US3755498A - Textile fiber comprising an admixture of a polyester and an addition polymer having a tribromoneopentyl group in the repeating unit of theaddition polymer - Google Patents
Textile fiber comprising an admixture of a polyester and an addition polymer having a tribromoneopentyl group in the repeating unit of theaddition polymer Download PDFInfo
- Publication number
- US3755498A US3755498A US00224992A US3755498DA US3755498A US 3755498 A US3755498 A US 3755498A US 00224992 A US00224992 A US 00224992A US 3755498D A US3755498D A US 3755498DA US 3755498 A US3755498 A US 3755498A
- Authority
- US
- United States
- Prior art keywords
- polyester
- fiber
- polymer
- fibers
- textile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 title abstract description 93
- 239000004753 textile Substances 0.000 title abstract description 48
- 229920000642 polymer Polymers 0.000 title abstract description 41
- 229920000728 polyester Polymers 0.000 title abstract description 26
- -1 tribromoneopentyl group Chemical group 0.000 title description 27
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 abstract description 21
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 abstract description 14
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 abstract description 10
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 abstract description 7
- 239000003063 flame retardant Substances 0.000 abstract description 7
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 abstract description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 23
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 23
- 229910052794 bromium Inorganic materials 0.000 description 23
- 238000005108 dry cleaning Methods 0.000 description 14
- 238000005406 washing Methods 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 229920002994 synthetic fiber Polymers 0.000 description 7
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- 238000002845 discoloration Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 238000002074 melt spinning Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000012209 synthetic fiber Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 3
- 239000004758 synthetic textile Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 238000004383 yellowing Methods 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 125000005997 bromomethyl group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003254 radicals Chemical group 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- AIEGYVFQWHGJPT-UHFFFAOYSA-N (1,1,3-tribromo-2,2-dimethylpropyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(Br)(Br)C(C)(C)CBr AIEGYVFQWHGJPT-UHFFFAOYSA-N 0.000 description 1
- QIDMSQYGDFAXEQ-UHFFFAOYSA-N (1,1,3-tribromo-2,2-dimethylpropyl) prop-2-enoate Chemical compound BrCC(C)(C)C(Br)(Br)OC(=O)C=C QIDMSQYGDFAXEQ-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- QEJPOEGPNIVDMK-UHFFFAOYSA-N 3-bromo-2,2-bis(bromomethyl)propan-1-ol Chemical compound OCC(CBr)(CBr)CBr QEJPOEGPNIVDMK-UHFFFAOYSA-N 0.000 description 1
- BAZJJECTQCOJJY-ONEGZZNKSA-N CC(C)(CBr)C(OC(/C=C/C(O)=O)=O)(Br)Br Chemical compound CC(C)(CBr)C(OC(/C=C/C(O)=O)=O)(Br)Br BAZJJECTQCOJJY-ONEGZZNKSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 241001082241 Lythrum hyssopifolia Species 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- LUSFFPXRDZKBMF-UHFFFAOYSA-N [3-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCC(CO)C1 LUSFFPXRDZKBMF-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- UTOVMEACOLCUCK-PLNGDYQASA-N butyl maleate Chemical compound CCCCOC(=O)\C=C/C(O)=O UTOVMEACOLCUCK-PLNGDYQASA-N 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- KAAQPMPUQHKLLE-UHFFFAOYSA-N cyclohexene-1,4-dicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)=CC1 KAAQPMPUQHKLLE-UHFFFAOYSA-N 0.000 description 1
- JBSLOWBPDRZSMB-FPLPWBNLSA-N dibutyl (z)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C/C(=O)OCCCC JBSLOWBPDRZSMB-FPLPWBNLSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- NKHAVTQWNUWKEO-UHFFFAOYSA-N fumaric acid monomethyl ester Natural products COC(=O)C=CC(O)=O NKHAVTQWNUWKEO-UHFFFAOYSA-N 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- NKHAVTQWNUWKEO-IHWYPQMZSA-N methyl hydrogen fumarate Chemical compound COC(=O)\C=C/C(O)=O NKHAVTQWNUWKEO-IHWYPQMZSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000874 polytetramethylene terephthalate Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S8/00—Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
- Y10S8/04—Polyester fibers
Definitions
- flame retardant textile fibers comprising an admixture of a polyester and an addition polymer having the CHZBI --O-CHz-CH1BI CH7BZ group as a portion of the polymer unit.
- the polyester is derived from at least 90 mole percent terephthalic acid and at least 90 mole percent ethylene glycol, tetramethylene glycol, or 1,4-cyclohexanedimethanol.
- the addition polymer preferably comprises at least 95 mole percent units of the structure fjl Li it
- the texile fibers of this invention are flame retardant and exhibit a desirable and unobvious combination of other properties necessary in a commercially acceptable textile fiber.
- This invention relates to a flame retardant textile fiber exhibiting a combination of properties necessary in a commercially acceptable textile fiber.
- synthetic textile fibers have increased tremendously over the last several decades. This increased use has resulted in large part from the desirable combination of properties that can be achieved in a textile article by using synthetic fibers or blends of natural and synthetic fibers.
- a synthetic textile fiber may have any number of desirable properties, every textile fiber must have a number of necessary properties to make the fiber commercially acceptable for typical applications such as wearing apparel, carpets and the like.
- the necessary properties include desirable mechanical properties, lack of discoloration during and immediately after spinning, light-fastness of the undyed fibers, desirable dye takeup, light-fastness of the dyed fibers and retention of dye after dry cleaning and washing.
- an advantage of the textile fiber of this invention is the high degree of flame retardancy after washing and dry cleaning.
- Another advantage of the textile fiber of this invention is the desirable mechanical properties.
- Another advantage of the textile fiber of this invention is the lack of substantial discoloration of the fibers during and immediately after melt spinning.
- Still another advantage of the textile fiber of this invention is the desirable dye takeup.
- Yet another advantage of the textile fiber of this invention is the desirable light-fastness of the dyed fiber.
- Yet another advantage of the textile fiber of this invention is the retention of dye after dry cleaning and washing.
- the textile fiber of this invention comprises an admixture of (A) a fiber forming polyester derived from (1) a dicarboxylic acid which is at least 90 mole percent terephthalic acid, and (2) a diol which is at least 90 mole percent ethylene glycol, tetramethylene glycol, or 1,4-cyclohexanedimethanol, and (B) a sufficient quantity to comprise 0.1-10 weight percent bromine, based on the combined weight of (A) and (B), of an addition polymer comprised of units having the above noted group in the polymer unit.
- A a fiber forming polyester derived from (1) a dicarboxylic acid which is at least 90 mole percent terephthalic acid, and (2) a diol which is at least 90 mole percent ethylene glycol, tetramethylene glycol, or 1,4-cyclohexanedimethanol
- B a sufficient quantity to comprise 0.1-10 weight percent bromine, based on the combined weight of (A) and (B), of
- the fiber forming polyester can be derived from a dicarboxylic acid which is at least 90 mole percent terephthalic acid, and a diol which is at least 90 mole percent ethylene glycol, tetramethylene glycol, or 1,4-cyclohexanedimethanol.
- the remaining dicarboxylic acid can be aliphatic, alicyclic, and aromatic dicarboxylic acids having up to 40 carbon atoms. Examples of such acids include malonic, succinic, adipic, azelaic, sebacic, suberic, 1,4- cyclohexenedicarboxylic, and isophthalic.
- the remaining dicarboxylic acid can contain substituents that impart basic or acid dyeability to the fiber.
- the remaining diol can be aliphatic, alicyclic, or aromatic and can have up to 40 carbon atoms.
- diols include diethylene glycol, 1,2propylene glycol, 1,3-cyclohexanedimethanol and hydroquinone.
- the remaining diol can contain substituents that impart basic or acid dyeability to the fiber.
- the polyester can be derived from terephthalic acid and ethylene glycol.
- the polyesters of this invention have an inherent viscosity of at least 0.4 measured at 25 C. using x23 gram of polymer per 100 ml. of a solvent composed of 60 volumes of phenol and 40 volumes of tetrachloroethane.
- the addition polymer can be comprised of units corresponding to the structure F ii.
- R is a covalent bond or a CH -group
- R is a radical corresponding to the structure 0 Ilia PJ-O-CHg-C-Rg
- R is -H or a monovalent alkyl radical containing 1-8 carbon atoms, or R wherein R R and R are CH Br, CHBr or CBr and R is H or R
- R above can be a covalent bond.
- R can be H or CH;,.
- R can be a covalent bond
- R can be H or CH and R is H and R R and R can be CH Br.
- the addition polymer can be comprised of polymer units formed from tribromoneopentyl acrylate and these polymer units have the structure H H i lit l CH Br.
- the amount of addition polymer can be a sufiicient quantity to comprise 0.1-10 weight percent bromine, based on the combined weight of polyester and addition polymer. More specifically the amount of addition polymer can comprise 2-8 weight percent, based on the weight of polyester and addition polymer.
- the addition polymer can contain, even in major quantities, repeating units other than repeating units disclosed above. More specifically, the addition polymer can be a copolymer containing the above-disclosed repeating units and other addition polymer units derived from vinyl and isopropenyl esters of monobasic saturated .fatty acids containing from 2-18 carbon atoms, e.g., vinyl acetate, vinyl propionate, vinyl butyrate, vinyl stearate, etc., and corresponding isopropenyl esters, alkyl vinyl ethers wherein the alkyl group contain from 1-4 carbon atoms, e.g., methyl vinyl ether, ethyl vinyl ether, etc., alkyl vinyl ketones wherein the alkyl group contains from 1-4 carbon atoms, e.g., methyl vinyl lretone, etc., vinyl derivatives of benzene, e.g., styrene, u-methylstyrene, etc.
- vinyl and vinylidene halides e.g., vinyl chloride, vinyl fluoride, vinylidene chloride, vinylidene fluoride, etc., tetrafiuoroethylene, chlorotrifiuoroethylene, a-olefins containing from 2-8 carbon atoms, e.g., ethylene, isobutylene, etc., and monoalkyl and dialkyl esters of cap-unsaturated dicarboxylic acids wherein, the alkyl groups contains from 1-4- carbon atoms, e.g., monomethyl maleate, monobutyl maleate, dimethyl maleate, dibutyl maleate, etc., and corresponding esters of fumaric, itaconic, and the like.
- the addition polymer comprises at least 35 mole percent, and in another embodiment at least 95 mole percent, units of the structure ffl Li i1.
- one desirable characteristic of the textile fibers of this invention is their mechanical properties. More specifically, the mechanical properties of the textile fibers of this invention, such as tenacity, elongation and modulus, are quite similar to a control fiber not containing the addition polymer. In one embodiment the tenacity is less than 35% lower, the elongation is less than 15% lower and the modulus is less than 10% lower than a control fiber containing no addition polymer.
- Another desirable characteristic of the textile fibers of this invention is the lack of substantial discoloration during and immediately after being melt spun as compared to a control fiber having other types of bromine containing molecules thereon. As is well known in the art, many types of bromine containing molecules cause the fiber to yellow during and after melt spinning.
- Still another desirable characteristic of the textile fibers of this invention is the very desirable light-fastness of the undyed fibers. Specifically, no yellowing or other discoloration is observed after hours exposure to a carbon-arc Fade-Ometer.
- a control textile fiber containing other bromine containing molecules can in many instances exhibit significant yellowing after exposure to a Fade- Ometer.
- One additional characteristic of the textile fibers of this invention is desirable dye takeup.
- Dye takeup is an essential requirement for a commercial fiber.
- the textile fibers of this invention dye to deep shades and exhibit commercially acceptable dye takeup levels.
- a control textile fiber containing many other kinds of bromine-containing compounds does not dye to deep shades.
- Yet another desirable characteristic of the textile fibers of this invention is the light-fastness of the dyed fibers. No fading of the textile fibers of this invention is observed after 20 hours and in some cases after 80 hours in a carbon-arc Fade-Ometer. A control textile fiber which contains other bromine-containing compounds can in many instances exhibit significant fading in a similar test.
- One further desirable characteristic of the fibers of this invention is the retention of dye after dry cleaning and washing. Textile fibers containing many other kinds of bromine-containing molecules do not retain a satisfactory level of dye after dry cleaning and washing.
- the textile fibers of this invention exhibit desirable retention of flame retardancy after washing and dry cleaning because the bromine does not wash or dry clean out of the textile fibers of this invention.
- the textile fibers of this invention retain at least 90 weight percent bromine, and in some cases at least 95 weight percent bromine, based on the weight of the bromine before washing, after washings in accordance with AATCC Test Method 61-1969, Number III-A.
- the textile fibers of this invention retain, based on the weight of bromine before dry cleaning, at least 90 weight percent bromine, and in some cases at least 95 weight percent bromine, after dry cleanings in accordance with AATCC Test Method 132-1969.
- the textile fibers of this invention After washing and dry cleaning the textile fibers of this invention exhibit an Oxygen Index of greater than 21 and in many cases greater than 23.
- the textile fibers of this invention pass the so called Childrens Sleepwear test (FR Doc. 71-10837).
- the polymers of this invention can be formed according to conventional well known polymerization techniques.
- the polyesters of this invention can be formed by direct condensation, ester interchange, or acidolysis.
- the addition polymers of this invention can be formed by solution, bulk, emulsion or bead polymerization.
- the monomers from which the addition polymer units are derived can be prepared using materials and procedures Well known in the art such as the reaction of tribromoneopentyl alcohol and the corresponding carboxylic acid anhydride such as described in US. 3,165,502.
- the admixture of the polyester and the addition polymer can be accomplished by procedures well known in the art such as physically mixing small particles of the materials, co-extrusion, or slurrying a solution of the additive with polyester powder and evaporating off the solvent.
- EXAMPLE 1 This example describes the preparation of textile fibers of poly(ethylene terephthalate) and poly[3-bromo-2,2- bis (bromomethyl) propyl acrylate] often called poly(tribromoneopentyl acrylate)
- poly(ethylene terephthalate) powder having an inherent viscosity of 0.60.
- the solvent is evaporated off at 40 C. with stirring while in a hood. Final drying is performed at 50 C. and 0.1 mm.
- a mixture of 50 mole percent tribromoneopentyl fumarate and 50 mole percent styrene is polymerized in cyclohexanone solution, is isolated as the powder by precipitation in methanol, and is blended in poly(ethylene terephthalate) to give a 92/8 wt. percent polyester/ addition polymer blend.
- This composition is melt spun to give a fiber having the following properties:
- a textile fiber comprising an admixture of (A) a fiber forming polyester having an inherent viscosity of at least 0.4 measured at C. using 0.23 gram of polymer per 100 ml. of a solvent composed of 60 volumes of phenol and 40 volumes tetrachloroethane, the polyester being derived from (1) a dicarboxylic acid which is at least 90 mole percent terephthalic acid, and (2) a diol which is at least 90 mole percent ethylene glycol, tetramethylene glycol, or 11,4-cyclohexanedimethanol, and
- (B) a sufficient quantity to comprise 0.1-10 weight percent bromine, based on the combined weight of (A) and (B), of an addition polymer comprised of units corresponding to the structure iii u. U.
- R ' is a covalent bond or a -CH group
- R is a radical corresponding to the structure 8 4.
- a textile fiber comprising an admixture of (A) a fiber forming polyester having an inherent viscosity of at least 0.4 measured at 25 C. using 0.23 gram of polymer per 100 ml. of a solvent composed of volumes of phenol and 40 volumes tetrachloroethane, the polyester being derived from terephthalic acid and ethylene glycol,
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Artificial Filaments (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
DISCLOSED ARE FLAME RETARDANT TEXTILE FIBERS COMPRISING AD ADMIXTURE OF A POLYESTER AND AN ADDITION POLYMER HAVING THE
-COO-CH2-C(-CH2-BR)3
GROUPS AS A PORTION OF THE POLYMER UNIT. THE POLYESTER IS DERIVED FROM AT LEAST 90 MOLE PERCENT TEREPHTHALIC ACID AND AT LEAST 90 MOLE PERCENT ETHYLENE GLYCOL, TETRAMETHYL ENE GLYCOL, OR 1,4-CYCLOHEXANEDIMETHANOL. THE ADDITION POLYMERS PREFERABLY COMPRISES AT LEAST 95 MOLE PERCENT UNITS OF THE STRUCTURE
-(CH2-CH(-COO-CH2-C(-CH2-BR)3))N-
THE TEXTILE FIBERS OF THIS INVENTION ARE FLAME RETARDANT AND EXHIBIT A DESIRABLE AND UNOBVIOUS COMBINATION OF OTHER PROPERTIES NECESSARY IN A COMMERICALLY ACCEPTABLE TEXTILE FIBER.
-COO-CH2-C(-CH2-BR)3
GROUPS AS A PORTION OF THE POLYMER UNIT. THE POLYESTER IS DERIVED FROM AT LEAST 90 MOLE PERCENT TEREPHTHALIC ACID AND AT LEAST 90 MOLE PERCENT ETHYLENE GLYCOL, TETRAMETHYL ENE GLYCOL, OR 1,4-CYCLOHEXANEDIMETHANOL. THE ADDITION POLYMERS PREFERABLY COMPRISES AT LEAST 95 MOLE PERCENT UNITS OF THE STRUCTURE
-(CH2-CH(-COO-CH2-C(-CH2-BR)3))N-
THE TEXTILE FIBERS OF THIS INVENTION ARE FLAME RETARDANT AND EXHIBIT A DESIRABLE AND UNOBVIOUS COMBINATION OF OTHER PROPERTIES NECESSARY IN A COMMERICALLY ACCEPTABLE TEXTILE FIBER.
Description
United States Patent Office 3,755,498 Patented Aug. 28, 1973 TEXTILE FIBER COMPRISING AN ADMIXTURE OF A POLYESTER AND AN ADDITION POLYMER HAVING A TRIBROMONEOPENTYL GROUP IN THE REPEATING UNIT OF THE ADDITION POLYMER William C. Dickason, Dale E. Van Sickle, and John M. McIntire, Kingsport, Tenn., assignors to Eastman Kodak Company, Rochester, N.Y.
No Drawing. Filed Feb. 9, 1972, Ser. No. 224,992 Int. Cl. C08g 39/10 US. Cl. 260-873 6 Claims ABSTRACT OF THE DISCLOSURE Disclosed are flame retardant textile fibers comprising an admixture of a polyester and an addition polymer having the CHZBI --O-CHz-CH1BI CH7BZ group as a portion of the polymer unit. The polyester is derived from at least 90 mole percent terephthalic acid and at least 90 mole percent ethylene glycol, tetramethylene glycol, or 1,4-cyclohexanedimethanol. The addition polymer preferably comprises at least 95 mole percent units of the structure fjl Li it The texile fibers of this invention are flame retardant and exhibit a desirable and unobvious combination of other properties necessary in a commercially acceptable textile fiber.
This invention relates to a flame retardant textile fiber exhibiting a combination of properties necessary in a commercially acceptable textile fiber.
The use of synthetic textile fibers has increased tremendously over the last several decades. This increased use has resulted in large part from the desirable combination of properties that can be achieved in a textile article by using synthetic fibers or blends of natural and synthetic fibers. Although a synthetic textile fiber may have any number of desirable properties, every textile fiber must have a number of necessary properties to make the fiber commercially acceptable for typical applications such as wearing apparel, carpets and the like. Historically, the necessary properties include desirable mechanical properties, lack of discoloration during and immediately after spinning, light-fastness of the undyed fibers, desirable dye takeup, light-fastness of the dyed fibers and retention of dye after dry cleaning and washing.
One undesirable property of most synthetic fibers is the lack of flame retardancy. The growing significance of this property has now caused many textile fibers to be regarded as commercially unsatisfactory for many applications because of the lack of flame retardancy even though the textile fibers exhibit all the properties historically necessary for commercial acceptance. One particular and significant instance where textile fibers must be flame retardant is the childrens sleepwear field where polyester cotton blends enjoy popularity.
Therefore, to meet current standards for many typical applications, including particularly children's sleepwear, the properties that have been historically necessary for Efforts to produce synthetic fibers which will meet 7 many of the current standards of flame retardancy and still exhibit other properties necessary for commercial acceptance have generally been unsatisfactory. The failure to produce the desired fiber has not generally resulted from an inability to impart flame retardancy to a fiber but instead has resulted from an inability of the fiber to retain the flame retardancy after dry cleaning or laundering or from an inability to impart flame retardancy and still retain the combination of other properties which have been historically necessary in commercially acceptable fibers. Specifically, it is well known in the art that compounds containing bromine and/or chlorine of virtually every kind and description, and particularly brominated aromatic compounds, are all eifective in imparting flame retardancy t0 polyester fibers; however, the compounds typically either wash or dry clean out and destroy the flame retardancy of the fiber or result in one or more of of the commercially necessary properties being unsatisfactory. For example, the addition of bromine-containing compounds to polyester fibers often results in unsatisfactory mechanical properties, discoloration of the fiber during and immediately after melt spinning, unsatisfactory light-fastness of the undyed fiber and unsatisfactory light-fastness of the dyed fibers. Also the bromine containing compounds often wash or dry clean out to produce a level of flame retardancy substantially the same as a polyester fiber not containing a bromine-containing compound.
We have now discovered a textile fiber that retains a high degree of flame retardancy after dry cleaning and washing and in addition exhibits a combination of other necessary properties to make the fiber commercially acceptable. Thus, we have at last discovered a textile fiber that exhibits not only the historically necessary properties for commercial acceptability, but exhibits a high degree of flame retardancy after washing and dry cleaning.
Accordingly, an advantage of the textile fiber of this invention is the high degree of flame retardancy after washing and dry cleaning.
Another advantage of the textile fiber of this invention is the desirable mechanical properties.
Another advantage of the textile fiber of this invention is the lack of substantial discoloration of the fibers during and immediately after melt spinning.
Still another advantage of the textile fiber of this invention is the desirable dye takeup.
Yet another advantage of the textile fiber of this invention is the desirable light-fastness of the dyed fiber.
Yet another advantage of the textile fiber of this invention is the retention of dye after dry cleaning and washing.
Other advantages and features of this invention will be readily apparent to those skilled in the art from the following description and appended claims.
We have accomplished the remarkable objective of obtaining a flame retardant textile fiber that exhibits a desirable combination of properties necessary for commercial acceptance by discovering a textile fiber broadly comprising an admixture of a polyester and an addition polymer having the group as a portion of the polymer unit.
More specifically, the textile fiber of this invention comprises an admixture of (A) a fiber forming polyester derived from (1) a dicarboxylic acid which is at least 90 mole percent terephthalic acid, and (2) a diol which is at least 90 mole percent ethylene glycol, tetramethylene glycol, or 1,4-cyclohexanedimethanol, and (B) a sufficient quantity to comprise 0.1-10 weight percent bromine, based on the combined weight of (A) and (B), of an addition polymer comprised of units having the above noted group in the polymer unit.
Broadly, the fiber forming polyester can be derived from a dicarboxylic acid which is at least 90 mole percent terephthalic acid, and a diol which is at least 90 mole percent ethylene glycol, tetramethylene glycol, or 1,4-cyclohexanedimethanol. The remaining dicarboxylic acid can be aliphatic, alicyclic, and aromatic dicarboxylic acids having up to 40 carbon atoms. Examples of such acids include malonic, succinic, adipic, azelaic, sebacic, suberic, 1,4- cyclohexenedicarboxylic, and isophthalic. The remaining dicarboxylic acid can contain substituents that impart basic or acid dyeability to the fiber. The remaining diol can be aliphatic, alicyclic, or aromatic and can have up to 40 carbon atoms. Examples of such diols include diethylene glycol, 1,2propylene glycol, 1,3-cyclohexanedimethanol and hydroquinone. The remaining diol can contain substituents that impart basic or acid dyeability to the fiber. In one specific embodiment the polyester can be derived from terephthalic acid and ethylene glycol. The polyesters of this invention have an inherent viscosity of at least 0.4 measured at 25 C. using x23 gram of polymer per 100 ml. of a solvent composed of 60 volumes of phenol and 40 volumes of tetrachloroethane.
Broadly, the addition polymer can be comprised of units corresponding to the structure F ii.
wherein R is a covalent bond or a CH -group, R is a radical corresponding to the structure 0 Ilia PJ-O-CHg-C-Rg R is -H or a monovalent alkyl radical containing 1-8 carbon atoms, or R wherein R R and R are CH Br, CHBr or CBr and R is H or R In one embodiment R above can be a covalent bond. In another embodiment where R is a covalent bond, R can be H or CH;,.
In still one further embodiment R can be a covalent bond, R can be H or CH and R is H and R R and R can be CH Br. In this embodiment the addition polymer can be comprised of polymer units formed from tribromoneopentyl acrylate and these polymer units have the structure H H i lit l CH Br The addition polymers of this invention are well known in the art and are disclosed in references such as US. 3,165,502.
Broadly the amount of addition polymer can be a sufiicient quantity to comprise 0.1-10 weight percent bromine, based on the combined weight of polyester and addition polymer. More specifically the amount of addition polymer can comprise 2-8 weight percent, based on the weight of polyester and addition polymer.
Broadly, the addition polymer can contain, even in major quantities, repeating units other than repeating units disclosed above. More specifically, the addition polymer can be a copolymer containing the above-disclosed repeating units and other addition polymer units derived from vinyl and isopropenyl esters of monobasic saturated .fatty acids containing from 2-18 carbon atoms, e.g., vinyl acetate, vinyl propionate, vinyl butyrate, vinyl stearate, etc., and corresponding isopropenyl esters, alkyl vinyl ethers wherein the alkyl group contain from 1-4 carbon atoms, e.g., methyl vinyl ether, ethyl vinyl ether, etc., alkyl vinyl ketones wherein the alkyl group contains from 1-4 carbon atoms, e.g., methyl vinyl lretone, etc., vinyl derivatives of benzene, e.g., styrene, u-methylstyrene, etc. vinyl and vinylidene halides, e.g., vinyl chloride, vinyl fluoride, vinylidene chloride, vinylidene fluoride, etc., tetrafiuoroethylene, chlorotrifiuoroethylene, a-olefins containing from 2-8 carbon atoms, e.g., ethylene, isobutylene, etc., and monoalkyl and dialkyl esters of cap-unsaturated dicarboxylic acids wherein, the alkyl groups contains from 1-4- carbon atoms, e.g., monomethyl maleate, monobutyl maleate, dimethyl maleate, dibutyl maleate, etc., and corresponding esters of fumaric, itaconic, and the like.
In one embodiment the addition polymer comprises at least 35 mole percent, and in another embodiment at least 95 mole percent, units of the structure ffl Li i1.
As noted above, one desirable characteristic of the textile fibers of this invention is their mechanical properties. More specifically, the mechanical properties of the textile fibers of this invention, such as tenacity, elongation and modulus, are quite similar to a control fiber not containing the addition polymer. In one embodiment the tenacity is less than 35% lower, the elongation is less than 15% lower and the modulus is less than 10% lower than a control fiber containing no addition polymer.
Another desirable characteristic of the textile fibers of this invention is the lack of substantial discoloration during and immediately after being melt spun as compared to a control fiber having other types of bromine containing molecules thereon. As is well known in the art, many types of bromine containing molecules cause the fiber to yellow during and after melt spinning.
Still another desirable characteristic of the textile fibers of this invention is the very desirable light-fastness of the undyed fibers. Specifically, no yellowing or other discoloration is observed after hours exposure to a carbon-arc Fade-Ometer. A control textile fiber containing other bromine containing molecules can in many instances exhibit significant yellowing after exposure to a Fade- Ometer.
One additional characteristic of the textile fibers of this invention is desirable dye takeup. Dye takeup is an essential requirement for a commercial fiber. The textile fibers of this invention dye to deep shades and exhibit commercially acceptable dye takeup levels. A control textile fiber containing many other kinds of bromine-containing compounds does not dye to deep shades.
Yet another desirable characteristic of the textile fibers of this invention is the light-fastness of the dyed fibers. No fading of the textile fibers of this invention is observed after 20 hours and in some cases after 80 hours in a carbon-arc Fade-Ometer. A control textile fiber which contains other bromine-containing compounds can in many instances exhibit significant fading in a similar test.
One further desirable characteristic of the fibers of this invention is the retention of dye after dry cleaning and washing. Textile fibers containing many other kinds of bromine-containing molecules do not retain a satisfactory level of dye after dry cleaning and washing.
The textile fibers of this invention exhibit desirable retention of flame retardancy after washing and dry cleaning because the bromine does not wash or dry clean out of the textile fibers of this invention. In one embodiment the textile fibers of this invention retain at least 90 weight percent bromine, and in some cases at least 95 weight percent bromine, based on the weight of the bromine before washing, after washings in accordance with AATCC Test Method 61-1969, Number III-A. In one embodiment the textile fibers of this invention retain, based on the weight of bromine before dry cleaning, at least 90 weight percent bromine, and in some cases at least 95 weight percent bromine, after dry cleanings in accordance with AATCC Test Method 132-1969.
After washing and dry cleaning the textile fibers of this invention exhibit an Oxygen Index of greater than 21 and in many cases greater than 23. In one embodiment the textile fibers of this invention pass the so called Childrens Sleepwear test (FR Doc. 71-10837).
The polymers of this invention can be formed according to conventional well known polymerization techniques. The polyesters of this invention can be formed by direct condensation, ester interchange, or acidolysis. The addition polymers of this invention can be formed by solution, bulk, emulsion or bead polymerization. The monomers from which the addition polymer units are derived can be prepared using materials and procedures Well known in the art such as the reaction of tribromoneopentyl alcohol and the corresponding carboxylic acid anhydride such as described in US. 3,165,502.
The admixture of the polyester and the addition polymer can be accomplished by procedures well known in the art such as physically mixing small particles of the materials, co-extrusion, or slurrying a solution of the additive with polyester powder and evaporating off the solvent.
These admixtures of the polyester and the addition polymer can be spun by conventional spinning techniques such as melt spinning.
The following examples are presented to illustrate the invention and are not to be interpreted as limiting the invention to the specific embodiments of the examples.
EXAMPLE 1 This example describes the preparation of textile fibers of poly(ethylene terephthalate) and poly[3-bromo-2,2- bis (bromomethyl) propyl acrylate] often called poly(tribromoneopentyl acrylate) In an evaporating dish is placed 184.2 g. of poly(ethylene terephthalate) powder having an inherent viscosity of 0.60. To the dish is added a solution of 15.8 g. poly[3- bromo 2,2 bis(bromomethyl)propyl acrylate] (I.V.= 0.07) in 150 ml. methylene chloride. The solvent is evaporated off at 40 C. with stirring while in a hood. Final drying is performed at 50 C. and 0.1 mm. to give an intimate mixture of poly(ethylene terephthalate) containing 7.9% poly[3-bromo-2,2-bis(bromomethyl) propyl acrylate]. This mixture is melt spun at 275 C. to produce nondiscolored fibers having an inherent viscosity of 0.56. The fibers are drawn in water at 68 C. and then in superheated steam for an overall draw factor of 4.0. After being heatset in a relaxed state for 5 min. at 145 C., the fibers are not discolored and have the following properties: 3.0 den./fil., 3.9 g./den. tenacity, 26% elongation and 42 g./den. elastic modulus. A tube knitted from these fibers showed no yellowing after 80 hr. exposure in a carbon-arc Fade-Ometer. On another sample of the tube the Chlidrens Sleepwear Test (FR Doc. 71-10837) is carried out. The fibers pass the test. The Limiting Oxygen Index is 23.1. On another knitted sample, 15 dry cleaning cycles with perchloroethylene are carried out according to AATCC Test Method 132-1969. Bromine analyses before and after the test indicate no loss of bromine. These fibers dye to deep shades and retain the dye during washing and dry cleaning.
Similar results are achieved when poly(tetramethylene terephthalate) or poly(1,4 cyclohexylenedimethylene terephthalate) are used in place of poly(ethylene terephthalate) EXAMPLE 2 This example describes the preparation of textile fibers of poly(ethylene terephthalate) and an addition polymer having 50 mole percent bromine containing units.
A mixture of 50 mole percent tribromoneopentyl fumarate and 50 mole percent styrene is polymerized in cyclohexanone solution, is isolated as the powder by precipitation in methanol, and is blended in poly(ethylene terephthalate) to give a 92/8 wt. percent polyester/ addition polymer blend. This composition is melt spun to give a fiber having the following properties:
Denier 1.28 Tenacity g./den 4.77 Elongation percent 20 Elastic modulus ..g./den' EXAMPLE 3 Table I below illustrates several textile fibers of poly (ethylene terephthalate) and various addition co-polymers. Properties of these fibers are similar to those obtained in Examples 1 and 2.
TABLE I Weight ratio of Molar poly(ethylene ratio of terephithal comonomers :1 Fiber No. Comonomer 1 Comonomer in copolymer copolyihzr 1 Tribromoneopeutyl acrylate Methyl aerylate 25 90 10 2 Tribromoneopentyl methacrylate...-- Ethyl methaerylate.. 60/40 90/10 3 Tribromoneopentyl fnmm'ntn Vinyl acetate 50/50 92/8 4. Trlbromoneopentyl malente Vinyl ethyl ether 50/50 90/10 5. Tr bromoneopentyl itaconate Ethylene 40/60 /20 6 Tr bromoneopentyl acrylate Vinyl methyl ketone /15 85/15 7 Tnbromoneopentyl fumarate.-. Vinylidine fluoride 50/50 95/5 The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modification can be effected within the spirit and scope of the invention.
We claim:
1. A textile fiber comprising an admixture of (A) a fiber forming polyester having an inherent viscosity of at least 0.4 measured at C. using 0.23 gram of polymer per 100 ml. of a solvent composed of 60 volumes of phenol and 40 volumes tetrachloroethane, the polyester being derived from (1) a dicarboxylic acid which is at least 90 mole percent terephthalic acid, and (2) a diol which is at least 90 mole percent ethylene glycol, tetramethylene glycol, or 11,4-cyclohexanedimethanol, and
(B) a sufficient quantity to comprise 0.1-10 weight percent bromine, based on the combined weight of (A) and (B), of an addition polymer comprised of units corresponding to the structure iii u. U.
wherein R 'is a covalent bond or a -CH group, R is a radical corresponding to the structure 8 4. The fiber of claim 3 wherein R is -H, and R R and R are CH Br.
5. The fiber of claim 4 wherein the addition polymer comprises at least 35 mole percent units of the structure 6. A textile fiber comprising an admixture of (A) a fiber forming polyester having an inherent viscosity of at least 0.4 measured at 25 C. using 0.23 gram of polymer per 100 ml. of a solvent composed of volumes of phenol and 40 volumes tetrachloroethane, the polyester being derived from terephthalic acid and ethylene glycol,
(B) based on the combined weight of (A) and (B),
from 28 weight percent of an addition polymer having at least mole percent units of the structure References Cited UNITED STATES PATENTS 3,165,502 1/1965 Caldwell 26086.1
OTHER REFERENCES Industrial Eng. Chem, 1970, 62(3), pp. 41-53, R. C. Nametz, Flame-Retarding Synthetic Textile Fibers.
WILLIAM H. SHORT, Primary Examiner E. WOODBERRY, Assistant Examiner US. Cl. X.R.
8-ll5.5, DIG. 4
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US22499272A | 1972-02-09 | 1972-02-09 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3755498A true US3755498A (en) | 1973-08-28 |
Family
ID=22843097
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00224992A Expired - Lifetime US3755498A (en) | 1972-02-09 | 1972-02-09 | Textile fiber comprising an admixture of a polyester and an addition polymer having a tribromoneopentyl group in the repeating unit of theaddition polymer |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US3755498A (en) |
| JP (1) | JPS4891316A (en) |
| CA (1) | CA1000892A (en) |
| DE (1) | DE2305577A1 (en) |
| GB (1) | GB1399322A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USB519486I5 (en) * | 1973-02-20 | 1976-02-17 | ||
| US4367315A (en) * | 1981-01-29 | 1983-01-04 | Occidental Chemical Corporation | Flame retardant polymer systems and polymer compositions |
| US5407728A (en) * | 1992-01-30 | 1995-04-18 | Reeves Brothers, Inc. | Fabric containing graft polymer thereon |
| US5486210A (en) * | 1992-01-30 | 1996-01-23 | Reeves Brothers, Inc. | Air bag fabric containing graft polymer thereon |
-
1972
- 1972-02-09 US US00224992A patent/US3755498A/en not_active Expired - Lifetime
-
1973
- 1973-01-05 CA CA160,693A patent/CA1000892A/en not_active Expired
- 1973-02-05 DE DE19732305577 patent/DE2305577A1/en active Pending
- 1973-02-05 JP JP48013867A patent/JPS4891316A/ja active Pending
- 1973-02-08 GB GB626173A patent/GB1399322A/en not_active Expired
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USB519486I5 (en) * | 1973-02-20 | 1976-02-17 | ||
| US3992481A (en) * | 1973-02-20 | 1976-11-16 | Stauffer Chemical Company | Fire retardant thermoplastic polymer compositions |
| US4367315A (en) * | 1981-01-29 | 1983-01-04 | Occidental Chemical Corporation | Flame retardant polymer systems and polymer compositions |
| US5407728A (en) * | 1992-01-30 | 1995-04-18 | Reeves Brothers, Inc. | Fabric containing graft polymer thereon |
| US5486210A (en) * | 1992-01-30 | 1996-01-23 | Reeves Brothers, Inc. | Air bag fabric containing graft polymer thereon |
| US5552472A (en) * | 1992-01-30 | 1996-09-03 | Reeves Brothers, Inc. | Fabric containing graft polymer thereon |
Also Published As
| Publication number | Publication date |
|---|---|
| CA1000892A (en) | 1976-11-30 |
| DE2305577A1 (en) | 1973-08-16 |
| JPS4891316A (en) | 1973-11-28 |
| GB1399322A (en) | 1975-07-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3217782B2 (en) | Polyester / polycarbonate blend containing phosphite | |
| US4035343A (en) | Flame resistant synthetic linear polyesters and shaped structures made thereof | |
| JP3109053B2 (en) | Polyester resin composition | |
| US3755498A (en) | Textile fiber comprising an admixture of a polyester and an addition polymer having a tribromoneopentyl group in the repeating unit of theaddition polymer | |
| US5384184A (en) | Polyester block copolymer and elastic yarn composed thereof | |
| US3225003A (en) | Linear copolyester of hydroquinone with a mixture of hexahydroisophthalic and hexahydroterephthalic acids | |
| US3875108A (en) | Deep dyeable, lusterous, and fire-retardant linear polyester composition | |
| US4211678A (en) | Copolyester yarns and fibers dyeable without carrier at atmospheric pressure | |
| US3874157A (en) | Flame-retardant fiber blend | |
| US3809681A (en) | Brominated bisphenol a diethanol polyformal | |
| US4043981A (en) | Copolyesters derived from ethoxylated 3,5-dibromo-4-hydroxybenzoic acid | |
| US2831831A (en) | Copolyesters containing aromatic amino acid derivatives | |
| US3271344A (en) | Flame-resistant acrylonitrile polymer compositions containing polyepihalohydrins andantimony oxide | |
| US4045513A (en) | Ethylene 2,6-naphthalene dicarboxylated-alkylene-2,5 dibromoterephthalate flame-retardant copolyesters | |
| US3206420A (en) | Blends of a vinylidene cyanide polymer and a polyalkylene glycol or derivative thereof | |
| US3085987A (en) | Linear polyester containing a diaryl ether and process of producing same | |
| JP3168107B2 (en) | Cationic dyeable flame retardant polyester fiber | |
| US3388170A (en) | Polyoxyethylene adduct of 2, 6-di-t-butylphenol | |
| JP2865910B2 (en) | Flame retardant polyester copolymer | |
| US3898196A (en) | Copolyesters of fluorine containing aliphatic dicarboxylic acids | |
| JP2883778B2 (en) | Method for producing flame-retardant polyester fiber | |
| CA1059270A (en) | Flame-retardant polyester fiber compositions | |
| JPH08109518A (en) | Highly flame retardant polyester conjugated fiber excellent in light fastness | |
| US3146217A (en) | Thermoplastic compositions stabilized with alkyl o-salicyloylbenzoates | |
| US3440221A (en) | Regular sequential copolyesters |