US3756578A - Fluid treatment and distribution system - Google Patents

Fluid treatment and distribution system Download PDF

Info

Publication number
US3756578A
US3756578A US3756578DA US3756578A US 3756578 A US3756578 A US 3756578A US 3756578D A US3756578D A US 3756578DA US 3756578 A US3756578 A US 3756578A
Authority
US
United States
Prior art keywords
fluid
distribution system
manifold
conduit
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Gurk Mc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3756578A publication Critical patent/US3756578A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/14Activated sludge processes using surface aeration
    • C02F3/16Activated sludge processes using surface aeration the aerator having a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2342Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force
    • B01F23/23421Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force the stirrers rotating about a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/14Activated sludge processes using surface aeration
    • C02F3/16Activated sludge processes using surface aeration the aerator having a vertical axis
    • C02F3/165Activated sludge processes using surface aeration the aerator having a vertical axis using vertical aeration channels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/24Activated sludge processes using free-fall aeration or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • B01F25/64Pump mixers, i.e. mixing within a pump of the centrifugal-pump type, i.e. turbo-mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • B01F33/503Floating mixing devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • ABSTRACT A fluid aeration-agitation system featuring a pumping system and a pressure manifold operatively mounted upon a float which is either stationary or mounted for rotation, the manifold being operatively connected to a plurality of pipes each leading to a hollow discharge directing subsurface convection current or to a discharge head being hemispherical in configuration.
  • the present invention relates to a fluid treatment and distribution system, particularly applicable for the treatment of liquids such as sewage and industrial waste requiring the transfer of oxygen from the atmosphere into the liquid mass of sewage, or subsurface agitation.
  • Aeration of fluids occurs at peak efficiency when thorough mixing and circulation of the parent fluid body results in the solids contained therein being held in suspension.
  • Previous aeration devices have included propeller-mixer equipment, paddle wheel arrangements and fountain systems. It is usually impossible to accurately rate the efficiencies of such prior art systems.
  • such known devices usually provide insufficient rates of oxygen transfer per unit volume of fluid moved and thus insufficient fluid aeration.
  • the therator apparatus may be used as a subsurface agitator and a liquid aerator at the same time.
  • the conventional propeller-mixer equipment has the added disadvantage of causing bottom erosion.
  • the present invention is designed to overcome these disadvantages while providing flexibility of application as explained in detail hereinafter.
  • the present invention is used to circulate fluid in a manner which establishes a convection pattern within a fluid body so as to cause continual fluid turnover from the lower depths to the surface while simultaneously aerating the fluid by transferring oxygen from the atmosphere thereto.
  • the solids are maintained in suspension and exposed to sufficient dissolved oxygen to enhance bacterial attack and decomposition.
  • Quantites of the liquid mass are exposed to impounded or atmospheric oxygen or other soluable gases. Also, predictable and controllable silting patterns for heavier solids are achieved. The foregoing is accomplished with the present invention which is characterized by its simplicity in construction and flexibility of use.
  • the fluid treatment and distribution system of the present invention is secured to a buoyant float permitting use in different environments such as tanks, ponds, vats and lakes.
  • the aeration-agitation apparatus may be mounted to rotate at different speeds on the surface of the liquid mass. An important feature of the present.
  • the shape of the discharge heads which are hollow and hemispherical in configuration. In this manner, the path of the fluid into the atmosphere and its return to the liquid mass is selected to maximize the kinetic energy of the fluid.
  • FIG. 1 is a perspective view partially in section desystem illustrating in particular hollow, hemispherical configuration thereof;
  • FIG. 5 is a perspective view of the pressure manifold and discharge pipes used in conjunction with a first embodiment intake element
  • FIG. 6 is a perspective view of an alternative embodiment intake element.
  • the aeration-agitation system of the present invention is designated generally by the reference numeral 10 in FIGS. 1, 2 and 3 and comprises a motor and pump assembly 12 to which is attached a pressure manifold 14.
  • a motor and pump assembly 12 to which is attached a pressure manifold 14.
  • the pump and motor assembly 12 is rigidly secured to the upper surface of a buoyant float 16, while the pressure manifold 14 may be secured to the bottom or the top surface of float 16, depending on the pump configuration.
  • the pressure manifold 14 is preferably a hollowwalled toroidal vessel provided with a plurality of equally spaced ports 18 along the outer periphery thereof.
  • the pressure manifold 14 is provided with an intake element 20 which may be provided with access through 360 as illustrated in FIG. 6 or with a directional opening as illustrated generally in FIG. 5.
  • a draught tube 22 is positioned below the intake element 20, the length thereof depending upon the depth of fluid in which the aeration-agitation system is operating.
  • Attached to ports 18 are a plurality of pipes 24 extending either outwardly or outwardly and then upwardly; outwardly for setting up a convection current in a body of water and outwardly and then upwardly if the discharge is to be used for oxygen transfer.
  • Each of the pipes 24 terminates in a discharge head 26 described in detail hereinafter.
  • the motor and pump assembly l2 draws fluid into the intake element 20 and through the draught tube 22. From there, the fluid passes into the manifold 14 and exits through the pipes 24.
  • each pipe 24' striking the inner surface of the discharge head 26 which is constructed of a rigid, wear-resistant material. Thereafter, the fluid passes downwardly returning to the parent body of fluid.
  • Each of the discharge heads 26 is hollow and hemispherical in configuration, the interior surface thereof being smooth so as to minimize losses in fluid energy.
  • a high velocity curtain of water having an outer radius r and an inner radius r is formed at each discharge head 26 as the fluid is being directed back towards the parent body.
  • This so-called high-velocity curtain results in a relatively high proportion of the discharging fluid being exposed to the atmosphere.
  • the high-velocity curtain of water increases the interfacial exposure to atmospheric oxygen, entrapping greater amounts of air, frequently in the form of bubbles. Optimum oxygen transfer per unit volume of water moved is achieved.
  • the downwardly passing fluid returns to the parent body at an angle of with respect to the fluid ejected toward the inner surface of the discharge head 26.
  • the pressure generated in the present invention is significantly greater than that present where the jet strikes a flat plate positioned perpendicular to the direction of motion.
  • the aerationagitation system is securely tethered by lines 28 which are secured at one end to the float l6 and at the other end to the walls 30 of the vat. In this manner, uniform convection patterns are created.
  • the aerationagitation system 10 is mounted for rotation about pole 32.
  • Appropriate electrical power means are mounted within the casing 34 for rotating arms 36 to which the aeration-agitation system 10 is attached.
  • a treatment and distribution system for a body of fluid comprising:
  • a manifold assembly operatively connected to said pump including a fluid intake and provided with at least one opening;
  • buoyant float together with means mounting said pump and manifold thereto;
  • At least one fluid outlet conduit operatively connected to said opening, the outlet of said conduit extending out of the body of fluid
  • discharge head means hemispherical in configuration and operatively connected to said conduit in a manner such that fluid ejected from said conduit strikes the inner concave surface thereof and is returned in the opposite direction along a curtain into the body of fluid.
  • a fluid treatment and distribution system as in claim 1, said manifold being toroidal in configuration. r s

Abstract

A fluid aeration-agitation system featuring a pumping system and a pressure manifold operatively mounted upon a float which is either stationary or mounted for rotation, the manifold being operatively connected to a plurality of pipes each leading to a hollow discharge directing subsurface convection current or to a discharge head being hemispherical in configuration.

Description

United States Patent [1 1 McGurk [451 Sept. 4, 1973 1 FLUID TREATMENT AND DISTRIBUTION SYSTEM [75] lnventor: William L. McGurk, Muskogee,
Okla.
[73] Assignee: Therator Pumper, Inc., Muskogee,
Okla.
[22] Filed: Jan. 27, 1972 I21] Appl. N0.: 221,320
[52] U.S. Cl 261/91, 261/120, 210/242 [51] Int. Cl B011 3/04 [58] Field of Search 210/242; 261/91,
[56] References Cited UNITED STATES PATENTS 3,416,729 Ravitts et a1 261/91 8/1970 Culwell .i 261/91 2/1972 Albritton 261/91 Primary ExaminerTim R. Miles Assistant Examiner-Steven H. Markowitz Attorney-Staas, Halsey & Gable [57] ABSTRACT A fluid aeration-agitation system featuring a pumping system and a pressure manifold operatively mounted upon a float which is either stationary or mounted for rotation, the manifold being operatively connected to a plurality of pipes each leading to a hollow discharge directing subsurface convection current or to a discharge head being hemispherical in configuration.
7 Claims, 6 Drawing Figures PATENTEHSU 4 am y sum 2 0F 3 FIG. 2
' PATENTEUSEP 4m SHEET 3 BF FIG. 3
FLUID TREATMENT AND DISTRIBUTION SYSTEM BACKGROUND OF THE INVENTION The present invention relates to a fluid treatment and distribution system, particularly applicable for the treatment of liquids such as sewage and industrial waste requiring the transfer of oxygen from the atmosphere into the liquid mass of sewage, or subsurface agitation.
Aeration of fluids occurs at peak efficiency when thorough mixing and circulation of the parent fluid body results in the solids contained therein being held in suspension. Previous aeration devices have included propeller-mixer equipment, paddle wheel arrangements and fountain systems. It is usually impossible to accurately rate the efficiencies of such prior art systems. In addition, such known devices usually provide insufficient rates of oxygen transfer per unit volume of fluid moved and thus insufficient fluid aeration. Hence, the therator apparatus may be used as a subsurface agitator and a liquid aerator at the same time. The conventional propeller-mixer equipment has the added disadvantage of causing bottom erosion.
The present invention is designed to overcome these disadvantages while providing flexibility of application as explained in detail hereinafter.
SUMMARY OF THE INVENTION The present invention is used to circulate fluid in a manner which establishes a convection pattern within a fluid body so as to cause continual fluid turnover from the lower depths to the surface while simultaneously aerating the fluid by transferring oxygen from the atmosphere thereto. With the present invention, the solids are maintained in suspension and exposed to sufficient dissolved oxygen to enhance bacterial attack and decomposition. Quantites of the liquid mass are exposed to impounded or atmospheric oxygen or other soluable gases. Also, predictable and controllable silting patterns for heavier solids are achieved. The foregoing is accomplished with the present invention which is characterized by its simplicity in construction and flexibility of use.
The fluid treatment and distribution system of the present invention is secured to a buoyant float permitting use in different environments such as tanks, ponds, vats and lakes. The aeration-agitation apparatus may be mounted to rotate at different speeds on the surface of the liquid mass. An important feature of the present.
invention is the shape of the discharge heads which are hollow and hemispherical in configuration. In this manner, the path of the fluid into the atmosphere and its return to the liquid mass is selected to maximize the kinetic energy of the fluid.
BRIEF DESCRIPTION OF THE DRAWINGS:
FIG. 1 is a perspective view partially in section desystem illustrating in particular hollow, hemispherical configuration thereof;
FIG. 5 is a perspective view of the pressure manifold and discharge pipes used in conjunction with a first embodiment intake element; and
FIG. 6 is a perspective view of an alternative embodiment intake element.
DESCRIPTION OF THE PREFERRED EMBODIMENT The aeration-agitation system of the present invention is designated generally by the reference numeral 10 in FIGS. 1, 2 and 3 and comprises a motor and pump assembly 12 to which is attached a pressure manifold 14. Such centrifugal pump and manifold construction is well known in the art and needs no further description. The pump and motor assembly 12 is rigidly secured to the upper surface of a buoyant float 16, while the pressure manifold 14 may be secured to the bottom or the top surface of float 16, depending on the pump configuration.
The pressure manifold 14 is preferably a hollowwalled toroidal vessel provided with a plurality of equally spaced ports 18 along the outer periphery thereof. The pressure manifold 14 is provided with an intake element 20 which may be provided with access through 360 as illustrated in FIG. 6 or with a directional opening as illustrated generally in FIG. 5.
A draught tube 22 is positioned below the intake element 20, the length thereof depending upon the depth of fluid in which the aeration-agitation system is operating.
Attached to ports 18 are a plurality of pipes 24 extending either outwardly or outwardly and then upwardly; outwardly for setting up a convection current in a body of water and outwardly and then upwardly if the discharge is to be used for oxygen transfer. Each of the pipes 24 terminates in a discharge head 26 described in detail hereinafter.
As will now be apparent, the motor and pump assembly l2 draws fluid into the intake element 20 and through the draught tube 22. From there, the fluid passes into the manifold 14 and exits through the pipes 24.
Referring now to FIG. 4, the fluid is ejected under pressure through the end of each pipe 24' striking the inner surface of the discharge head 26 which is constructed of a rigid, wear-resistant material. Thereafter, the fluid passes downwardly returning to the parent body of fluid. Each of the discharge heads 26 is hollow and hemispherical in configuration, the interior surface thereof being smooth so as to minimize losses in fluid energy.
As will be further apparent from FIG. 4, a high velocity curtain of water having an outer radius r and an inner radius r, is formed at each discharge head 26 as the fluid is being directed back towards the parent body. This so-called high-velocity curtain results in a relatively high proportion of the discharging fluid being exposed to the atmosphere. The high-velocity curtain of water increases the interfacial exposure to atmospheric oxygen, entrapping greater amounts of air, frequently in the form of bubbles. Optimum oxygen transfer per unit volume of water moved is achieved.
The downwardly passing fluid returns to the parent body at an angle of with respect to the fluid ejected toward the inner surface of the discharge head 26. As will be apparent, then, the pressure generated in the present invention is significantly greater than that present where the jet strikes a flat plate positioned perpendicular to the direction of motion.
Furthermore, the actual rating of the present design is more practical than in prior fountain type aerators, submerged propellers or paddle wheel arrangements since the fluid-gas continuity is more predictable at the interface adapting more readily to well known gas absorption formulae.
In the embodiment illustrated in FIG. 1, the aerationagitation system is securely tethered by lines 28 which are secured at one end to the float l6 and at the other end to the walls 30 of the vat. In this manner, uniform convection patterns are created.
Alternatively, as illustrated in FIG. 2, the aerationagitation system 10 is mounted for rotation about pole 32. Appropriate electrical power means are mounted within the casing 34 for rotating arms 36 to which the aeration-agitation system 10 is attached.
I claim:
1. A treatment and distribution system for a body of fluid, comprising:
a pump;
a manifold assembly operatively connected to said pump including a fluid intake and provided with at least one opening;
a buoyant float together with means mounting said pump and manifold thereto;
at least one fluid outlet conduit operatively connected to said opening, the outlet of said conduit extending out of the body of fluid; and
discharge head means hemispherical in configuration and operatively connected to said conduit in a manner such that fluid ejected from said conduit strikes the inner concave surface thereof and is returned in the opposite direction along a curtain into the body of fluid.
2. A fluid treatment and distribution system as in claim 1, including a plurality of openings in said manifold, a conduit connected to each of said openings and a discharge head connected to each of said conduits.
3. A fluid treatment and distribution system as in claim 1, including means mounting said pump, manifold, float, conduit and discharge head for rotation within the body of fluid.
4. A fluid treatment and distribution system as in claim 1, including means mounting said pump, manifold, float, conduit and discharge head in stationary position with respect to the body of fluid.
5. A fluid treatment and distribution system as in claim 1, including interchangeable means for varying the depth below said fluid intake at which fluid is withdrawn.
6. A fluid treatment and distribution system as in claim 5, said means varying the depth including a draught tube.
7. A fluid treatment and distribution system as in claim 1, said manifold being toroidal in configuration. =r s

Claims (7)

1. A treatment and distribution system for a body of fluid, comprising: a pump; a manifold assembly operatively connected to said pump including a fluid intake and provided with at least one opening; a buoyant float together with means mounting said pump and manifold thereto; at least one fluid outlet conduit operatively connected to said opening, the outlet of said conduit extending out of the body of fluid; and discharge head means hemispherical in configuration and operatively connected to said conduit in a manner such that fluid ejected from said conduit strikes the inner concave surface thereof and is returned in the opposite direction along a curtain into the body of fluid.
2. A fluid treatment and distribution system as in claim 1, including a plurality of openings in said manifold, a conduit connected to each of said openings and a discharge head connected to each of said conduits.
3. A fluid treatment and distribution system as in claim 1, including means mounting said pump, manifold, float, conduit and discharge head for rotation within the body of fluid.
4. A fluid treatment and distribution system as in claim 1, including means mounting said pump, manifold, float, conduit and discharge head in stationary position with respect to the body of fluid.
5. A fluid treatment and distribution system as in claim 1, including interchangeable means for varying the depth below said fluid intake at which fluid is withdrawn.
6. A fluid treatment and distribution system as in claim 5, said means varying the depth including a draught tube.
7. A fluid treatment and distribution system as in claim 1, said manifold being toroidal in configuration.
US3756578D 1972-01-27 1972-01-27 Fluid treatment and distribution system Expired - Lifetime US3756578A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22132072A 1972-01-27 1972-01-27

Publications (1)

Publication Number Publication Date
US3756578A true US3756578A (en) 1973-09-04

Family

ID=22827316

Family Applications (1)

Application Number Title Priority Date Filing Date
US3756578D Expired - Lifetime US3756578A (en) 1972-01-27 1972-01-27 Fluid treatment and distribution system

Country Status (1)

Country Link
US (1) US3756578A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962093A (en) * 1972-09-13 1976-06-08 The Glacier Metal Company Limited Apparatus for removing contaminants from the surface of a fluid
DE2711805A1 (en) * 1976-04-09 1977-10-20 Kaneyasu Yoshinaga CENTRIFUGAL PUMP FOR OXYGEN VENTILATION OF BREEDING POND WATER
US4059526A (en) * 1975-04-04 1977-11-22 Ballast Nedam Groep N.V. Device for collecting light-weight substances floating on a liquid surface
US4126552A (en) * 1975-04-04 1978-11-21 Ballast Nedam Groep N.V. Method for collecting light-weight substances floating on a liquid surface
US4229302A (en) * 1978-10-20 1980-10-21 Clevepak Corporation Waste treatment apparatus with floating platform
US4365938A (en) * 1980-01-14 1982-12-28 Warinner Archie F Modular low head high volume water pump and aquaculture system
EP0147108A2 (en) * 1983-12-09 1985-07-03 Long Enterprises, Inc. Improved sewage sludge treatment apparatus and process
US4626358A (en) * 1984-10-18 1986-12-02 Fetsko Francis E Liquid sweeping assembly and method
US4680148A (en) * 1985-05-30 1987-07-14 Aeras Water Resources, Inc. Mobile pond aerating system
US4733972A (en) * 1987-07-09 1988-03-29 Aqua-Aerobic Systems, Inc. Floating mixer apparatus with foam dispersing spray
US4797063A (en) * 1987-05-27 1989-01-10 Chem-O Company, Inc. Floating suction apparatus
EP0359965A1 (en) * 1988-09-22 1990-03-28 Ulrich Seidlitz Apparatus for replenishing waters with oxygen
US5167878A (en) * 1991-08-20 1992-12-01 Aeras Water Systems, Inc. Submersible aeration device
US5213718A (en) * 1991-01-14 1993-05-25 Burgess Harry L Aerator and conversion methods
US5971372A (en) * 1997-12-04 1999-10-26 Ash; Gary Aerator transport system
US5996977A (en) * 1998-07-09 1999-12-07 Burgess; Harry L. Temperature adjusted water aerator and circulation system
US20060157874A1 (en) * 2005-01-19 2006-07-20 Allied Precision Inudstries, Inc. Liquid aeration system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416729A (en) * 1966-08-12 1968-12-17 Richards Of Rockford Inc Liquid aerator
US3524629A (en) * 1968-07-29 1970-08-18 Don A Culwell Apparatus for and method of aerating liquids
US3640514A (en) * 1970-12-03 1972-02-08 Ashbrook Corp Aeration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416729A (en) * 1966-08-12 1968-12-17 Richards Of Rockford Inc Liquid aerator
US3524629A (en) * 1968-07-29 1970-08-18 Don A Culwell Apparatus for and method of aerating liquids
US3640514A (en) * 1970-12-03 1972-02-08 Ashbrook Corp Aeration

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962093A (en) * 1972-09-13 1976-06-08 The Glacier Metal Company Limited Apparatus for removing contaminants from the surface of a fluid
US4059526A (en) * 1975-04-04 1977-11-22 Ballast Nedam Groep N.V. Device for collecting light-weight substances floating on a liquid surface
US4126552A (en) * 1975-04-04 1978-11-21 Ballast Nedam Groep N.V. Method for collecting light-weight substances floating on a liquid surface
DE2711805A1 (en) * 1976-04-09 1977-10-20 Kaneyasu Yoshinaga CENTRIFUGAL PUMP FOR OXYGEN VENTILATION OF BREEDING POND WATER
US4086306A (en) * 1976-04-09 1978-04-25 Kaneyasu Yoshinaga Centrifugal pump
US4229302A (en) * 1978-10-20 1980-10-21 Clevepak Corporation Waste treatment apparatus with floating platform
US4365938A (en) * 1980-01-14 1982-12-28 Warinner Archie F Modular low head high volume water pump and aquaculture system
EP0147108A2 (en) * 1983-12-09 1985-07-03 Long Enterprises, Inc. Improved sewage sludge treatment apparatus and process
EP0147108A3 (en) * 1983-12-09 1986-01-22 Long Enterprises, Inc. Improved sewage sludge treatment apparatus and process
US4626358A (en) * 1984-10-18 1986-12-02 Fetsko Francis E Liquid sweeping assembly and method
US4680148A (en) * 1985-05-30 1987-07-14 Aeras Water Resources, Inc. Mobile pond aerating system
US4797063A (en) * 1987-05-27 1989-01-10 Chem-O Company, Inc. Floating suction apparatus
US4733972A (en) * 1987-07-09 1988-03-29 Aqua-Aerobic Systems, Inc. Floating mixer apparatus with foam dispersing spray
EP0359965A1 (en) * 1988-09-22 1990-03-28 Ulrich Seidlitz Apparatus for replenishing waters with oxygen
US5213718A (en) * 1991-01-14 1993-05-25 Burgess Harry L Aerator and conversion methods
US5275762A (en) * 1991-01-14 1994-01-04 Burgess Harry L Aerator
US5167878A (en) * 1991-08-20 1992-12-01 Aeras Water Systems, Inc. Submersible aeration device
US5971372A (en) * 1997-12-04 1999-10-26 Ash; Gary Aerator transport system
US5996977A (en) * 1998-07-09 1999-12-07 Burgess; Harry L. Temperature adjusted water aerator and circulation system
US6050550A (en) * 1998-07-09 2000-04-18 Burgess; Harry L. Apparatus for aeration and bottom agitation for aqua-culture systems
US20060157874A1 (en) * 2005-01-19 2006-07-20 Allied Precision Inudstries, Inc. Liquid aeration system and method
US7331569B2 (en) * 2005-01-19 2008-02-19 Allied Precision Industries, Inc. Liquid aeration system and method
US20080110836A1 (en) * 2005-01-19 2008-05-15 Allied Precision Industries, Inc. Liquid aeration system and method
US7575226B2 (en) 2005-01-19 2009-08-18 Allied Precision Industries, Inc. Liquid aeration system and method

Similar Documents

Publication Publication Date Title
US3756578A (en) Fluid treatment and distribution system
US4231974A (en) Fluids mixing apparatus
US3856272A (en) Floating mixer
CA1139464A (en) Multiple stage jet nozzle aeration system
US4844843A (en) Waste water aerator having rotating compression blades
US3735926A (en) Liquid spray device with fixed and rotatable diffusers
US4680119A (en) Apparatus for introducing a gas into a liquid
KR20010070464A (en) Submersible in-situ oxygenator
US4532038A (en) Flow control apparatus for aerobic sewage treatment
CA2327150C (en) Apparatus for mixing and aerating liquid-solid slurries
US5376311A (en) Apparatus for mixing gas and liquid
US3620512A (en) Aerating apparatus
US6079864A (en) Horizontal flow generation system
JP2010535627A (en) Method and apparatus for aeration
GB1572044A (en) Apparatus for aerating liquids
EP0027911B1 (en) Apparatus for contacting liquid with a gas
GB1400064A (en) Treatment of an effluent using an activated sludge process
WO2021009822A1 (en) Microbubble generation component and underwater aeration mixing device using same
JPS6136476B2 (en)
US2816744A (en) Jet impeller mixer
SU1151515A1 (en) Aerator
JPH0526198U (en) Agitator and aerator equipped with float
KR970003062B1 (en) Gas and liquid mixer
KR101617833B1 (en) the water turn over device for removing algae and the algae bloom control method using thereof
JPH0642797Y2 (en) Floating aerator