C.
7. A continuous process according to claim 2, wherein the isomerization in the second step is carried out at a temperature in the range of 0 to 75C.
8. A continuous process according to claim 1, wherein the C,-feed mixture contains isobutylene and- /or b'utadiene, which are separated by fractionation after the isomerization.
9. A continuous process according to claim 1, wherein the isomerization steps are conducted in either vapour or liquid phase operation at temperatures from about 50 to about 200C, at space velocities from about 0.4 to about 40 liquid volumes of olefin per volume of catalyst per hour, at pressures from about atmospheric to about 250 psig.
10. A process according to claim 1, wherein an is'om erization catalyst is employed which is active at a temperature below 100C.
11. A process according to claim 1, wherein a C feed is isomerized in a first step in the presence of a catalyst in such a way that the butene-l level is reduced to a value of 5 15 percent of the original content, cooling the isomerized feed to remove heat of reaction and subjecting the cooled isomerized feed to a second isomerization in thepresence of a catalyst active at low temperatures, the reaction temperature in the second step being in the range of O to C, both steps being carried out under adiabatic conditions, feeding the mixture containing less than 5 percent of vthe original butene-l content in a fractionation tower to recover as a top fraction isobutylene plus traces of butene-l and as a bottom fraction the butenes-Z and other compounds, isomerizing the top fraction at low temperatures in the range of 0 to 75C in the presence of a lowtemperature active catalyst,.recirculating part of the isomerized top fraction and recovering substantially pure isobutylene by further fractionation.
12. The process according to claim 1 wherein the catalyst is cobalt ll acetyl acetonate supported on Si0 and reduced by an alkyl alumina.
13. The process according to claim 1 wherein the catalyst is sodium on alumina.
* a a I

Claims (12)

  1. 2. A continuous process according to claim 1, wherein the isomerization of the C4-mixture is carried out in two steps and in the first step the major amount of butene-1 is isomerized to butenes-2.
  2. 3. A continuous process according to claim 2, wherein 90 - 100 percent of the isomerization (compared with the thermo-dynamic equilibrium values) is carried out in the first step.
  3. 4. A continuous process according to claim 2, wherein the isomerization is carried out in two separate vessels separated by a heat-exchanger.
  4. 5. A continuous process according to claim 4, wherein the isomerizations are carried out under adiabatic conditions with cooling in between.
  5. 6. A continuous process according to claim 2, wherein the temperature rise in the second step is no more than 10*C.
  6. 7. A continuous process according to claim 2, wherein the isomerization in the second step is carried out at a temperature in the range of 0 to 75*C.
  7. 8. A continuous process according to claim 1, wherein the C4-feed mixture contains isobutylene and/or butadiene, which are separated by fractionation after the isomerization.
  8. 9. A continuous process according to claim 1, wherein the isomerization steps are conducted in either vapour or liquid phase operation at temperatures from about -50* to about 200*C, at space velocities from about 0.4 to about 40 liquid volumes of olefin per volume of catalyst per hour, at pressures from about atmospheric to about 250 psig.
  9. 10. A process according to claim 1, wherein an isomerization catalyst is employed which is active at a temperature below 100*C.
  10. 11. A process according to claim 1, wherein a C4-feed is isomerized in a first step in the presence of a catalyst in such a way that the butene-1 level is reduced to a value of 5 - 15 percent of the original content, cooling the isomerized feed to remove heat of reaction and subjecting the cooled isomerized feed to a second isomerization in the presence of a catalyst active at low temperatures, the reaction temperature in the second step being in the range of 0 to 75*C, both steps being carried out under adiabatic conditions, feeding the mixture containing less than 5 percent of the original butene-1 content in a fractionation tower to recover as a top fraction isobutylene plus traces of butene-1 and as a bottom fraction the butenes-2 and other compounds, isomerizing the top fraction at low temperatures in the range of 0 to 75*C in the presence of a low-temperature active catalyst, recirculating part of the isomerized top fraction and recovering substantially pure isobutylene by further fractionation.
  11. 12. The process according to claim 1 wherein the catalyst is cobalt II acetyl acetonate supported on Si02 and reduced by an alkyl alumina.
  12. 13. The process according to claim 1 wherein the catalyst is sodium on alumina.
US00234734A 1971-03-19 1972-03-15 Isomerization-fractionation process Expired - Lifetime US3758604A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB730971 1971-03-19

Publications (1)

Publication Number Publication Date
US3758604A true US3758604A (en) 1973-09-11

Family

ID=9830672

Family Applications (1)

Application Number Title Priority Date Filing Date
US00234734A Expired - Lifetime US3758604A (en) 1971-03-19 1972-03-15 Isomerization-fractionation process

Country Status (3)

Country Link
US (1) US3758604A (en)
DE (1) DE2212845A1 (en)
FR (1) FR2130387B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2528033A1 (en) * 1982-06-08 1983-12-09 Exxon Research Engineering Co PROCESS FOR TREATING ISOBUTYLENE LOAD
EP0129900A2 (en) * 1983-06-25 1985-01-02 BASF Aktiengesellschaft Process for the recovery of 1-butene from mixtures of hydrocarbons containing 2-butenes
US4777322A (en) * 1984-07-28 1988-10-11 Basf Aktiengesellschaft Obtaining but-2-enes from C4 -hydrocarbon mixtures which contain but-1-ene and may or may not contain but-2-enes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104321A (en) * 1977-03-18 1978-08-01 Uop Inc. Process for the separation of olefins
CA1179291A (en) * 1981-10-30 1984-12-11 David T. Ahlberg Distillation apparatus
FR2757506B1 (en) * 1996-12-23 1999-02-19 Inst Francais Du Petrole PROCESS FOR PRODUCING HIGH PURITY ISOBUTENE COMBINING REACTIVE HYDROISOMERIZATION DISTILLATION AND SKELETTAL ISOMERIZATION
FR2757505B1 (en) * 1996-12-23 1999-02-19 Inst Francais Du Petrole PROCESS FOR PRODUCING HIGH PURITY ISOBUTENE COMBINING REACTIVE HYDROISOMERIZATION DISTILLATION, DISTILLATION AND SKELETTAL ISOMERIZATION

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235471A (en) * 1962-03-16 1966-02-15 Phillips Petroleum Co Purification of c4-c6 1-olefins by extractive distillation
US3265591A (en) * 1962-11-15 1966-08-09 Du Pont Separation of butadiene from butenes by distilling in the presence of an aqueous solution of silver salts
US3284535A (en) * 1963-05-10 1966-11-08 Exxon Research Engineering Co Production of 3-methyl-1-butene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235471A (en) * 1962-03-16 1966-02-15 Phillips Petroleum Co Purification of c4-c6 1-olefins by extractive distillation
US3265591A (en) * 1962-11-15 1966-08-09 Du Pont Separation of butadiene from butenes by distilling in the presence of an aqueous solution of silver salts
US3284535A (en) * 1963-05-10 1966-11-08 Exxon Research Engineering Co Production of 3-methyl-1-butene

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2528033A1 (en) * 1982-06-08 1983-12-09 Exxon Research Engineering Co PROCESS FOR TREATING ISOBUTYLENE LOAD
US4435609A (en) 1982-06-08 1984-03-06 Exxon Research & Engineering Co. Isomerization of butene-1 to butene-2 in isobutylene
EP0129900A2 (en) * 1983-06-25 1985-01-02 BASF Aktiengesellschaft Process for the recovery of 1-butene from mixtures of hydrocarbons containing 2-butenes
EP0129900A3 (en) * 1983-06-25 1985-10-02 Basf Aktiengesellschaft Process for the recovery of 1-butene from mixtures of hydrocarbons containing 2-butenes
US4777322A (en) * 1984-07-28 1988-10-11 Basf Aktiengesellschaft Obtaining but-2-enes from C4 -hydrocarbon mixtures which contain but-1-ene and may or may not contain but-2-enes

Also Published As

Publication number Publication date
FR2130387B1 (en) 1975-04-25
DE2212845A1 (en) 1972-09-28
FR2130387A1 (en) 1972-11-03

Similar Documents

Publication Publication Date Title
US6916448B2 (en) Process for selective production of propylene from hydrocarbon fractions with four carbon atoms
JP4214474B2 (en) Process for producing propylene and hexene from C4 olefin streams
US6358482B1 (en) Facility for the production of isobutene and propylene from hydrocarbon cuts containing four carbon atoms
KR101305703B1 (en) Batch process and system for the production of oleffins
KR101759802B1 (en) Propylene via metathesis with low or no ethylene
US4191845A (en) Process for converting unsaturated C4 hydrocarbons into normal butane
US6686510B2 (en) Production of high-purity isobutene and propylene from hydrocarbon fractions with four carbon atoms
US4244806A (en) Process for converting C4 olefinic cracking cuts to alkylate and gasoline
US4544791A (en) Process for producing premium gasoline by polymerizing C4 cuts
US4268701A (en) Process for producing high octane gasoline and particularly lead-free gasoline
US8314278B2 (en) Process and system for the production of isoprene
US3758604A (en) Isomerization-fractionation process
US4104321A (en) Process for the separation of olefins
US10364204B2 (en) Process for manufacturing methyl tertiary-butyl ether (MTBE) and other hydrocarbons
US3692861A (en) Process for producing highly pure isoprene
US3321545A (en) Olefins by hydrogen transfer
US4423264A (en) Process for the joint production of highly pure 1-butene and premium gasoline from a C4 olefinic cut
US3671603A (en) Butene recovery
US2436698A (en) Process for separating olefins from hydrocarbon mixtures
US2386310A (en) Butadiene production
US2454171A (en) Combination isomerization and hydrogenation process
US3662020A (en) Process for the dimerization of propylene and alkylation of the dimer
US3193596A (en) Conversion of hydrocarbons
US4217461A (en) Olefinic hydrocarbon isomerization process
US11932597B2 (en) Converting isobutane and refinery C4S to propylene