US3757866A - On-off sprinkler - Google Patents

On-off sprinkler Download PDF

Info

Publication number
US3757866A
US3757866A US00196641A US3757866DA US3757866A US 3757866 A US3757866 A US 3757866A US 00196641 A US00196641 A US 00196641A US 3757866D A US3757866D A US 3757866DA US 3757866 A US3757866 A US 3757866A
Authority
US
United States
Prior art keywords
valve
sprinkler
fluid
disc
control chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00196641A
Inventor
J Mears
Brien W O
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grinnell Corp
Original Assignee
Grinnell Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grinnell Corp filed Critical Grinnell Corp
Application granted granted Critical
Publication of US3757866A publication Critical patent/US3757866A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/36Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
    • F16K17/38Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/08Control of fire-fighting equipment comprising an outlet device containing a sensor, or itself being the sensor, i.e. self-contained sprinklers

Definitions

  • a pilot valve is actuated by a 1 1 bimetal disc which also resiliently biases the pilot valve in a closed position.
  • the bimetal disc has a snap action resulting in better control of the on and off tem- [56] References Clted peratures of the sprinkler.
  • a thermal delay for closing UNITED STATES PATENTS is obtained by the hysteresis which is designed into the 917,292 4/1909 Hankee et a1 169/37 bimetal di 1,913,035 6/1933 Loepsinger 169/37 2,647,017 7/1953 Coulliette 169/37 2 Claims, 3 Drawing Figures f 72 42 82 44 8O 5e 19 50 52 ll 2o 9 l 42 2 30 h 22 126 14 T20 132 124 I28 32 10s 1 12 31 24 26 104 I32 ON-OFF SPRINKLER BRIEF SUMMARY OF THE INVENTION
  • Conventional sprinklers for fire sprinkler systems are single operation devices wherein a heat responsive member releases a plug which is positioned to prevent the flow of water from the sprinkler. When the plug is released, water flows against a deflector which disperses the water in a desired pattern. Such a sprinkler must be replaced after a fire and the entire sprinkler system must
  • a fluid balanced piston valve is utilized to control flow of the extinguishing fluid from the sprinkler.
  • a pilot valve controls the fluid balance and, thus, the position of the piston valve in either an open or a closed position.
  • the pilot valve in turn is positioned by a leaf bimetal member which is responsive to atmospheric temperature.
  • the present invention provides an improved pilot valve arrangement in which a bimetal snap disc is used to position the pilot valve.
  • the bimetal disc is positioned to load or resiliently bias the pilotvalve toward a closed position.
  • a hysteresis is built into the disc and is utilized to move the pilot valve to its closed position at a temperature lower than that'at which thepilot valve is moved to an open position.- With this built-in thermal delay, the sprinkler is not shut off until the surrounding temperature is low enough to assure that the fire is out.
  • An object of the present invention is to provide an improved on-off sprinkler having a fluid balanced main valve and a pilot valve for controlling the fluid balance on the main valve, in which the operating temperature of the sprinkler is controlled to close tolerances for both an on operation and an off" operation.
  • Another object is to provide an improved on-off sprinkler in which the pilot valve is moved with a sna action.
  • Another object is to provide an improved -on-off sprinkler in which the pilot valve is resiliently biased in a closed position at temperatures below a predetermined operating temperature by a bimetal disc.
  • Another object is to provide an improved on-off sprinkler which opens at-one predetermined temperature and closes at a second, lower predetermined temperature.
  • FIG. 1 is a sectional, front view of an on-off sprinkler embodying the present invention, in which the sprinkler is shown in an off" position;
  • FIG. 2 is a sectional, front view of the sprinkler shown in FIG. 1, in which the sprinkler is shown in an "on position;
  • FIG. 3 is a partially sectioned right side view of the sprinkler shown in FIG. 2.
  • the body 10 is preferably formed by a casting of a suitable material such as bronze.
  • An inner wall 18 cooperates with an inner wall 22 and the outer wall of the body 10 to define a cylindrical chamber 20, the axis of which passes through the center of the threaded opening 12.
  • the threaded opening 12 has a diameter which is at least as great as the diameter of the cylindrical chamber 20.
  • the second inner wall 22, which is positioned at the lower end of the chamber 20, cooperates with a lower wall 24 of the body 10 to define a threaded opening 26 and a chamber 28.
  • the chamber 28 is aligned with a passage 30 and communicates through the passage 30 with the chamber 20 and the chamber 28 communicates with the flow passage 14 through a passage 32 in the wall 18.
  • the cylindrical surface 21 of the chamber 20 is finished smooth, and a smooth seating surface is formed on the area 31 of the wall 18 surrounding the entrance to the passage 32.
  • An inlet member 34 has an externally threaded end 35 which mates with the threaded opening 12 to secure the inlet member 34 in the opening 12 of the body 10.
  • a second externally threaded end 36 is of a size which is suitable for connecting the sprinkler to a sprinkler piping system.
  • the inlet member 34 further has a cylindrical passage 38 which provides an axial passage for fluid through the inlet member to the flow passage 14.
  • the diameter of the flow passage 38 is less than the diameter of the chamber 20.
  • An annular surface 39 at the inner end of the inlet member 34 is smooth and function as a seating surface, aswill be explained hereinafter.
  • a piston assembly 40 is received in the chamber 20, and closes the upper end of the chamber 20.
  • the piston assembly 40 comprises a piston 42 having a first cylindrical portion 44 and a second, smaller cylindrical portion 46.
  • An, axial bore 48 through the second cylindribodying the present invention is shown in a pendent position.
  • the sprinkler has a body 10' defining a circular,
  • cal portion 46 and axial counterbores50 and 52 in the first cylindrical portion 44 provides a passage axially through the piston 42.
  • the first cylindrical portion 44 of the piston 42 has a diameter which is sized to be slideably received in the passage 20 of the inlet member 34.
  • the second cylindrical portion 46 of the piston 42 has a diameter which is sized to be slideably received in the cylindrical chamber 38. In this manner, the piston 42 is mounted for axial movement toward and away from the inlet member 34.
  • the second cylindrical portion is provided with ports 53 positioned to permit a fluid to pass from the axial passage 38 to the flow passage 14 only when the piston 42 is positioned in its lower postion of travel.
  • An O-ring 54 in a groove 56 in the outer surface of the first cylindrical portion 46 prevents fluid flow through the annular space between the wall 21 and the first cylindrical portion 44.
  • An annular lip projects from the surface which connects the outer surface .of the first and second cylindrical portion 46 to form, with the cylindrical portion 46, an annular groove 72.
  • This groove 72 receives an O-ring 74 which engages and seats against the surface 39 of the inlet member 34 when the piston 42 is moved axially toward the inlet member to provide a fluid seal.
  • a restriction member 82 and a strainer 84 are secured in the counterbore 50 of the piston 42 by a retaining ring 80.
  • the restriction member 82 has an orifice 86 to control fluid flow from the inlet port to the chamber 20.
  • the strainer 84 will prevent the obstruction of the orifice 86 by foreign materials which may enter the sprinkler from the sprinkler system to which the sprinkler is connected.
  • the strainer 84 has a domed portion to provide an increased area and flow passages through the strainer.
  • Both strainer 84 and the restriction member 82 are formed of non-corrosive materials such as brass or bronze.
  • a coil spring 90 is positioned between the retaining ring 80 and the inner wall 22 to provide a resilient bias to the piston 40 toward the inlet member 34.
  • the lower end of the spring 90 fits into a recess 92 in the wall 22 to keep the spring in position.
  • the area of the piston assembly 40, which can be acted on by fluid pressures in the passage 38, is considerably less than the area of the piston assembly which can be acted on by fluid pressures in the chamber 20, so that when the inlet fluid pressure and the fluid pressure in the chamber 20 are equal, the balance of fluid pressures will hold the piston 42 in its closed position.
  • an improved pilot valve assembly 100 is provided for controlling fluid flow from the chamber 20, the passage 30, the chamber 28, and through the passage 32 to the flow passage 14.
  • the pilot valve'assembly 100 comprises a retainer member 102 having an externally threaded cylindrical portion 102 which is of a suitable size for engaging the threads of the threaded opening 26 of the body 10.
  • the retainer member 102 has a radial flange portion 106 which is positioned a short distance away from the body when the retainer member 102 is threaded into the opening 26.
  • a bore 108 extends axially through the retainer member 102.
  • a pilot valve 1 10 having a cylindrical portion 112 fits loosely for axial movement in the bore 108 and in the cavity 28.
  • An O-ring 116 fits in a recess 118 in the outer surface of the cylindrical portion 112 to provide a fluid seal between the cylindrical portion 112 and the surface of the bore 108.
  • the valve 110 has an axial length which permits the inner end 120 to touch the seat surface 31 surrounding the passage 32.
  • An O-ring 122 in an annular groove 124 in the surface of the end 120 provides a fluid seal with the seat surface 31 when the valve 110 is urged axially thereof toward the seat surface 31.
  • a bimetal disc 126 is centrally connected to the outer end of the valve 110 by a drive screw 128 which passes through a central opening in the disc 126 and into a drilled hole in the outer end of the valve 110.
  • the edges of the disc 126 are secured to the radial flange 106 by drive screws 132.
  • the area of contact of the drive screws 132 with the bimetal disc is held to a minimum so that heat flow from the bimetal disc 126 to the flange 106 is at a minimum.
  • a thermal insulator (not shown) could be installed between the contact points of the disc with the drive screws 132, if desired.
  • a conventional deflector 130 is spaced from the outlet 16 of the flow passage 14 and perpendicular to the projected axis of the flow passage 14 by a yoke 131 which is generally U-shaped.
  • the free ends of the yoke 131 are serrated and secured in openings 134 which are drilled therefor in the body 10 by swaging, as at 136, the body 10 against the serrations, as seen in FIG. 3.
  • the deflector 130 is secured to the yoke 131 by a rivet 138.
  • the bimetal disc 126 is cupped and is designed to move with a snap action toward a reverse cup shape at one temperature, for example 185 F, and when in the reversed shape, to return to its original shape at a second, lower temperature, for example F. Further, the bimetal disc 126 is positioned with its concave surface facing the pilot valve and is urged against the valve 110 to resiliently bias the valve 110 toward its closed position.
  • a temperature rating is selected for the bimetal disc 126 which is higher than the desired operating temperature.
  • the assembly 100 and the body 10 are put in a heated environment at the desired operating temperature of the sprinkler.
  • the retainer member 102 is threaded into the opening 26 and tightened until the O-ring 122 is pressed against the seating surface 31 with sufficient pressure at the desired operating temperature of the sprinkler to cause the bimetal disc 126 to snap to the position to open the pilot valve.
  • the pilot valve assembly is now installed in its proper position with the desired bias provided by the bimetal disc 126.
  • An anaerobic plastic such as Loctite No. 70, is applied to the threads of the retainer member 70 prior to its being put in the heated oven for installation. This anaerobic plastic will harden to lock the threads in this position.
  • pilot valve 110 can be resiliently biased toward its closed position by a separate spring and that it is not necessary to obtain the bias from the bimetal disc 126.
  • the sprinkler In operation, the sprinkler is installed in a sprinkler system in a pendent position.
  • water flows into the passage 38, the axial bore 48, through the strainer 84 and the orifice 86 in the restriction member 82, to fill the chambers 20 and 28.
  • the pilot valve 110 is held in a closed position by the resilient force of the bimetal disc 126 so that no water discharges through the passage 32.
  • equal fluid pressure is established above and below the piston 42.
  • the O-ring 74 is pressed tightly against the surface 39 to close the sprinkler.
  • a water sprinkler device for a fire protection system coupled to a pressurized fluid supply line comprising in combination: I
  • a sprinkler body having an annular inlet portion adapted for coupling to said fluid supply line;
  • a deflector mounted adjacent said outlet portion to deflect fluid flow therethrough;
  • a main valve disposed in a direction downstream from saidv seating surface and having a valve seat mounted in opposed relation to said seating surface so as to oppose fluid pressure from said inlet portion that tends to cause said valve seat to separate from said seating surface to open said valve
  • said main valve being slideable into said control chamber for controlling fluid flow through said main passageway while maintaining said control chamber blocked to fluid flow from said outlet por tion,
  • said main valve exhibiting a first surface area disposed toward said control chamber that is greater than a second surface area disposed toward said inlet portion to provide a greater main valve closing pressure than opening pressure
  • pilot valve means having a valve member mounted to control fluid flow through said outlet port and including a bimetallic disc centrally connected to said valve member, and
  • bimetallic disc exhibits a hysteresis effect wherein said disc flexes in one direction to open said pilot valve means upon the occurrence of a first predetermined temperature but flexes in the reverse direction to close said pilot valve means upon the occurrence of a second temperature lower than said first predetermined temperature.

Abstract

An improved sprinkler for a fire protection sprinkler system in which the sprinkler opens to discharge water at one temperature and closes to stop the flow of water at a lower temperature. A pilot valve is actuated by a bimetal disc which also resiliently biases the pilot valve in a closed position. The bimetal disc has a snap action resulting in better control of the ''''on'''' and ''''off'''' temperatures of the sprinkler. A thermal delay for closing is obtained by the hysteresis which is designed into the bimetal disc.

Description

United States Patent Mears et al. 1 Sept. 11, 1973 1 ON-OFF SPRINKLER 1,241,209 9/1917 Gnh eu 169/20 1 1 James William i William 5:?3'233 131133; 322111.111: 11:11:: 123133 {fi both of Providence, 2,2301179 1 1941 Cid 169/37 [73] Assignee: Grinnell Corporation, Providence, Primary Examiner-Lloyd L. King R.1. AttorneyH. Edward Foerch [22] Filed: Nov. 8, 1971 211 App]. No.: 196,641 [57] ABSTRACT I An improved sprinkler for a fire protection sprinkler system in which the sprinkler opens to discharge water (gill. at one temperature and closes to p the flow of water [58] d 2 19 at a lower temperature. A pilot valve is actuated by a 1 1 bimetal disc which also resiliently biases the pilot valve in a closed position. The bimetal disc has a snap action resulting in better control of the on and off tem- [56] References Clted peratures of the sprinkler. A thermal delay for closing UNITED STATES PATENTS is obtained by the hysteresis which is designed into the 917,292 4/1909 Hankee et a1 169/37 bimetal di 1,913,035 6/1933 Loepsinger 169/37 2,647,017 7/1953 Coulliette 169/37 2 Claims, 3 Drawing Figures f 72 42 82 44 8O 5e 19 50 52 ll 2o 9 l 42 2 30 h 22 126 14 T20 132 124 I28 32 10s 1 12 31 24 26 104 I32 ON-OFF SPRINKLER BRIEF SUMMARY OF THE INVENTION Conventional sprinklers for fire sprinkler systems are single operation devices wherein a heat responsive member releases a plug which is positioned to prevent the flow of water from the sprinkler. When the plug is released, water flows against a deflector which disperses the water in a desired pattern. Such a sprinkler must be replaced after a fire and the entire sprinkler system must be shut off to replace the sprinkler.
Many attempts have been made to produce a sprinkler which would shut itself off after a fire is extinguished. Such a sprinkler would conserve water because the flow of water is shut off, and it would be ready to operate immediately if the fire should start up again. In one design a fluid balanced piston valve is utilized to control flow of the extinguishing fluid from the sprinkler. A pilot valve controls the fluid balance and, thus, the position of the piston valve in either an open or a closed position. The pilot valve in turn is positioned by a leaf bimetal member which is responsive to atmospheric temperature. (See US. Pat. No. 917,292.)
The present invention provides an improved pilot valve arrangement in which a bimetal snap disc is used to position the pilot valve. The bimetal disc is positioned to load or resiliently bias the pilotvalve toward a closed position. A hysteresis is built into the disc and is utilized to move the pilot valve to its closed position at a temperature lower than that'at which thepilot valve is moved to an open position.- With this built-in thermal delay, the sprinkler is not shut off until the surrounding temperature is low enough to assure that the fire is out. I
An object of the present invention is to provide an improved on-off sprinkler having a fluid balanced main valve and a pilot valve for controlling the fluid balance on the main valve, in which the operating temperature of the sprinkler is controlled to close tolerances for both an on operation and an off" operation.
Another object is to provide an improved on-off sprinkler in which the pilot valve is moved with a sna action. I
Another object is to provide an improved -on-off sprinkler in which the pilot valve is resiliently biased in a closed position at temperatures below a predetermined operating temperature by a bimetal disc.
Another object is to provide an improved on-off sprinkler which opens at-one predetermined temperature and closes at a second, lower predetermined temperature.
Other advantages and features of the invention will be apparent from the following description and accompanying drawings.
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a sectional, front view of an on-off sprinkler embodying the present invention, in which the sprinkler is shown in an off" position;
FIG. 2 is a sectional, front view of the sprinkler shown in FIG. 1, in which the sprinkler is shown in an "on position; and
FIG. 3 is a partially sectioned right side view of the sprinkler shown in FIG. 2.
Referring first to FIG. 1, the improved sprinkler emthreaded opening 12, a flow passage 14, and an outlet 16, spaced from the opening 12. The body 10 is preferably formed by a casting of a suitable material such as bronze. An inner wall 18 cooperates with an inner wall 22 and the outer wall of the body 10 to define a cylindrical chamber 20, the axis of which passes through the center of the threaded opening 12. The threaded opening 12 has a diameter which is at least as great as the diameter of the cylindrical chamber 20. The second inner wall 22, which is positioned at the lower end of the chamber 20, cooperates with a lower wall 24 of the body 10 to define a threaded opening 26 and a chamber 28. The chamber 28 is aligned with a passage 30 and communicates through the passage 30 with the chamber 20 and the chamber 28 communicates with the flow passage 14 through a passage 32 in the wall 18. The cylindrical surface 21 of the chamber 20 is finished smooth, and a smooth seating surface is formed on the area 31 of the wall 18 surrounding the entrance to the passage 32.
An inlet member 34 has an externally threaded end 35 which mates with the threaded opening 12 to secure the inlet member 34 in the opening 12 of the body 10. A second externally threaded end 36 is of a size which is suitable for connecting the sprinkler to a sprinkler piping system.
The inlet member 34 further has a cylindrical passage 38 which provides an axial passage for fluid through the inlet member to the flow passage 14. The diameter of the flow passage 38 is less than the diameter of the chamber 20. An annular surface 39 at the inner end of the inlet member 34 is smooth and function as a seating surface, aswill be explained hereinafter.
A piston assembly 40 is received in the chamber 20, and closes the upper end of the chamber 20. The piston assembly 40 comprises a piston 42 having a first cylindrical portion 44 and a second, smaller cylindrical portion 46. An, axial bore 48 through the second cylindribodying the present invention is shown in a pendent position. The sprinkler has a body 10' defining a circular,
cal portion 46 and axial counterbores50 and 52 in the first cylindrical portion 44 provides a passage axially through the piston 42.
The first cylindrical portion 44 of the piston 42 has a diameter which is sized to be slideably received in the passage 20 of the inlet member 34. The second cylindrical portion 46 of the piston 42 has a diameter which is sized to be slideably received in the cylindrical chamber 38. In this manner, the piston 42 is mounted for axial movement toward and away from the inlet member 34. The second cylindrical portion is provided with ports 53 positioned to permit a fluid to pass from the axial passage 38 to the flow passage 14 only when the piston 42 is positioned in its lower postion of travel.
An O-ring 54 in a groove 56 in the outer surface of the first cylindrical portion 46 prevents fluid flow through the annular space between the wall 21 and the first cylindrical portion 44. An annular lip projects from the surface which connects the outer surface .of the first and second cylindrical portion 46 to form, with the cylindrical portion 46, an annular groove 72. This groove 72 receives an O-ring 74 which engages and seats against the surface 39 of the inlet member 34 when the piston 42 is moved axially toward the inlet member to provide a fluid seal.
A restriction member 82 and a strainer 84 are secured in the counterbore 50 of the piston 42 by a retaining ring 80. The restriction member 82 has an orifice 86 to control fluid flow from the inlet port to the chamber 20. The strainer 84 will prevent the obstruction of the orifice 86 by foreign materials which may enter the sprinkler from the sprinkler system to which the sprinkler is connected. The strainer 84 has a domed portion to provide an increased area and flow passages through the strainer. Both strainer 84 and the restriction member 82 are formed of non-corrosive materials such as brass or bronze.
A coil spring 90 is positioned between the retaining ring 80 and the inner wall 22 to provide a resilient bias to the piston 40 toward the inlet member 34. The lower end of the spring 90 fits into a recess 92 in the wall 22 to keep the spring in position.
It will be noted that the area of the piston assembly 40, which can be acted on by fluid pressures in the passage 38, is considerably less than the area of the piston assembly which can be acted on by fluid pressures in the chamber 20, so that when the inlet fluid pressure and the fluid pressure in the chamber 20 are equal, the balance of fluid pressures will hold the piston 42 in its closed position.
In accordance with the present invention, an improved pilot valve assembly 100 is provided for controlling fluid flow from the chamber 20, the passage 30, the chamber 28, and through the passage 32 to the flow passage 14. The pilot valve'assembly 100 comprises a retainer member 102 having an externally threaded cylindrical portion 102 which is of a suitable size for engaging the threads of the threaded opening 26 of the body 10. The retainer member 102 has a radial flange portion 106 which is positioned a short distance away from the body when the retainer member 102 is threaded into the opening 26. A bore 108 extends axially through the retainer member 102.
A pilot valve 1 10 having a cylindrical portion 112 fits loosely for axial movement in the bore 108 and in the cavity 28. An O-ring 116 fits in a recess 118 in the outer surface of the cylindrical portion 112 to provide a fluid seal between the cylindrical portion 112 and the surface of the bore 108.
The valve 110 has an axial length which permits the inner end 120 to touch the seat surface 31 surrounding the passage 32. An O-ring 122 in an annular groove 124 in the surface of the end 120 provides a fluid seal with the seat surface 31 when the valve 110 is urged axially thereof toward the seat surface 31.
A bimetal disc 126 is centrally connected to the outer end of the valve 110 by a drive screw 128 which passes through a central opening in the disc 126 and into a drilled hole in the outer end of the valve 110. The edges of the disc 126 are secured to the radial flange 106 by drive screws 132. Preferably, the area of contact of the drive screws 132 with the bimetal disc is held to a minimum so that heat flow from the bimetal disc 126 to the flange 106 is at a minimum. A thermal insulator (not shown) could be installed between the contact points of the disc with the drive screws 132, if desired.
A conventional deflector 130 is spaced from the outlet 16 of the flow passage 14 and perpendicular to the projected axis of the flow passage 14 by a yoke 131 which is generally U-shaped.
The free ends of the yoke 131 are serrated and secured in openings 134 which are drilled therefor in the body 10 by swaging, as at 136, the body 10 against the serrations, as seen in FIG. 3. The deflector 130 is secured to the yoke 131 by a rivet 138.
In accordance with the present invention, the bimetal disc 126 is cupped and is designed to move with a snap action toward a reverse cup shape at one temperature, for example 185 F, and when in the reversed shape, to return to its original shape at a second, lower temperature, for example F. Further, the bimetal disc 126 is positioned with its concave surface facing the pilot valve and is urged against the valve 110 to resiliently bias the valve 110 toward its closed position.
To compensate for the stress loading of the bimetal disc 126, a temperature rating is selected for the bimetal disc 126 which is higher than the desired operating temperature. In order to position the pilot valve assembly 100 in the body 10, to provide a resilient bias on the valve 110 and to obtain operation of the pilot valve at a desired temperature, the assembly 100 and the body 10 are put in a heated environment at the desired operating temperature of the sprinkler. The retainer member 102 is threaded into the opening 26 and tightened until the O-ring 122 is pressed against the seating surface 31 with sufficient pressure at the desired operating temperature of the sprinkler to cause the bimetal disc 126 to snap to the position to open the pilot valve. The pilot valve assembly is now installed in its proper position with the desired bias provided by the bimetal disc 126.
An anaerobic plastic, such as Loctite No. 70, is applied to the threads of the retainer member 70 prior to its being put in the heated oven for installation. This anaerobic plastic will harden to lock the threads in this position.
It will be recognized that the pilot valve 110 can be resiliently biased toward its closed position by a separate spring and that it is not necessary to obtain the bias from the bimetal disc 126.
In operation, the sprinkler is installed in a sprinkler system in a pendent position. When the water is turned on, water flows into the passage 38, the axial bore 48, through the strainer 84 and the orifice 86 in the restriction member 82, to fill the chambers 20 and 28. The pilot valve 110 is held in a closed position by the resilient force of the bimetal disc 126 so that no water discharges through the passage 32. When the chambers 20 and 28 have filled with water, equal fluid pressure is established above and below the piston 42.
Because the area of the piston assembly 40 which is exposed to fluid pressure in the chamber 20 is greater and produces a greater force on the assembly 40 tending to move the piston assembly axially toward the inlet member 34 than the area and the force which is produced by the fluid tending to move the piston assembly 40 axially away from the inlet member 34, the O-ring 74 is pressed tightly against the surface 39 to close the sprinkler.
In the event of a tire, the temperature surrounding the bimetal disc 126 will rise. As the bimetal disc 126 reaches its operating temperature, the disc snaps to a reverse cup shape, moving the pilot valve 110 with it and moving the O-ring 122 off its seat 31. Immediately water discharges from the chamber 28, through the passage 32, thereby lowering the pressure sufficiently in the chamber 20 so that its force against the area of the piston assembly 40 becomes less than the force of fluid in the inlet member. Restriction member 82 prevents fluid pressure from building up in chamber 20. At a point, the fluid pressure against the top of the piston assembly is sufficient to overcome the force of the spring 90 causing piston assembly 40 to move axially downward to an open position, as shown in FIG. 2.
With the piston assembly in this position water flows through ports 53, and along the flow passage 14 to discharge against the deflector 130. As the deflector is below the bimetal disc 126 with the sprinkler in a pendent position, the discharging water will not cool the bimetal disc 126 as long as the fire continues to burn. After the fire is extinguished, the bimetal disc 126 cools and, upon reaching its lower operating temperature, snaps to its original position to move the pilot valve 110 to a position to close the passage 32. As the chambers 28 and 20 fill with water, the pressure in the chamber 20 increases until it produces a force which moves the piston assembly 40 axially toward the inlet member 34 to stop further flow through the sprinkler.
The invention is not intended to be limited to the particular embodiments thereof illustrated and described above, but only by the following claims and their equivalents.
We claim: 1. A water sprinkler device for a fire protection system coupled to a pressurized fluid supply line; comprising in combination: I
a sprinkler body having an annular inlet portion adapted for coupling to said fluid supply line;
means providing an inner wall for dividing said sprinkler body into a first bifurcation, having an outlet portion that defines amain fluid flow passageway between said inlet portion and said outlet portion, and a second bifurcation that defines a control chamber;
a deflector mounted adjacent said outlet portion to deflect fluid flow therethrough;
means providing a valve seating surface abutting said inlet portion at the junction of said bifurcations;
a main valve disposed in a direction downstream from saidv seating surface and having a valve seat mounted in opposed relation to said seating surface so as to oppose fluid pressure from said inlet portion that tends to cause said valve seat to separate from said seating surface to open said valve,
said main valve being slideable into said control chamber for controlling fluid flow through said main passageway while maintaining said control chamber blocked to fluid flow from said outlet por tion,
an aperture formed substantially centrally in said main valve to define a control passageway that couples fluid from said inlet portion to said control chamber;
said main valve exhibiting a first surface area disposed toward said control chamber that is greater than a second surface area disposed toward said inlet portion to provide a greater main valve closing pressure than opening pressure,
means providing an outlet port from said control chamber to release fluid pressure therefrom to open said main valve,
pilot valve means having a valve member mounted to control fluid flow through said outlet port and including a bimetallic disc centrally connected to said valve member, and
means for securing the peripheral edges of said bimetallic disc against movement relative to said sprinkler body so as to flex said disc ina manner to resiliently bias said valve member to close said outlet port, said disc, responding to temperature rise to snap to an opposite flexure to open said outlet port to release fluid from said control chamber to open said main valve.
2. The combination in accordance with claim 4 wherein said bimetallic disc exhibits a hysteresis effect wherein said disc flexes in one direction to open said pilot valve means upon the occurrence of a first predetermined temperature but flexes in the reverse direction to close said pilot valve means upon the occurrence of a second temperature lower than said first predetermined temperature.
- UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,757,866 Dated I September '11; 1973 InVentofls) J.W. Mears and WJ. O'Brien It is certified that error appears inthe above-identified patent and that said Letters Patent are hereby corrected as shown below:
' Claim 2,' line 1', change "4" to -1--.
Signed and sealed this 9th day of July 1974.
(SEAL) Attest: 4
MCCOY M. GIBSON,JR. Q C. MARSHALL DANN Commissioner of Patents Attesting Officer USCOMM'DC 69:! IG PGQ 9 U 5. GOVE NMENT PRINTING OFFICE 19E) 0 uflfi-JH FORM Po-10s0 (10-69)

Claims (2)

1. A water sprinkler device for a fire protection system coupled to a pressurized fluid supply line; comprising in combination: a sprinkler body having an annular inlet portion adapted for coupling to said fluid supply line; means providing an inner wall for dividing said sprinkler body into a first bifurcation, having an outlet portion that defines a main fluid flow passageway between said inlet portion and said outlet portion, and a second bifurcation that defines a control chamber; a deflector mounted adjacent said outlet portion to deflect fluid flow therethrough; means providing a valve seating surface abutting said inlet portion at the junction of said bifurcations; a main valve disposed in a direction downstream from said seating surface and having a valve seat mounted in opposed relation to said seating surface so as to oppose fluid pressure from said inlet portion that tends to cause said valve seat to separate from said seating surface to open said valve, said main valve being slideable into said control chamber for controlling fluid flow through said main passageway while maintaining said control chamber blocked to fluid flow from said outlet portion, an aperture formed substantially centrally in said main valve to define a control passageway that couples fluid from said inlet portion to said control chamber; said main valve exhibiting a first surface area disposed toward said control chamber that is greater than a second surface area disposed toward said inlet portion to provide a greater main valve closing pressure than opening pressure, means providing an outlet port from said control chamber to release fluid pressure therefrom to open said main valve, pilot valve means having a valve member mounted to control fluid flow through said outlet port and including a bimetallic disc centrally connected to said valve member, and means for securing the peripheral edges of said bimetallic disc against movement relative to said sprinkler body so as to flex said disc in a manner to resiliently bias said valve member to close said outlet port, said disc responding to temperature rise to snap to an opposite flexure to open said outlet port to release fluid from said control chamber to open said main valve.
2. The combination in accordance with claim 4 wherein said bimetallic disc exhibits a hysteresis effect wherein said disc flexes in one direction to open said pilot valve means upon the occurrence of a first predetermined temperature but flexes in the reverse direction to close said pilot valve means upon the occurrence of a second temperature lower than said first predetermined temperature.
US00196641A 1971-11-08 1971-11-08 On-off sprinkler Expired - Lifetime US3757866A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19664171A 1971-11-08 1971-11-08

Publications (1)

Publication Number Publication Date
US3757866A true US3757866A (en) 1973-09-11

Family

ID=22726227

Family Applications (1)

Application Number Title Priority Date Filing Date
US00196641A Expired - Lifetime US3757866A (en) 1971-11-08 1971-11-08 On-off sprinkler

Country Status (11)

Country Link
US (1) US3757866A (en)
JP (2) JPS4858697A (en)
BE (1) BE790961A (en)
DE (1) DE2253576C3 (en)
FR (1) FR2160083A5 (en)
GB (1) GB1400618A (en)
IT (1) IT972223B (en)
LU (1) LU66418A1 (en)
NL (1) NL7214620A (en)
NO (1) NO135346C (en)
SE (1) SE373289B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835931A (en) * 1972-05-25 1974-09-17 W Livingston Discharge head and fire protection system utilizing same whereby the head is actuatable in response to two separate temperatures
US3848676A (en) * 1973-12-26 1974-11-19 Texas Instruments Inc Thermally actuated valve assembly
US3857446A (en) * 1974-05-22 1974-12-31 T Kenny Temperature-sensitive snap-action valve
US3924687A (en) * 1974-02-20 1975-12-09 Viking Corp Valve and sprinkler head for automatic fire extinguishing systems
US4121665A (en) * 1975-03-20 1978-10-24 Standard Fire Protection Equipment Co. Automatic sprinkler head
US4128128A (en) * 1977-06-27 1978-12-05 Grinnell Fire Protection Systems Company, Inc. Diaphragm actuated sprinkler head
EP0018065A1 (en) * 1979-02-28 1980-10-29 MATHER & PLATT LIMITED On/off sprinkler
EP0050016A2 (en) * 1980-10-15 1982-04-21 U.S. Fire Control Corporation Automatic on-off fire sprinkler head
US4553602A (en) * 1981-08-03 1985-11-19 Pieczykolan George S Automatic on-off sprinkler head
US4923013A (en) * 1989-08-14 1990-05-08 Gennaro Sergio K De Fire sprinkler system and automatic shut-off valve therefor
GB2250435A (en) * 1990-12-07 1992-06-10 Graviner Ltd Kidde Nozzle for discharging liquid fire extinguishant
US5303778A (en) * 1992-03-16 1994-04-19 Peter Vari On-off type sprinkler
US5533576A (en) * 1994-08-01 1996-07-09 Grinnell Corporation Automatic on-off fire protection sprinkler
US5794849A (en) * 1994-03-17 1998-08-18 Elder; Jack E. Pulsed irrigation control valve with pressure relief
US6068205A (en) * 1997-05-29 2000-05-30 Vari; Peter On-off control for sprinklers and the like employing a sealing membrane
US6536676B2 (en) * 2000-11-07 2003-03-25 The Boc Group Plc Valves
GB2390018A (en) * 2002-06-25 2003-12-31 Aqua Mist Fire Technology Ltd Sprinkler system
US20100186973A1 (en) * 2009-01-26 2010-07-29 Matt Flynn Fire Sprinkler with Cutoff Valve, Tamper-Resistant Features and Status Indicator
US20110120737A1 (en) * 2009-01-26 2011-05-26 Matt Flynn Fire Sprinkler with Ball-Type Cutoff Valve and Tamper-Resistant Features
WO2015126608A1 (en) * 2014-02-21 2015-08-27 Murray Donald W Distribution of a fire suppressing agent in a stovetop fire suppressor and method
US9421405B1 (en) 2013-03-18 2016-08-23 Williamsrdm, Inc. Stovetop fire extinguisher initiator with fuse device and method
US9597534B1 (en) 2013-08-12 2017-03-21 Williamsrdm, Inc. Stovetop fire suppressor initiator device and method
US9636530B2 (en) 2014-02-21 2017-05-02 Williamsrdm, Inc. Stovetop fire suppressor with thermal glass bulb actuation and method
CN109224353A (en) * 2018-09-04 2019-01-18 江苏人和环保设备有限公司 A kind of fire-fighting fountain head for deduster

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045098U (en) * 1973-08-23 1975-05-07
JPS5062997U (en) * 1973-10-03 1975-06-09
JPS5256798A (en) * 1975-10-31 1977-05-10 Matsushita Electric Works Ltd Sprinkler head
JPS5255298A (en) * 1975-10-31 1977-05-06 Matsushita Electric Works Ltd Sprinkler head
JPS53101500U (en) * 1977-01-20 1978-08-16
AT385831B (en) * 1982-04-12 1988-05-25 Indufer Ag CONTROL LEVER FOR SWITCHING DEVICES
US5667017A (en) 1994-09-17 1997-09-16 Awab Umformtechnik Gmbh & Co. Kg Atomizer for generating water-mists in fire-fighting systems
CN106964094B (en) * 2017-03-02 2019-07-16 浙江欧伦泰防火设备有限公司 Suspended automatic fire extinguisher
US20230211198A1 (en) * 2022-01-04 2023-07-06 Carrier Corporation Inerting intermittent suppression system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US917292A (en) * 1908-07-03 1909-04-06 William F Hankee Automatic sprinkler system.
US1241209A (en) * 1910-05-26 1917-09-25 Gen Fire Extinguisher Co Dry-pipe valve.
US1826088A (en) * 1929-03-11 1931-10-06 Ostlind Oscar Joel Pressure operated valve
US1913035A (en) * 1929-03-01 1933-06-06 Gen Fire Extinguisher Co Sprinkler
US2101338A (en) * 1935-01-04 1937-12-07 Kitson Company Temperature relief valve device
US2230179A (en) * 1939-01-17 1941-01-28 Cesar J Cid Sprinkler head for fire extinguishing systems
US2647017A (en) * 1951-04-19 1953-07-28 Ind Res Inst Nozzle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US917292A (en) * 1908-07-03 1909-04-06 William F Hankee Automatic sprinkler system.
US1241209A (en) * 1910-05-26 1917-09-25 Gen Fire Extinguisher Co Dry-pipe valve.
US1913035A (en) * 1929-03-01 1933-06-06 Gen Fire Extinguisher Co Sprinkler
US1826088A (en) * 1929-03-11 1931-10-06 Ostlind Oscar Joel Pressure operated valve
US2101338A (en) * 1935-01-04 1937-12-07 Kitson Company Temperature relief valve device
US2230179A (en) * 1939-01-17 1941-01-28 Cesar J Cid Sprinkler head for fire extinguishing systems
US2647017A (en) * 1951-04-19 1953-07-28 Ind Res Inst Nozzle

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835931A (en) * 1972-05-25 1974-09-17 W Livingston Discharge head and fire protection system utilizing same whereby the head is actuatable in response to two separate temperatures
US3848676A (en) * 1973-12-26 1974-11-19 Texas Instruments Inc Thermally actuated valve assembly
US3924687A (en) * 1974-02-20 1975-12-09 Viking Corp Valve and sprinkler head for automatic fire extinguishing systems
US3857446A (en) * 1974-05-22 1974-12-31 T Kenny Temperature-sensitive snap-action valve
US4121665A (en) * 1975-03-20 1978-10-24 Standard Fire Protection Equipment Co. Automatic sprinkler head
US4128128A (en) * 1977-06-27 1978-12-05 Grinnell Fire Protection Systems Company, Inc. Diaphragm actuated sprinkler head
EP0018065A1 (en) * 1979-02-28 1980-10-29 MATHER & PLATT LIMITED On/off sprinkler
EP0050016A2 (en) * 1980-10-15 1982-04-21 U.S. Fire Control Corporation Automatic on-off fire sprinkler head
EP0050016A3 (en) * 1980-10-15 1982-04-28 U.S. Fire Control Corporation Automatic on-off fire sprinkler head
US4553602A (en) * 1981-08-03 1985-11-19 Pieczykolan George S Automatic on-off sprinkler head
US4923013A (en) * 1989-08-14 1990-05-08 Gennaro Sergio K De Fire sprinkler system and automatic shut-off valve therefor
GB2250435A (en) * 1990-12-07 1992-06-10 Graviner Ltd Kidde Nozzle for discharging liquid fire extinguishant
US5303778A (en) * 1992-03-16 1994-04-19 Peter Vari On-off type sprinkler
US5794849A (en) * 1994-03-17 1998-08-18 Elder; Jack E. Pulsed irrigation control valve with pressure relief
US5533576A (en) * 1994-08-01 1996-07-09 Grinnell Corporation Automatic on-off fire protection sprinkler
US6068205A (en) * 1997-05-29 2000-05-30 Vari; Peter On-off control for sprinklers and the like employing a sealing membrane
US6536676B2 (en) * 2000-11-07 2003-03-25 The Boc Group Plc Valves
GB2390018A (en) * 2002-06-25 2003-12-31 Aqua Mist Fire Technology Ltd Sprinkler system
US20100186973A1 (en) * 2009-01-26 2010-07-29 Matt Flynn Fire Sprinkler with Cutoff Valve, Tamper-Resistant Features and Status Indicator
US7845425B2 (en) * 2009-01-26 2010-12-07 Matt Flynn Fire sprinkler with cutoff valve, tamper-resistant features and status indicator
US20110120737A1 (en) * 2009-01-26 2011-05-26 Matt Flynn Fire Sprinkler with Ball-Type Cutoff Valve and Tamper-Resistant Features
US8387712B2 (en) * 2009-01-26 2013-03-05 Matt Flynn Fire sprinkler with ball-type cutoff valve and tamper-resistant features
US9421405B1 (en) 2013-03-18 2016-08-23 Williamsrdm, Inc. Stovetop fire extinguisher initiator with fuse device and method
US9597534B1 (en) 2013-08-12 2017-03-21 Williamsrdm, Inc. Stovetop fire suppressor initiator device and method
AU2015219465B2 (en) * 2014-02-21 2016-02-11 Donald W. Murray Distribution of a fire suppressing agent in a stovetop fire suppressor and method
US9517370B2 (en) 2014-02-21 2016-12-13 Williamsrdm, Inc. Distribution of fire suppressing agent in a stovetop fire suppressor and method
WO2015126608A1 (en) * 2014-02-21 2015-08-27 Murray Donald W Distribution of a fire suppressing agent in a stovetop fire suppressor and method
US9636530B2 (en) 2014-02-21 2017-05-02 Williamsrdm, Inc. Stovetop fire suppressor with thermal glass bulb actuation and method
CN109224353A (en) * 2018-09-04 2019-01-18 江苏人和环保设备有限公司 A kind of fire-fighting fountain head for deduster
CN109224353B (en) * 2018-09-04 2024-03-22 江苏人和环保设备有限公司 Fire-fighting water spray head for dust remover

Also Published As

Publication number Publication date
NL7214620A (en) 1973-05-10
FR2160083A5 (en) 1973-06-22
NO135346C (en) 1977-03-30
DE2253576B2 (en) 1975-05-22
DE2253576A1 (en) 1973-05-17
JPS54131800U (en) 1979-09-12
GB1400618A (en) 1975-07-16
BE790961A (en) 1973-05-07
NO135346B (en) 1976-12-20
LU66418A1 (en) 1973-02-01
DE2253576C3 (en) 1976-01-22
IT972223B (en) 1974-05-20
JPS5618371Y2 (en) 1981-04-30
SE373289B (en) 1975-02-03
JPS4858697A (en) 1973-08-17

Similar Documents

Publication Publication Date Title
US3757866A (en) On-off sprinkler
JP2581778B2 (en) Shower burn arrester
US3791619A (en) Valve construction
EP1512436B1 (en) Quick response adjustable automatic sprinkler arrangements
US6000473A (en) Low differential check valve for sprinkler systems
US6158520A (en) Check valve actuator with adjustable seat for air chamber seal
US4258795A (en) On-off sprinkler head having an offset drive motor
US4168719A (en) Gas control unit for a burner
US5368227A (en) Temperature limiting control valve for a shower head
US4180208A (en) Temperature limiting shower control valve
US2302284A (en) Safety gas pressure regulator
CA2135359A1 (en) Flow control valve assembly
US5259554A (en) Temperature responsive, pilot operated line valve with shape memory alloy actuator
USRE29155E (en) On-off sprinkler
US3616860A (en) Quick opening device for dry-pipe valves of automatic sprinkler systems
US3433262A (en) Bilevel pressure regulating valve
US5464064A (en) Valve particularly useful in fire extinguishing systems
US4262844A (en) Control valve
US3727878A (en) Quick opening device for dry-pipe valves of automatic sprinkler systems
US5584432A (en) Anti-scald valve with shape memory alloy actuator
US3848676A (en) Thermally actuated valve assembly
US5397053A (en) Temperature responsive, pilot operated line valve with shape memory alloy actuator
US2920859A (en) Balanced valve means
GB1472569A (en) Automatic on-off sprinkler
EP0675746B1 (en) Valve