US3758557A - Process for the oxidation of paraffins - Google Patents

Process for the oxidation of paraffins Download PDF

Info

Publication number
US3758557A
US3758557A US00844616A US3758557DA US3758557A US 3758557 A US3758557 A US 3758557A US 00844616 A US00844616 A US 00844616A US 3758557D A US3758557D A US 3758557DA US 3758557 A US3758557 A US 3758557A
Authority
US
United States
Prior art keywords
carbon atoms
group
oxidation
cobaltic
isomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00844616A
Inventor
Radzitzky Dostrowick P De
J Hanotier
J Vaerman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Labofina SA
Original Assignee
Labofina SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Labofina SA filed Critical Labofina SA
Application granted granted Critical
Publication of US3758557A publication Critical patent/US3758557A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • C07C29/52Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only in the presence of mineral boron compounds with, when necessary, hydrolysis of the intermediate formed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/30Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with halogen containing compounds, e.g. hypohalogenation

Definitions

  • This invention relates to a process for the selective oxidation of straight-chain paraffins into oxygenated products having the same number of carbon atoms, specifically into alcohols, mainly in the form of esters, or into ketones, in which the oxygenated function is preferentially situated in the 2-position of the carbon chain.
  • a straight chain paraffin hydrocarbon of any chain length up to 60, usually in the range of 3 to 20, may be oxidized to introduce an oxygenated function into the chain such as carbinol, esters thereof and ketone, predominantly in the 2-position.
  • the straight-chain paraftins are the least reactive hydrocarbons.
  • a paraffin of this type is attacked chemically, it is observed that the two terminal methyl groups have a greater resistance than the internal methylene groups and that these are attacked in statistical manner.
  • the oxidizing system is soluble in the paraffin to be oxidized and the reaction may occur in the solution thus obtained.
  • the reactants should be dissolved, at least partially, in a common solvent.
  • any liquid reasonably stable to oxidation by the oxidizing system and in which the latter and the paraffin to be oxidized are sufficiently soluble.
  • the lower fatty acids that is to say those which have 2, 3 or 4 atoms of carbon, as well as their lower esters of an aliphatic alcohol having I to 4 carbon atoms, in particular their methyl and t-butyl esters, satisfactorily fulfil the preceding conditions.
  • acetic acid is particularly advantageous.
  • the compounds of metals of variable valency which can be employed are those in which the multi-valent metal is a group II, III, IV, V or VI metal, used at its higher valency and which has an oxidationreduction potential of at least 0.99 volt, for example,
  • the straight-chain paraffins may be catalytically oxidized at low temperature to selectively attack the second carbon atom of the chain in a consistently advantageous manner.
  • the oxidation is effected selectively and non-destructively to secure preferential production of alcohols (mainly in the form of esters) or of ketones having the same number of carbon atoms as the original paraffin.
  • the oxidizing system hereof comprises a compound of a metal of variable valency and an activator of acid nature. 7
  • the main object of the present invention is to provide a process for oxidation at low temperature of straightchain paraffins into oxygenated products having the same number of carbon atoms, in which the oxygenated function is preferentially situated at the 2 position of the carbon chain, with preferential formation of alcohols, mainly in the form of esters, or alternatively with preferential formation of ketones.
  • a process for the selective oxidation of straight-chain pa'raffins into oxygenated compounds having the same number of carbon atoms comprises oxidizing a straight-chain paraffin in the liquid phase with an oxidizing system comprising a compound of a metal of variable valency, the metal (VI), silver (II) and lead (IV).
  • an oxidizing system comprising a compound of a metal of variable valency, the metal (VI), silver (II) and lead (IV).
  • cobalt (III) is preferred since it results in a particularly high proportion of products oxidized at position 2 in the carbon chain. It also is best for preferential conversion of the paraffins into alcohols, mainly in the form of esters, or into ketones, depending on the conditions of reaction which have been selected.
  • the salts of carboxylic acids have the advantage of usually being soluble in organic media and particularly cobalt (III) salts of carboxylic acids are soluble and preferred herein.
  • Any sufficiently soluble cobaltic carboxylate can be employed; the cobaltic salts of the lower fatty acids having 2, 3 or 4 carbon atoms of carbon, are particularly advantageous, since they are easily produced from the corresponding cobalt (II) salts.
  • cobaltic acetate can be obtained by co-oxidation of cobalt (II) acetate with acetaldehyde in acetic acid in the presence of oxygen as is disclosed in USA Patent Specitication No. 1,976,757.
  • the cobaltic salts of the other fatty acids may be produced in analogous manner or by interchange reaction between such other carboxylic acids and cobaltic acetate.
  • a fundamental and important feature of the present invention is the discovery that the oxidizing capacity of these metal compounds, and more specifically of these cobaltic salts, in respect of straight-chain paraffms, is increased considerably by the presence of a relatively strong inorganic or organic acid.
  • the acids which can fulfil this activating function are those which have a dissociation constant K higher than 5 X 10'. Such strong acids should also be substantially soluble in the reaction medium and should not interfere with the reaction.
  • K 1 sulphuric acid
  • K l perchloric acid
  • K l perchloric acid
  • K l trifluoroacetic acid
  • K 6 X 10 trichloroacetic acid K 2 X 10 dichloroacetic acid
  • K 3.3 X 10 phosphoric acid
  • Some Lewis acids for example boron trifluoride, also have an activating action. It is also possible to employ a mixture of these acids. Acids which tend to further modify the oxidation products such as the hydrohalogen acids, such as HCl, or nitric acid are usually avoided.
  • the activating action of the acids defined hereinabove influence the rate of the reaction as well as its degree of advance. It is the more pronounced the more strong the acid and to a particular limit, the higher its concentration.
  • the quantity of acid to be employed depends on the nature as well as on the quantity of the metal compound employed. For example, if sulphuric acid is employed to activate a cobaltic salt, it is preferred to have a molecular ratio between the acid and salt of approximately 2, to secure a maximum of activity. A ratio between 5 and is preferable with a weaker acid, like trifluoracetic acid.
  • the cobaltic salt and the acid interact to form a more oxidation active species which would be principally responsible for the initial attack on the hydrocarbon.
  • the following theoretical mechanism in which the cobaltic salt, the acid and the active species, are represented respectively by Co, AH and Co(lll) is useful to explain AH A H (1)
  • Co 4 H+ Co(lII) The nature of the oxidation products which can be obtained by the process of the invention is determined in particular by the composition of the oxidizing system. For example, if the metal component of this system is chromic anhydride, ketones form the principal products of the reaction. With lead (IV) oxide, alcohols will be obtained more easily, principally in.
  • esters The nature of the products with other compounds, and specifically with cobaltic compounds depends essentially on the operating conditions.
  • the reaction should be performed in a carboxylic acid solvent such as acetic acid, and in the absence of free oxygen,
  • a carboxylic acid solvent such as acetic acid
  • n-heptane can be converted almost quantitatively into heptyl acetates with a considerable proportion of Z-heptyl acetate.
  • the esters thus obtained may then be hydrolysed to produce alcohols, or pyrolised to produce olefins.
  • the operation should be conducted in the same medium and in the presence of oxygen with vigorous stirring of the reaction mixture.
  • This gaseous phase may consist of pure oxygen or of a mixture of oxygen with other gases inert in the conditions of the reaction; air may be employed, for example,
  • the partial oxygen pressure may lie between 0.l and 50 atmospheres. In particular cases, it is possible to apply pressure outside this range. For example, a lower pressure than 0.1 atmosphere is sufficient at timessubject to the condition of ensuring particularly effective stirring. On the other hand, pressures higher than 50 atmospheres may be applied, but these do not result in an improvement in the results such as to justify additional plant investment. In the majority of cases, an oxygen pressure of l to 10 atmospheres may advantageously be applied to secure a high proportion of ketones.
  • the high degree of activity of the oxidizing system applied in the present invention renders it possible to oxidize the paraffins at low temperature, more specifically within a temperature range of from 20 to C.
  • the choice of temperature will be dictated by the nature of the oxidizing system and by the effect of the temperature on the rate and selectivity of the reaction. As a general rule, the rate of reaction increases with the temperature while its selectivity tends to decrease. With the cobaltic salts for example, it is observed that above a temperature of about 50 C, the
  • selectivity of attack at the 2 position of the carbon chain decreases until it becomes practically statistical at approximately l00 C.
  • a compromise of these conditions is usually selected.
  • a temperature between 20 and 50 C will advantageously be employed.
  • the quantity of oxidant to be employed depends on the conversion to be obtained. It is preferred to have low rates of conversion, for example by employing a surplus of substrate with respect to the oxidant to prevent secondary reactions.
  • Example 1 This example illustrates the oxidation of n-heptane by an oxidizing system comprising cobaltic acetate and sulphuric acid as an activator. The reaction was performed in the presence of oxygen so as to preferentially produce ketones.
  • heptanones 84 percent (isomer 2:66 percent; 3:22 percent; 4:12 percent) heptanols: 9 percent (isomer 1:0 percent; 2:51 percent, 3:35 percent; 4:14 percent) heptyl acetates: 7 percent (isomer 1:0 percent; 2:70 percent; 3:30 percent 4ztraces).
  • l-leptanols 18% (isomer 1:0%; 2:63%; 3:27%; 4:l0%)
  • Example 3 The test of example 2 was repeated, but operating at 5 C instead of 25 C, and while continuing the reaction for a total period of two hours. After this time had elapsed, 84 percent of the cobaltic ions had been reduced, whereas all of these ions had been reduced in 30 minutes in the preceding example.
  • the oxidation products formed in these conditions have the following distribution, in mols:
  • Example 4 This example illustrates the oxidation of n-heptane with application of phosphoric acid as an activator, and in the presence of oxygen.
  • heptanones (isomer 217196; 3:21%; 4:8%)
  • heptanols 15% (isomer 2:75%; 3:25%; 4ztraces)
  • Example 5 This example illustrates the oxidation of n-heptane by means of the same oxidizing system as in the preceding example, but in the absence of oxygen.
  • Heptanones 8% (isomer 2:84%; 3:l3%; 4:3%)
  • Heptanols 6%v (isomer 1:0%; 2:7l%; 3:20%; 4:9%)
  • Example 7 This example illustrates the oxidation of n-heptane with application of boron trifluoride as the activator and in the presence of oxygen.
  • heptanols (isomer 120%; 2:59%; 3:25%; 4:16%)
  • Example 8 been reduced after 4 hours.
  • the reaction mixture was then treated and analysed as in example 1. Analysis disclosed the presence of the following oxidation products whose relative proportions are given as molar percentages:
  • heptyl acetates l 81% (isomer 1:0%; 2:72%; 3:22%; 4:6%)
  • heptanones 19% (isomer 2:78%; 3:22%; 4:0%)
  • Example 9 This example illustrates the oxidation of n-heptane with application of trifluoracetic acid as an activator and in the presence of oxygen.
  • heptanones 82% (isomer 2:78%; 3:15%; 427%)
  • heptanols 14% (isomer 1:0%; 2:79%; 3:l5%; 4:6%)
  • heptyl acetates 4%.
  • Example 10 baltic ions were reduced after 18 hours. Analysis of the reaction mixture disclosed the presence of the following oxidation products whose relative proportions are given as molar percentages:
  • heptyl acetates 78% (isomer l:l%; 2:76%; 3:17% 4:6%) heptanols:
  • Example 1 1 This example illustrates the oxidation of n-heptane with application of dichloracetic acid as the activator, and in the presence of oxygen.
  • heptanones 80% (isomer 2:83%; 3:12%', 425%)
  • heptanols 19% (isomer 1:0%; 2:79%; 3:17%; 4:4%)
  • heptyl acetates 1%
  • Example 12 This example illustrates the oxidation of n-heptane with application of trichloroacetic acid as the activator and in the presence of oxygen.
  • heptanones 79% (isomer 2:82%; 3:13%; 4:5%)
  • heptanols 20% (isomer 1:0%; 2:77%; 3:17%; 416% heptyl acetates: 1%
  • Example- 13 Example 14 The test of example 13 was repeated, but operating under an oxygen pressure of 10 kgs/cm. The oxidation products formed in these conditions were distributed in the following manner, in mols:
  • heptanones 83% (isomer 2:79% 3:15%; 4:6%)
  • heptanols 14% (isomer 1:O%; 2:85%; 3:15%; 4: traces)
  • heptyl acetates 3%
  • Example 15 This example illustrates the action of temperature on the selectivity of the oxidation of n-heptane at position 2.
  • Example 16 heptanones: 81% (isomer 2:79%; 3:15%; 4:6%) heptanols: 19% (isomer 1:0%; 2:86%; 3:14%; 4: traces)
  • Example 17 Example 16 was repeated, the cobaltic acetate having been replaced by cobaltic propionate.
  • Example 18 This example illustrates the application of methyl acetate as a solvent.
  • Example 16 The test of example 16 was repeated, the propionic acid having been replaced with methyl acetate. The totality of the cobaltic ions was reduced after 18 hours. The reaction mixture was then treated and analysed as in example 1. Analysis disclosed the presence of the following oxidation products whose relative proportions are given as molar percentages: heptanones: 77% (isomer 2:84%; 3 :l2%; 4:4%)
  • Example 19 This example illustrates the possibility of not employing any solvent.
  • Example 20 This example illustrates the oxidation of n-heptane in the absence of oxygen, by the oxidizing system comprising lead (lV) oxide and sulphuric acid.
  • Example 21 This example illustrates the oxidation of n-heptane in the presence of oxygen, by the oxidizing system comprising silver (11) oxide and trichloroacetic acid.
  • Example 22 This example illustrates the oxidation of n-heptane in the absence of oxygen, by means of the oxidizing system comprising ceri-ammonic nitrate and perchloric acid.
  • Example 23 This example illustrates the oxidation of n-heptane heptanones: 95 (isomer 2 :50 3 32 4 l8 heptanols 3 heptyl acetates 2
  • Example 24 This example illustrates the oxidation of n-heptane by the oxidizing system comprising vanadium pentoxide and sulphuric acid.
  • Example 25 This example illustrates the oxidation of n-decane in the presence of. oxygen, by the oxidizing'system comprising cobaltic acetate and trichloroacetic acid.
  • decanones 81% (isomer 2:67%; 3:13%; 4 5:20%) decanols: 17% (isomer 1:0%; 2:61%; 3:15%; 4 5:24%)
  • Example 26 I This example illustrates the oxidation of n-decane in the absence of oxygen, by the oxidizing system comprising cobaltic acetate and sulphuric acid.
  • Example 27 This example illustrates the oxidation of n-dodecane in the presence of oxygen by the oxidizing system comprising cobaltic acetate and trichloroacetic acid.
  • dodecanones 78% (isomer 2:65%; 3:13%; 4 5:22%; 6:0%)
  • dodecanols 20% (isomer l:0%; 2:51%; 3:15%; 4
  • a statistical attack on the methylene groups of dodecane would result in no more than 20 percent of the isomer 2.
  • a straight chain paraffin hydrocarbon of any chain length up to 60 usually in the range of 3 to 20 may be oxidized to introduce an oxygenated function into the chain such as carbinol, esters thereof and ketone, predominately in the 2 position.
  • the oxidation is effected by a multivalent metal compound of groups 11- VI of the periodic table used in a higher valency state, the metal having an oxidation reduction potential of at least 0.99 volt.
  • the metal compound is usually an oxide or salt, preferably of a lower fatty acid of up to 4 carbon atoms.
  • the reaction is effected in the presence of a strong acid having a dissociation constant exceeding 5.10 or/and acid acting substances such as boron trifluoride, stable to the oxidizing conditions of the system.
  • the reaction may be run in the presence of a solvent which is also stable to the oxidizing system; for example, lower fatty acids having 1 4 carbon atoms and methyl or tertiary butyl esters thereof.
  • a process for the selective oxidation of straight chain paraffin hydrocarbons having 3 to 60 carbon atoms into oxygenated products having the same number of carbon atoms comprising predominantly saturated alcohols and their esters comprising reacting said hydrocarbons in liquid phase in the presence of a solvent selected from the group consisting of fatty acids having 1 to 4 carbon atoms and their esters of alkanols having 1 to 4 carbon atoms in the substantial absence of free oxygen with an oxidizing system consisting essentially of an oxidizing agent which is a member of the group consisting of oxides and salts of a metal of variable valency of groups 11 through V1 and cobalt, the metal in said compound being in its higher valency state and having an oxidation-reduction potential of at least 0.99 volts, and an activator selected from the group consisting of strong stable organic and inorganic acids having a dissociation constant greater than 5 10 boron trifluoride, and mixtures thereof at a temperature in the range of 20 to C.
  • a process for the selective oxidation of straight chain paraffin hydrocarbons having 3 to 60 carbon atoms into oxygenated products having the same number of carbon atoms comprising predominantly satu' rated alcohols and their esters wherein the oxygenated function is predominantly located on position 2 of the carbon chain comprising reacting said hydrocarbon in the presence of a solvent stable to oxidation under reaction conditions and selected from the group consisting of methyl and tertiary butyl esters of lower fatty acids having 1 to 4 carbon atoms in the substantial ab sence of free oxygen with an oxidizing system consisting essentially of an oxidizing agent which is a member of the group consisting of oxides and salts of a metal of variable valency of groups [I through VI and cobalt, the metal in said compound being in its higher valency state and having an oxidation-reduction potential of at least 0.99 volt, and an activator selected from the group consisting of strong stable organic and inorganic acids having a dissociation constant greater than 5 boron trifluor
  • metal of variable valency is selected from the group consisting of cobalt, chromium, cerium, vanadium, silver and lead.
  • a process for the selective oxidation of straightchain paraffin hydrocarbons having 3 to 20 carbon atoms predominantly into esters wherein the ester function is predominantly located on position 2 of the carbon chain comprising reacting said hydrocarbon in the presence of a solvent selected from the group consisting of fatty acids having 2 to 4 carbon atoms and their methyl and tertiary butyl esters with an oxidizing system consisting essentially of a cobaltic salt and an activator selected from the group consisting of stable organic and inorganic acids having a dissociation constant greater than 5 10", boron trifluoride, and mixtures thereof, at a temperature in the range of 20 to C and in the absence of oxygen.
  • a solvent selected from the group consisting of fatty acids having 2 to 4 carbon atoms and their methyl and tertiary butyl esters
  • an oxidizing system consisting essentially of a cobaltic salt
  • cobaltic salt is the cobaltic salt of a fatty acid having from 2 to 4 carbon atoms.
  • activator is selected from the group consisting of sulfuric, phosphoric, perchloric, trifluoroacetic acids, boron trifluoride and mixtures thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Straight-chain paraffins are non-destructively and selectively oxidized to introduce oxy and oxo functions predominantly at the 2 position by an oxidizing system comprising a compound of group II - VI metals in higher valent form and an acidic activator of dissociation constant gerater than 5.10 3 or boron trifluoride, with or without molecular oxygen and with or without a solvent.

Description

United States Patent 11 1 De Radzitzky dOstrowick et al.
1 51 Sept. 11, 1973 PROCESS FOR THE OXIDATION OF PARAFFINS [75] Inventors: Pierre M. J. G. De Radzitzky dOstrowick; Jacques D. V. HanotieryJoseph M. E. Vaerman,-all of Bruxelles, Belgium [73] Assignee: Labofina, Soc. Am, Bruxelles,
Belgium 22 Filed: July 24,1969, 21 ApphN o; 844,616
[52] US. Cl 260/488 F, 260/533 R, 260/597 R, 260/604 R, 260/610 B, 260/614 R, 260/632 C, 260/632 CB [51] Int. Cl... C07c 27/16, C07c 45/02, C07c 67/00 [58] Field of Search 260/597 R, 488 F, 260/632 C, 632 CB [56] References Cited UNITED STATES PATENTS 7/1968 Kidsheimer et al. 260/632 c 10/1970 Finkbeiner et al. 260/488 F 3,655,769 4/l972 McMahon 260/632 2,265,948 l2/l94l Lndcr 260/488 2,969,380 l/l96l Selwitz 260/597 2,653,962 9/1953 Mitchell et al... 260/597 3,228,971 l/l966 MacLean 260/488 R FOREIGN PATENTS OR APPLICATIONS l,l66,679 ll/l958 France 260/597 OTHER PUBLICATIONS Hickinbottom et al., Nature, V. 184, p. 326, 8-1959.
Primary ExaminerVivian Garner Attorney-Sol B. Wiczer 11 Claims, No Drawings 1 PROCESS FOR THE-OXIDATION F PARAFFINS This invention relates to a process for the selective oxidation of straight-chain paraffins into oxygenated products having the same number of carbon atoms, specifically into alcohols, mainly in the form of esters, or into ketones, in which the oxygenated function is preferentially situated in the 2-position of the carbon chain. A straight chain paraffin hydrocarbon of any chain length up to 60, usually in the range of 3 to 20, may be oxidized to introduce an oxygenated function into the chain such as carbinol, esters thereof and ketone, predominantly in the 2-position.
The straight-chain paraftins are the least reactive hydrocarbons. When a paraffin of this type is attacked chemically, it is observed that the two terminal methyl groups have a greater resistance than the internal methylene groups and that these are attacked in statistical manner. In his book Chemie und Technologie der Paraffin-Kohlenwasserstaffe, F. Asinger clearly shows that the attack on a straight-chain paraffin by chlorination, nitration, sulphochlorination, sulphoxidation and oxidation by oxygen in the liquid phase extends in statistical manner to the aggregate of the methylene groups of the chain.
With respect to the formation of oxygenated compounds in particular, most of the prior works relate to the oxidation of straight-chain paraffins in the liquid phase by molecular oxygen, most frequently in the presence of a catalyst based on manganese, such as pobeing in the higher valency state and having an oxidation-reduction potential of at least 0.99 volt, and an activator selected from the group consisting of acids having a dissociation constant greater than 5 X and which are stable under the conditions of the reaction, boron trifluoride, and mixtures thereof, at a temperature in the range of to +100 C.
It is useful but not essential to employ a solvent for the reaction to form the liquid phase reaction medium. In particular cases, the oxidizing system is soluble in the paraffin to be oxidized and the reaction may occur in the solution thus obtained. Most frequently, however, the reactants should be dissolved, at least partially, in a common solvent. To this end, it is possible to employ any liquid reasonably stable to oxidation by the oxidizing system and in which the latter and the paraffin to be oxidized are sufficiently soluble. The lower fatty acids, that is to say those which have 2, 3 or 4 atoms of carbon, as well as their lower esters of an aliphatic alcohol having I to 4 carbon atoms, in particular their methyl and t-butyl esters, satisfactorily fulfil the preceding conditions. Among these solvents, acetic acid is particularly advantageous.
Normally the compounds of metals of variable valency which can be employed are those in which the multi-valent metal is a group II, III, IV, V or VI metal, used at its higher valency and which has an oxidationreduction potential of at least 0.99 volt, for example,
' cobalt (III), cerium (IV), Vanadium (V), Chromium tassium permanganate. This method has been applied on an industrial scale for the production of fatty acids. The selectivity of such observed oxidations is poor, however, since a great number of other oxygenated products are formed at the same time, such as alcohols, esters, aldehydes, ketones, ethers, peroxides and hydroperoxides. Since the reaction is also accompanied by substantial degradation of the hydrocarbon chain, an extremely complex mixture of oxygenated products is obtained whose separation and purification is protracted and costly.
It has now been found according to this invention that the straight-chain paraffins may be catalytically oxidized at low temperature to selectively attack the second carbon atom of the chain in a consistently advantageous manner. By an appropriate choice of the operating conditions, the oxidation is effected selectively and non-destructively to secure preferential production of alcohols (mainly in the form of esters) or of ketones having the same number of carbon atoms as the original paraffin. The oxidizing system hereof comprises a compound of a metal of variable valency and an activator of acid nature. 7
The main object of the present invention is to provide a process for oxidation at low temperature of straightchain paraffins into oxygenated products having the same number of carbon atoms, in which the oxygenated function is preferentially situated at the 2 position of the carbon chain, with preferential formation of alcohols, mainly in the form of esters, or alternatively with preferential formation of ketones.
According to the present invention a process for the selective oxidation of straight-chain pa'raffins into oxygenated compounds having the same number of carbon atoms, comprises oxidizing a straight-chain paraffin in the liquid phase with an oxidizing system comprising a compound of a metal of variable valency, the metal (VI), silver (II) and lead (IV). Of these metals, cobalt (III) is preferred since it results in a particularly high proportion of products oxidized at position 2 in the carbon chain. It also is best for preferential conversion of the paraffins into alcohols, mainly in the form of esters, or into ketones, depending on the conditions of reaction which have been selected.
Among the compounds of these metals, the salts of carboxylic acids have the advantage of usually being soluble in organic media and particularly cobalt (III) salts of carboxylic acids are soluble and preferred herein. Any sufficiently soluble cobaltic carboxylate can be employed; the cobaltic salts of the lower fatty acids having 2, 3 or 4 carbon atoms of carbon, are particularly advantageous, since they are easily produced from the corresponding cobalt (II) salts. For example, cobaltic acetate can be obtained by co-oxidation of cobalt (II) acetate with acetaldehyde in acetic acid in the presence of oxygen as is disclosed in USA Patent Specitication No. 1,976,757. The cobaltic salts of the other fatty acids may be produced in analogous manner or by interchange reaction between such other carboxylic acids and cobaltic acetate.
A fundamental and important feature of the present invention is the discovery that the oxidizing capacity of these metal compounds, and more specifically of these cobaltic salts, in respect of straight-chain paraffms, is increased considerably by the presence of a relatively strong inorganic or organic acid. As a general rule, the acids which can fulfil this activating function are those which have a dissociation constant K higher than 5 X 10'. Such strong acids should also be substantially soluble in the reaction medium and should not interfere with the reaction. Useful strong acids herein are sulphuric acid (K 1), perchloric acid (K l p-toluenesulphonic acid (K l), trifluoroacetic acid (K 6 X 10 trichloroacetic acid (K 2 X 10 dichloroacetic acid (K 3.3 X 10 and phosphoric acid (K 7.5
X Some Lewis acids, for example boron trifluoride, also have an activating action. It is also possible to employ a mixture of these acids. Acids which tend to further modify the oxidation products such as the hydrohalogen acids, such as HCl, or nitric acid are usually avoided.
The activating action of the acids defined hereinabove influence the rate of the reaction as well as its degree of advance. It is the more pronounced the more strong the acid and to a particular limit, the higher its concentration. On the other hand, the quantity of acid to be employed depends on the nature as well as on the quantity of the metal compound employed. For example, if sulphuric acid is employed to activate a cobaltic salt, it is preferred to have a molecular ratio between the acid and salt of approximately 2, to secure a maximum of activity. A ratio between 5 and is preferable with a weaker acid, like trifluoracetic acid. Although the mechanism of the activation has not yet been claritied, the facts indicate that the cobaltic salt and the acid interact to form a more oxidation active species which would be principally responsible for the initial attack on the hydrocarbon. For example, the following theoretical mechanism in which the cobaltic salt, the acid and the active species, are represented respectively by Co, AH and Co(lll) is useful to explain AH A H (1) Co 4 H+ Co(lII) The nature of the oxidation products which can be obtained by the process of the invention is determined in particular by the composition of the oxidizing system. For example, if the metal component of this system is chromic anhydride, ketones form the principal products of the reaction. With lead (IV) oxide, alcohols will be obtained more easily, principally in. the form of esters. The nature of the products with other compounds, and specifically with cobaltic compounds depends essentially on the operating conditions. Thus, to produce esters, the reaction should be performed in a carboxylic acid solvent such as acetic acid, and in the absence of free oxygen, For example, in these conditions n-heptane can be converted almost quantitatively into heptyl acetates with a considerable proportion of Z-heptyl acetate. The esters thus obtained may then be hydrolysed to produce alcohols, or pyrolised to produce olefins. To obtain ketones however, the operation should be conducted in the same medium and in the presence of oxygen with vigorous stirring of the reaction mixture. in these conditions, n-heptane is oxidized primarily into heptanones, again with a considerable proportion of 2-heptanone. These particular examples clearly demonstrate the extraordinary selectivity of the process and the high degree of control made available by simple selection of the experimental conditions.
The mechanism of the reactions resulting in these dif ferent products, is not known with certainty. The action of oxygen set forth hereinabove, however suggests that the primary attack on the paraffin results in the formation of a free radical (reaction 3) capable of reacting with molecular oxygen (reaction 4) to produce a peroxy radical which would then be converted to form a ketone. In the absence of oxygen, the radical 4 would be oxidized in its turn, probably whilst forming a carbonium salt (reaction 5) which, in the presence of a carboxylic acid, would lead to an ester (reaction R- Co(lll) R Co R R'COOH ROCOR' +H According to this reaction scheme, the proportion of ketones and of esters in the reaction products would be the result of competition between the reactions (4) and (5 It can then be seen that to promote the production of esters, it is necessary to choose conditions which prevent the reaction (4), that is to say operating in the absence of molecular oxygen. By contrast, to promote the production of ketones, it is necessary to choose conditions allowing the reaction (4) to predominate, that is to say operating in the presence of a gaseous phase containing oxygen and assuring vigorous stirring for rapid diffusion of the latter into the liquid phase.
This gaseous phase may consist of pure oxygen or of a mixture of oxygen with other gases inert in the conditions of the reaction; air may be employed, for example, The partial oxygen pressure may lie between 0.l and 50 atmospheres. In particular cases, it is possible to apply pressure outside this range. For example, a lower pressure than 0.1 atmosphere is sufficient at timessubject to the condition of ensuring particularly effective stirring. On the other hand, pressures higher than 50 atmospheres may be applied, but these do not result in an improvement in the results such as to justify additional plant investment. In the majority of cases, an oxygen pressure of l to 10 atmospheres may advantageously be applied to secure a high proportion of ketones.
The high degree of activity of the oxidizing system applied in the present invention renders it possible to oxidize the paraffins at low temperature, more specifically within a temperature range of from 20 to C. In practice, the choice of temperature will be dictated by the nature of the oxidizing system and by the effect of the temperature on the rate and selectivity of the reaction. As a general rule, the rate of reaction increases with the temperature while its selectivity tends to decrease. With the cobaltic salts for example, it is observed that above a temperature of about 50 C, the
selectivity of attack at the 2 position of the carbon chain decreases until it becomes practically statistical at approximately l00 C. A compromise of these conditions is usually selected. In the majority of cases, a temperature between 20 and 50 C will advantageously be employed.
The quantity of oxidant to be employed depends on the conversion to be obtained. It is preferred to have low rates of conversion, for example by employing a surplus of substrate with respect to the oxidant to prevent secondary reactions.
The invention is further described with reference to the following Examples.
Example 1 This example illustrates the oxidation of n-heptane by an oxidizing system comprising cobaltic acetate and sulphuric acid as an activator. The reaction was performed in the presence of oxygen so as to preferentially produce ketones.
A solution containing 0.50 mol/litre of n-heptane, 0.18 mol/litre of cobaltic acetate and 0.50 mol/litre of sulphuric acid in acetic acid, was stirred at 25 C in the presence of pure oxygen at atmospheric pressure. 96 percent of the cobaltic ions had been reduced after 30 minutes. The reaction mixture was then diluted with a saturated solution of sodium chloride in water, and then repeatedly extracted with ether. The ether extract was neutralized with an aqueous solution of potassium hydroxide and dried over anhydrous sodium sulphate before being analysed by vapor phase chromatography Analysis showed that 2.6 percent of the heptane employed had been converted to yield the following oxidation products whose relative proportions are given as molar percentages:
heptanones: 84 percent (isomer 2:66 percent; 3:22 percent; 4:12 percent) heptanols: 9 percent (isomer 1:0 percent; 2:51 percent, 3:35 percent; 4:14 percent) heptyl acetates: 7 percent (isomer 1:0 percent; 2:70 percent; 3:30 percent 4ztraces).
By operating in identical manner, but without adding sulphuric acid to the system, only 0.5 percent of the cobaltic ions were reduced in 30 minutes. The products formed in these conditions corresponded to a conversion of 0.2 percent of the heptane employed; that is-to say, 13 times smaller than that observed in the presence of sulphuric acid.
Example 2 Heptyl acetates: 70 (isomer 1:2%; 2:61%; 3:28%;
l-leptanols: 18% (isomer 1:0%; 2:63%; 3:27%; 4:l0%)
Heptanones: 12% (isomer 2:62%; 3:31%; 427%) By operating in identical manner but in the absence of the acid activator, no significant decomposition of the cobaltic ions was observed, and no oxidation products were found by analysis.
Example 3 The test of example 2 was repeated, but operating at 5 C instead of 25 C, and while continuing the reaction for a total period of two hours. After this time had elapsed, 84 percent of the cobaltic ions had been reduced, whereas all of these ions had been reduced in 30 minutes in the preceding example. The oxidation products formed in these conditions have the following distribution, in mols:
heptyl acetates: 67% (isomer 111%; 2:66%; 3:23%;
4:10%) heptanones: 25% (isomer 2:65%; 3:24%; 4:1 1%) heptanols: 8% (only isomer 2 is detectable) Example 4 This example illustrates the oxidation of n-heptane with application of phosphoric acid as an activator, and in the presence of oxygen.
A solution containing 0.50 mol/litre of heptane, 0.18 mol/litre of cobaltic acetate and 1.00 moi/litre of phosphoric acid in acetic acid was stirred at 25 C in the presence of pure oxygen at atmospheric pressure. 38 percent of the cobaltic ions was reduced after 60 minutes. The reaction mixture was then treated and analysed as in example 1. Analysis showed that 2.5 percent of the heptane employed had been converted to yield the following oxidation products whose relative proportions are given as molar percentages:
heptanones: (isomer 217196; 3:21%; 4:8%) heptanols: 15% (isomer 2:75%; 3:25%; 4ztraces) By operating in identical manner, but while omitting 'the addition of phosphoric acid to the system, only 2 percent of the cobaltic ions had been reduced after 60 minutes, and the products formed were equivalent to a conversion of not greater than 0.3 percent of the heptane employed.
Example 5 This example illustrates the oxidation of n-heptane by means of the same oxidizing system as in the preceding example, but in the absence of oxygen.
The test of example 4 was repeated under a nitrogen atmosphere and without stirring. 76 percent of the co baltic ions were reduced after sixty minutes. Analysis of the reaction mixture disclosed the presence of the following oxidation products whose relative proportions are given as molar percentages:
Heptyl acetates: 86% (isomer l:l%; 2:71%; 3:21%;
427%) Heptanones: 8% (isomer 2:84%; 3:l3%; 4:3%) Heptanols: 6%v (isomer 1:0%; 2:7l%; 3:20%; 4:9%)
By operating in identical manner but in the absence of phosphoric acid activator, no reaction of any kind was detectable.
Example 6 heptanols:
9% (isomer 2:64%; 3:29%; 4:7%) 7% (isomer 1:0%; 236%; 3:46%; 4:18%)
Example 7 This example illustrates the oxidation of n-heptane with application of boron trifluoride as the activator and in the presence of oxygen.
A solution containing 0.50 mol/litre of heptane, 0.18 mol/litre of cobaltic acetate and 1.50 mol/litre of boron trifluoride in acetic acid was stirred at 25 C in the presence of pure oxygen at atmospheric pressure. 38 precent of the cobaltic ions were reduced after 18 hours, whereas no reduction of any kind was detectable in a comparative test performed in the absence of the activator. The reaction mixture was then treated and analysed as in example 1. Analysis rendered it possible to identify the following oxidation products whose relative proportions are given as molar percentages: heptanones: 71% (isomer 2:58%; 3:29%; 4:13%) heptyl acetates: 18% (isomer 1:0%; 2:66%; 3:24%; 4:10%)
heptanols: (isomer 120%; 2:59%; 3:25%; 4:16%)
Example 8 been reduced after 4 hours. The reaction mixture was then treated and analysed as in example 1. Analysis disclosed the presence of the following oxidation products whose relative proportions are given as molar percentages:
heptyl acetates: l 81% (isomer 1:0%; 2:72%; 3:22%; 4:6%)
heptanones: 19% (isomer 2:78%; 3:22%; 4:0%)
Example 9 This example illustrates the oxidation of n-heptane with application of trifluoracetic acid as an activator and in the presence of oxygen.
A solution containing 0.50 mol/litre of heptane, 0.18 mol/litre of cobaltic acetate and 1.40 mol/litre of trifluoroacetic acid in acetic acid was stirred at 25 C in the presence of pure oxygen at atmospheric pressure. 32 percent of the cobaltic ions were reduced after 18 hours. The reaction mixture was then treated and analysed as in example 1. Analysis showed that 2.5 percent of the heptane'employed had been converted to yield the following oxidation products whose relative proportions are given as molar percentages: heptanones: 82% (isomer 2:78%; 3:15%; 427%) heptanols: 14% (isomer 1:0%; 2:79%; 3:l5%; 4:6%) heptyl acetates: 4%.
Example 10 baltic ions were reduced after 18 hours. Analysis of the reaction mixture disclosed the presence of the following oxidation products whose relative proportions are given as molar percentages:
heptyl acetates: 78% (isomer l:l%; 2:76%; 3:17% 4:6%) heptanols:
heptanones:
15% (only isomer 2 is detectable) 7% (only isomer 2 is detectable) Example 1 1 This example illustrates the oxidation of n-heptane with application of dichloracetic acid as the activator, and in the presence of oxygen.
A solution containing 0.50 mol/litre of heptane, 0.18 molllitre of cobaltic acetate and 1.5 mol/litre of dichloroacetic acid in acetic acid, was stirred at 40 C in the presence of pure oxygen at atmospheric pressure. 36 percent of the cobaltic ions had been reduced after 6 hours. The reaction mixture was then treated and analysed as in example 1. Analysis showed that 3.0 percent of the heptane employed had been converted to yield the following oxidation products whose relative proportions are given as molar percentages: heptanones: 80% (isomer 2:83%; 3:12%', 425%) heptanols: 19% (isomer 1:0%; 2:79%; 3:17%; 4:4%) heptyl acetates: 1%
Example 12 This example illustrates the oxidation of n-heptane with application of trichloroacetic acid as the activator and in the presence of oxygen.
A solution containing 0.50 mol/litre of heptane, 0.18
mol/litre of cobaltic acetate and 1.50 mol/litre of trichloroacetic acid in acetic acid, was stirred at 25 C in the presence of pure oxygen at atmospheric pressure. 44 percent of the cobaltic ions had been reduced after 6 hours. The reaction mixture was then treated and analysed as in example 1. Analysis showed that 4.3 percent of the heptane had been converted to yield the following oxidation products whose relative proportions are given as molar percentages:
heptanones: 79% (isomer 2:82%; 3:13%; 4:5%) heptanols: 20% (isomer 1:0%; 2:77%; 3:17%; 416% heptyl acetates: 1%
Example- 13 Example 14 The test of example 13 was repeated, but operating under an oxygen pressure of 10 kgs/cm. The oxidation products formed in these conditions were distributed in the following manner, in mols:
heptanones: 83% (isomer 2:79% 3:15%; 4:6%) heptanols: 14% (isomer 1:O%; 2:85%; 3:15%; 4: traces) heptyl acetates: 3%
It is apparent that these results are practically identical to those obtained in example 13. Analogously, no improvement in the proportion of heptanones was observed when the test was performed under an oxygen pressure of 30 lags/cm.
Example 15 This example illustrates the action of temperature on the selectivity of the oxidation of n-heptane at position 2.
A solution containing 0.50 mol/litre of heptane, 0.18 mol/litre of cobaltic acetate and 1.50 mol/litre of trichloroacetic acid in acetic acid was stirred for 4 hours at different temperatures under a pressure of pure oxygen of kgs/cm. After cooling, the reaction mixtures were treated and analysed as in example 1.
Among the oxidation products, analysis detects a preponderance of heptanones whose isomeric distribution is given in the following table:
Temperature Heptanones relative) These results confirm that at 40 C, the proportion of Z-heptanone is practically identical to that observed at 25 C, but that beyond 40 C, it decreases rapidly to approach the statistical value at approximately 100 C (40 percent if the terminal methyl groups are ignored).
Example 16 heptanones: 81% (isomer 2:79%; 3:15%; 4:6%) heptanols: 19% (isomer 1:0%; 2:86%; 3:14%; 4: traces) Example 17 Example 16 was repeated, the cobaltic acetate having been replaced by cobaltic propionate.
The results obtained were identical to those of example 16.
Example 18 This example illustrates the application of methyl acetate as a solvent.
The test of example 16 was repeated, the propionic acid having been replaced with methyl acetate. The totality of the cobaltic ions was reduced after 18 hours. The reaction mixture was then treated and analysed as in example 1. Analysis disclosed the presence of the following oxidation products whose relative proportions are given as molar percentages: heptanones: 77% (isomer 2:84%; 3 :l2%; 4:4%)
heptanols: 23% (only isomer 2 is detectable) Example 19 This example illustrates the possibility of not employing any solvent.
A solution containing 0.18 mol/litre of cobaltic acetate and 1.50 mol/litre of trichloroacetic acid in heptane was stirred at 25 C in the presence of pure oxygen at atmospheric pressure. 47 percent of the cobaltic ions was reduced after 18 hours. The reaction mixture was then treated and analysed as in example 1. Analysis disclosed the presence of the following oxidation products whose relative proportions are given as molar percentages: heptones: (isomer 2:75%; 3:l8%; 4:7%) heptanols: 25% (isomer l:0%; 2:79%; 3:l7%; 424%) Example 20 This example illustrates the oxidation of n-heptane in the absence of oxygen, by the oxidizing system comprising lead (lV) oxide and sulphuric acid.
A solution containing 0.50 mol/litre of heptane, 0.20 mol/litre of Pb0 and 0.50 mol/litre of sulphuric acid in acetic acid, was kept at 40 C without stirring, under a nitrogen atmosphere at atmospheric pressure. After 24 hours, the reaction mixture was treated in an extraction process analogous to that described in example 1. Analysis of the ether extract disclosed the presence of the following oxidation products whose relative proportions are given as molar percentages: heptyl acetates: 93% (isomer 1:096; 259%; 3:28%; 4:13%)
heptanones: 7% (only isomer 2 is detectable) Example 21 This example illustrates the oxidation of n-heptane in the presence of oxygen, by the oxidizing system comprising silver (11) oxide and trichloroacetic acid.
A solution containing 0.50 mol/litre of n-heptane, 0.20 mol/litre of AgO and 1.50 moi/litre of trichloroacetic acid in acetic acid, was stirred at 40 C in the presence of pure oxygen at atmospheric pressure. After 4 hours, the reaction mixture was treated by an extraction process analogous to that described in example 1. Analysis of the ether extract disclosed the presence of the following oxidation products whose relative proportions are given as molar percentages: heptanones: 77% (isomer 2:50%; 3:36%; 4:14%) heptanols: 17% (isomer 120%; 2:75% 3:18%; 4:7%) heptyl acetates: 6% (only isomer 2 is detectable) Example 22 This example illustrates the oxidation of n-heptane in the absence of oxygen, by means of the oxidizing system comprising ceri-ammonic nitrate and perchloric acid.
A solution containing 0.30 mol/litre of heptane, 0.21 mol/litre of 2NH,NO .Ce(NO and 1.50 mol/litre of perchloric acid in acetic acid was kept at 40 C under a nitrogen atmosphere at atmospheric pressure. After 24 hours, the reaction mixture was treated and analysed as in example 1. A preponderance of heptyl acetates (isomer 2:54%; 332%; 4:l4%) was detected by analysis, among the products formed.
Example 23 This example illustrates the oxidation of n-heptane heptanones: 95 (isomer 2 :50 3 32 4 l8 heptanols 3 heptyl acetates 2 Example 24 This example illustrates the oxidation of n-heptane by the oxidizing system comprising vanadium pentoxide and sulphuric acid.
A solution containing 1.14 mol/litre of heptane, 0.03 mol/litre of V and 0.25 mol/litre of sulphuric acid in acetic acid was kept at 75 C, without stirring. 20 percent of the vanadic ions was reduced after 18 hours. The reaction mixture is then treated and analysed as in example 1. The products detected by analysis were formed almost exclusively by heptyl acetates (isomer 1 0 percent; 2 56 percent; 3 31 percent; 4 13 percent) Example 25 This example illustrates the oxidation of n-decane in the presence of. oxygen, by the oxidizing'system comprising cobaltic acetate and trichloroacetic acid.
A solution containing 0.50 mol/litre of decane, 0.18 mol/litre of cobaltic acetate and 1.50 mol/litre of trichloroacetic acid in acetic acid, was stirred at 40 C in the presence of pure oxygen at atmospheric pressure. 71 percent of the cobaltic ions was reduced after 6 hours. The reaction mixture was then treated and analysed as in example 1.
Analysis shows that 6.2 percent of the decane employed had been converted to yield the following oxidation products whose relative proportions are given as molar percentages:
decanones: 81% (isomer 2:67%; 3:13%; 4 5:20%) decanols: 17% (isomer 1:0%; 2:61%; 3:15%; 4 5:24%)
decyl acetates: 2%
This example shows that the selectivity of the process for the position 2 of the carbon chain is equally confirmed in the case of decane, since a statistical attack on the methylene groups of the same should result in no more than 25 percent of the isomer 2.
Example 26 I This example illustrates the oxidation of n-decane in the absence of oxygen, by the oxidizing system comprising cobaltic acetate and sulphuric acid.
A solution containing 0.23 mol/litre of decane, 0.20 mol/litre of cobaltic acetate and 0.50 mol/litre of sulphuric acid in acetic acid, was kept at 25 C under a nitrogen atmosphere at atmospheric pressure. 95 percent of the cobaltic ions was reduced after 30 minutes. The reaction mixture was then treated and analysed as in example 1. Analysis disclosed the presence of the following oxidation products whose relative proportions are given as molar percentages: decyl acetates: 63% (isomer 120%; 2:48%; 3:20% 4 decanones: 20% (isomer 2:50%; 3:21%;4 5:29%) decanols: 17% (isomer l:0%; 2:29%; 3:31% 4 5:40%)
Example 27 This example illustrates the oxidation of n-dodecane in the presence of oxygen by the oxidizing system comprising cobaltic acetate and trichloroacetic acid.
By proceeding with dodecane in a manner wholly identical to that applied in example 25, it was determined that 5.9% of the dodecane employed had been converted to yield the following oxidation products whose relative proportions are given as molar percentages:
dodecanones: 78% (isomer 2:65%; 3:13%; 4 5:22%; 6:0%)
dodecanols: 20% (isomer l:0%; 2:51%; 3:15%; 4
5:34%; 6:0%) dodecyl acetates: 2%.
It should be noted that a statistical attack on the methylene groups of dodecane would result in no more than 20 percent of the isomer 2. As thus described a straight chain paraffin hydrocarbon of any chain length up to 60 usually in the range of 3 to 20 may be oxidized to introduce an oxygenated function into the chain such as carbinol, esters thereof and ketone, predominately in the 2 position. The oxidation is effected by a multivalent metal compound of groups 11- VI of the periodic table used in a higher valency state, the metal having an oxidation reduction potential of at least 0.99 volt. The metal compound is usually an oxide or salt, preferably of a lower fatty acid of up to 4 carbon atoms. The reaction is effected in the presence of a strong acid having a dissociation constant exceeding 5.10 or/and acid acting substances such as boron trifluoride, stable to the oxidizing conditions of the system. The reaction may be run in the presence of a solvent which is also stable to the oxidizing system; for example, lower fatty acids having 1 4 carbon atoms and methyl or tertiary butyl esters thereof.
What is claimed is:
l. A process for the selective oxidation of straight chain paraffin hydrocarbons having 3 to 60 carbon atoms into oxygenated products having the same number of carbon atoms comprising predominantly saturated alcohols and their esters comprising reacting said hydrocarbons in liquid phase in the presence of a solvent selected from the group consisting of fatty acids having 1 to 4 carbon atoms and their esters of alkanols having 1 to 4 carbon atoms in the substantial absence of free oxygen with an oxidizing system consisting essentially of an oxidizing agent which is a member of the group consisting of oxides and salts of a metal of variable valency of groups 11 through V1 and cobalt, the metal in said compound being in its higher valency state and having an oxidation-reduction potential of at least 0.99 volts, and an activator selected from the group consisting of strong stable organic and inorganic acids having a dissociation constant greater than 5 10 boron trifluoride, and mixtures thereof at a temperature in the range of 20 to C.
2. A process for the selective oxidation of straight chain paraffin hydrocarbons having 3 to 60 carbon atoms into oxygenated products having the same number of carbon atoms comprising predominantly satu' rated alcohols and their esters wherein the oxygenated function is predominantly located on position 2 of the carbon chain, comprising reacting said hydrocarbon in the presence of a solvent stable to oxidation under reaction conditions and selected from the group consisting of methyl and tertiary butyl esters of lower fatty acids having 1 to 4 carbon atoms in the substantial ab sence of free oxygen with an oxidizing system consisting essentially of an oxidizing agent which is a member of the group consisting of oxides and salts of a metal of variable valency of groups [I through VI and cobalt, the metal in said compound being in its higher valency state and having an oxidation-reduction potential of at least 0.99 volt, and an activator selected from the group consisting of strong stable organic and inorganic acids having a dissociation constant greater than 5 boron trifluoride and mixtures thereof, at a temperature in the range of to +100 C.
3. A process as defined in claim 1 wherein the metal of variable valency is selected from the group consisting of cobalt, chromium, cerium, vanadium, silver and lead.
4. The process of claim 1 wherein the solvent is selected from the group consisting of fatty'acids having from 2 to 4 carbon atoms and their methyl esters.
5. The process as defined in claim 4 wherein the solvent is acetic acid.
6. The process of claim 1 wherein the straight-chain paraffin hydrocarbn has 3 to 20 carbon atoms.
7. A process for the selective oxidation of straightchain paraffin hydrocarbons having 3 to 20 carbon atoms predominantly into esters wherein the ester function is predominantly located on position 2 of the carbon chain, comprising reacting said hydrocarbon in the presence of a solvent selected from the group consisting of fatty acids having 2 to 4 carbon atoms and their methyl and tertiary butyl esters with an oxidizing system consisting essentially of a cobaltic salt and an activator selected from the group consisting of stable organic and inorganic acids having a dissociation constant greater than 5 10", boron trifluoride, and mixtures thereof, at a temperature in the range of 20 to C and in the absence of oxygen.
8. The process of claim 7 wherein the solvent is acetic acid.
9. The process of claim 7 wherein the cobaltic salt is the cobaltic salt of a fatty acid having from 2 to 4 carbon atoms.
10. The process of claim 9 wherein the cobaltic salt is cobaltic acetate.
11. The process of claim 7 wherein the activator is selected from the group consisting of sulfuric, phosphoric, perchloric, trifluoroacetic acids, boron trifluoride and mixtures thereof.

Claims (10)

  1. 2. A process for the selective oxidation of straight chain paraffin hydrocarbons having 3 to 60 carbon atoms into oxygenated products having the same number of carbon atoms comprising predominantly saturated alcohols and their esters wherein the oxygenated function is predominantly located on position 2 of the carbon chain, comprising reacting said hydrocarbon in the presence of a solvent stable to oxidation under reaction conditions and selected from the group consisting of methyl and tertiary butyl esters of lower fatty acids having 1 to 4 carbon atoms in the substantial absence of free oxygen with an oxidizing system consisting essentially of an oxidizing agent which is a member of the group consisting of oxides and salts of a metal of variable valency of groups II through VI and cobalt, the metal in said compound being in its higher valency state and having an oxidation-reduction potential of at least 0.99 volt, and an activator selected from the group consisting of strong stable organic and inorganic acids having a dissociation constant greater than 5 . 10 3, boron trifluoride and mixtures thereof, at a temperature in the range of -20* to +100* C.
  2. 3. A process as defined in claim 1 wherein the metal of variable valency is selected from the group consisting of cobalt, chromium, cerium, vanadium, silver and lead.
  3. 4. The process of claim 1 wherein the solvent is selected from the group consisting of fatty acids having from 2 to 4 carbon atoms and their methyl esters.
  4. 5. The process as defined in claim 4 wherein the solvent is acetic acid.
  5. 6. The process of claim 1 wherein the straight-chain paraffin hydrocarb n has 3 to 20 carbon atoms.
  6. 7. A process for the selective oxidation of straight-chain paraffin hydrocarbons having 3 to 20 carbon atoms predominantlY into esters wherein the ester function is predominantly located on position 2 of the carbon chain, comprising reacting said hydrocarbon in the presence of a solvent selected from the group consisting of fatty acids having 2 to 4 carbon atoms and their methyl and tertiary butyl esters with an oxidizing system consisting essentially of a cobaltic salt and an activator selected from the group consisting of stable organic and inorganic acids having a dissociation constant greater than 5 . 10 3, boron trifluoride, and mixtures thereof, at a temperature in the range of -20* to +100* C and in the absence of oxygen.
  7. 8. The process of claim 7 wherein the solvent is acetic acid.
  8. 9. The process of claim 7 wherein the cobaltic salt is the cobaltic salt of a fatty acid having from 2 to 4 carbon atoms.
  9. 10. The process of claim 9 wherein the cobaltic salt is cobaltic acetate.
  10. 11. The process of claim 7 wherein the activator is selected from the group consisting of sulfuric, phosphoric, perchloric, trifluoroacetic acids, boron trifluoride and mixtures thereof.
US00844616A 1969-07-24 1969-07-24 Process for the oxidation of paraffins Expired - Lifetime US3758557A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84461669A 1969-07-24 1969-07-24

Publications (1)

Publication Number Publication Date
US3758557A true US3758557A (en) 1973-09-11

Family

ID=25293222

Family Applications (1)

Application Number Title Priority Date Filing Date
US00844616A Expired - Lifetime US3758557A (en) 1969-07-24 1969-07-24 Process for the oxidation of paraffins

Country Status (1)

Country Link
US (1) US3758557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002656A (en) * 1970-05-18 1977-01-11 Labofina S.A. Process for the selective oxidation of paraffinic hydrocarbons

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2265948A (en) * 1939-08-02 1941-12-09 Du Pont Catalytic oxidation of lower aliphatic hydrocarbons
US2653962A (en) * 1951-07-28 1953-09-29 Celanese Corp Oxidation control
FR1166679A (en) * 1957-02-06 1958-11-13 Sinnova Ou Sadic Process for the synthesis of alcohols
US2969380A (en) * 1957-11-05 1961-01-24 Gulf Research Development Co Acid production
US3228971A (en) * 1960-05-23 1966-01-11 Celanese Corp Preparation of acetic acid esters
US3391190A (en) * 1963-12-04 1968-07-02 Mobil Oil Corp Continuous extractive oxidation
US3535372A (en) * 1968-07-05 1970-10-20 Gen Electric Preparation of esters from alkanes
US3655769A (en) * 1967-09-25 1972-04-11 Texaco Inc Oxidation of n-paraffins

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2265948A (en) * 1939-08-02 1941-12-09 Du Pont Catalytic oxidation of lower aliphatic hydrocarbons
US2653962A (en) * 1951-07-28 1953-09-29 Celanese Corp Oxidation control
FR1166679A (en) * 1957-02-06 1958-11-13 Sinnova Ou Sadic Process for the synthesis of alcohols
US2969380A (en) * 1957-11-05 1961-01-24 Gulf Research Development Co Acid production
US3228971A (en) * 1960-05-23 1966-01-11 Celanese Corp Preparation of acetic acid esters
US3391190A (en) * 1963-12-04 1968-07-02 Mobil Oil Corp Continuous extractive oxidation
US3655769A (en) * 1967-09-25 1972-04-11 Texaco Inc Oxidation of n-paraffins
US3535372A (en) * 1968-07-05 1970-10-20 Gen Electric Preparation of esters from alkanes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hickinbottom et al., Nature, V. 184, p. 326, 8 1959. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002656A (en) * 1970-05-18 1977-01-11 Labofina S.A. Process for the selective oxidation of paraffinic hydrocarbons

Similar Documents

Publication Publication Date Title
Iwasawa et al. Reaction mechanism for styrene synthesis over polynaphthoquinone
Anderson et al. Silver (II) complexes in oxidative decarboxylation of acids
Kung Desirable catalyst properties in selective oxidation reactions
US2383711A (en) Preparation of alkenals and alkenones
US6635793B2 (en) Preparation of epoxides from alkanes using lanthanide-promoted silver catalysts
US3288845A (en) Method of preparing unsaturated esters by oxidation of olefins
US3665030A (en) Oxidation of alkyl aromatics
US4009183A (en) Process for the preparation of alkylene carbonates
US4038322A (en) Process for the oxidation of paraffins
US4258217A (en) Process for producing methacrolein
US3479403A (en) Catalytic oxidations with ruthenium
US3758557A (en) Process for the oxidation of paraffins
US4133962A (en) Process for the preparation of carboxylic acid alkenyl esters
US3542857A (en) Production of vic-glycol esters
US3557199A (en) Oxidation of acrolein and methacrolein
US3804902A (en) Process for producing acetone
US3349119A (en) Oxidative carbonylation of olefins in the presence of inorganic acid anhydrides
US3384669A (en) Process and catalyst for oxidizing olefins to carbonyl compounds
US4052442A (en) Process for preparing glycol esters
Alter Metal-Catalyzed Oxidation of Polyethylene
US3898288A (en) Oxidation of alkyl aromatics
CA1079294A (en) Process for producing alkylene glycol esters
US3652668A (en) Process for the oxidation of hydrocarbons
US3530175A (en) Process for preparing alpha,beta-unsaturated carboxylic acids
DE1668245A1 (en) Process for the production of oxidation products of unsaturated organic compounds