US3752602A - Oil pump for heating installations - Google Patents

Oil pump for heating installations Download PDF

Info

Publication number
US3752602A
US3752602A US00170773A US3752602DA US3752602A US 3752602 A US3752602 A US 3752602A US 00170773 A US00170773 A US 00170773A US 3752602D A US3752602D A US 3752602DA US 3752602 A US3752602 A US 3752602A
Authority
US
United States
Prior art keywords
casing
valve
pump assembly
armature plate
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00170773A
Inventor
G Hansen
Clausen J Rono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19712131857 external-priority patent/DE2131857C3/en
Application filed by Danfoss AS filed Critical Danfoss AS
Application granted granted Critical
Publication of US3752602A publication Critical patent/US3752602A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/06Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/10Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid with additional mechanism between armature and closure member

Definitions

  • ABSTRACT relates to an oil pump assembly comprising a casing in which pumping elements are disposed and in which fluid intake and exhaust passages are formed.
  • a bypass passage with valve means therein is between the intake and exhaust passages.
  • An electromagnet is mounted in the casing and the armature thereof is associated with and operates the valve means.
  • the electromagnet is controlled jointly with the motor which drives the pump assembly in a manner such that the valve means are closed when pump assembly is operating and open when the pump assembly is turned off.
  • the opening of the valve means in this manner permits pressurized fluid to be bypassed to the intake passage such that the usual pressure regulating and cut-off valve connected to the exhaust or pressure outlet side will close instantaneously upon the motor being turned off by reason of the instantaneous reduction of pressure caused by the instantaneous bypassing of the pressuized fluid.
  • the invention relates to an oil pump for heating installations, in which pump a pair of gearwheels, held between a cover plate and a wall solid with the casing, is located between the casing, accommodating the drive shaft, and a cover.
  • the cover encloses a filter and an intake chamber.
  • the casing contains ports for pipework supplying the nozzles, an intake pipe and a discharge pipe, as well as a pressure-regulating and cut-off valve.
  • the object of the invention is ,thatof fitting an oil pump with a magnetic valve in such a way that a construction that occupies little space and is cheap is obtained.
  • this object is achieved by means of an oil pump of the initially stated kind that is characterized in that there is associated therewith in known manner a magnetic valve which, when the pump is switched off, connects the delivery side to the lowpressure side (intake and discharge side respectively) and in that the magnet is accommodated in the cover, and an armature plate, actuated by the magnet, is accommodated in a low-pressure chamber between the cover and'cover plate, a valve opening connected to the delivery side being closed with the aid of said armature plate.
  • the oil pump only requires to be extended slightly in the axial direction. Because of its slight thickness, the armature plate contributes hardly anything to this increase. Since an adequate crosssectional area is available, the magnet can be made fiat. The additional cost as. compared withthe known magneticvalves that are not built into the system is considerably lower since economies can be effected not only in material but also in pipe connections.
  • the armature plate is designed as the valve plate and, for the purpose of closing the valve opening, it bears against a wall by that of its end faces remote from the casing. In this way, the functions of the valve and the armature are combined. Special valves for effecting opening can generally be dispensed with, since when the magnet is energized the armature plate lifts from the wall under the effect of the pressurized oil that is to be sealed off, whereupon the valve opening communicates with the low-pressure chamber.
  • valve opening is provided in the armature plate, and pressure-valve passages in the armature plate and the cover plate are interconnected by way of a movable coupling. In this way, a short connection between the delivery side and the associated valve opening is achieved. Moreover, this valve opening can be provided within the crosssection of the magnet, i.e., in the zone where the greatest force of attraction is present.
  • the armature plate actuates the closure member which closes the valve opening.
  • the armature plate is part of a. swingable double-armed lever, that arm of which remote from the magnet actuates the closure member, the latter being guided in a bore formed in the cover plate and disposed parallel with the drive shaft.
  • the closure member is closed towards the pair of gearwheels and, since it is accommodated in the cover plate, it does not occupy any additional space.
  • closure member may close the valve opening in a direction opposite that of the flow of the oil passing from the delivery side to the lowpressure side.
  • the magnet When the magnet is energized, the oil under pressure automatically opens the valve and lifts the armature plate.
  • the cover plate contains a recess matched to the shape of the armature plate, and the point of rotation of the double-armed lever is formed by a spindle which engages in a groove in the armature plate and in a groove in the cover plate on both sides of the recess.
  • the individual components then only require to be pushed one into the other for the purpose of their assembly.
  • the armature plate may be provided with a leaf spring which acts on the closure member.
  • the bias of the leaf spring may be so selected that when the armature is pulled up,
  • connecting ports and/or a pressure-regulating and cut-off valve are located in the cover alongside the magnet. In this way, the somewhat greater depth of cover necessitated by the magnet can be used for accommodating further components. Conversely, in many cases the pump casing can then be reduced in size in the axial direction.
  • FIG. 1 is a longitudinal section through part of an oil pump in accordance with the invention
  • FIG. 2 is a diagram showing .how the pump seen in FIG. 1 is connected up
  • FIG. 3 illustrates a special form of the valve plate
  • FIG. 4 is a longitudinal section through part of another form of the oil pump in accordance with the invention.
  • FIG. 5 is a plan view of the cover plate of the pump seen in FIG. 4.
  • an oil pump 2, a pressureregulating and cut-off valve 3, and a magnetic valve 4 constitute part of a unit I.
  • the pipework supplying the nozzles is connected to the port 5, the intake pipe running from the oil tank is connected to the port 6, and the discharge pipe returning to the oil tank is connected to the port 7.
  • the intake side 8 and the discharge side 9 may be connected through a passage 10, the port 7 being closed.
  • the magnetic valve 4 connects the delivery side 11 of the pump to the discharge side 9. When the pump 2 is switched off, this valve opens. Consequently, the pressure on the delivery side 11 drops immediately and the cut-off valve 3 closes.
  • the unit 1 consists of a casing 12 in which the drive shaft 13 is mounted, and of a cover 14 which is secured to the casing 12 by means of screws 15, an O-ring 16 being interposed between the cover and the casing.
  • the pump 2 is located between a casing wall 17 and a cover plate 18. It comprises an externally toothed wheel 19 which is arranged eccentrically in an internally toothed ring, which in turn is rotatable in a ring 21 solidly connected to the casing.
  • the cover plate 18 is secured to the casing 12 by means of screws not illustrated.
  • the cover-plate contains an intake groove 22 which is connected by way of a passage 23 to an annular intake chamber 24 in which is also located a filter 25.
  • This intake chamber communicates by way of a passage 26 with a bore 27 in the cover 14, at the inlet of which is located the port 6. Also provided in the cover plate 18 is a pressure groove 28 which communicates with the pipework for the nozzles and, by way of the passage 29, with a firmly inserted small tube 30.
  • the cover plate 18 contains a recess 31 which is of less depth near the tube 30. Fitted in this recess is an armature plate 32 in which there runs a pressure passage 33. This connects the tube 30 to a valve opening 34. For the purpose of efiecting a pressure-tight transfer at the coupling point, there is provided an O-ring 35 which surrounds the tube 30 and is axially compressed between the armature plate 32 and an intermediate plate 18. This compression takes place when the cover 14 is drawn towards the casing 12 with the aid of the screws 15, and the inner face of the cover bears against the armature plate 32, a partition 36 being interposed.
  • a magnet 37 consisting of E-shaped laminations and of a coil 39. It is pressed against the partition 36 by a spring 40 backed by a clo-.
  • the closure plate 41 is secured to the cover 14 with the aid of screws 42. Near the screws 15, the closure plate 41 contains openings so that this plate 41 and the electro-magnet 37 can be removed after the screws 42 have been loosened, without the cover 14 being detached from the casing 12.
  • the recess 31 accommodating the armature plate 32 constitutes a lowpressure chamber 43 which, by way of a passage 44 in the intermediate plate 18, the partition 36 and the cover 14, communicates with a bore which is an extension of the bore 27 and constitutes the port 7 at the opposite end. A screw 45 between this bore and the bore 27 closes the passage 10.
  • the armature plate 32 When the electro-magnet 37 is energized, the armature plate 32 is drawn towards the partition 36, so that the valve opening 34, which communicates with the delivery side of the pump, is closed.
  • the pressure obtaining in the passage 33 applies a force such that the armature plate 32 swings about the point of suspension on the tube 30, so that the pressure rapidly relaxes towards the low-pressure side. Consequently, the pressure-regulating and cut-off valve 3, disposed alongside the magnet 37 in the cover 14, rapidly closes the pipe leading to the port 5.
  • the armature plate 32 can be produced in a very simple manner from two discs 46 and 47, each of which contains an opening 48 and 49 and at least one channel 50 which interconnects the openings. These two discs can be welded or bonded to each other.
  • the pump has a casing 51 in which the drive shaft 52 is mounted.
  • a cover 53 is secured to the casing. Clamped between these two parts is a cover plate 54 and a ring 55 solidly connected to the casing.
  • a filter 57 In the annular space 56 surrounding these parts there is located a filter 57.
  • Rotatable in the ring 55 is an internally toothed ring 58 which cooperates with an externally toothed wheel 59 which is driven by the shaft 52.
  • an intake groove 60 which communicates through a passage 61 with the annular chamber 56, and also associated with the chambers is a pressure groove 62 which communicates with the delivery side of the pump and, through a passage 63, with a valve bore 64.
  • the coil 65 of an electro-magnet 66 is located in a recess in the cover 53.
  • the coil surrounds a magnet core 67, which is secured to an end plate 68 which presses the coil against the spring 69.
  • the magnet core 67 extends through a sleeve 70 of non-magnetic material which is supported on the magnetically conductive cover 53, an O-ring being interposed between the sleeve and the cover.
  • the cover also accommodates a pressure-regulating and cut-off valve 71. Further bores 72 are provided for connecting intake and pressure passages.
  • a low-pressure chamber 73 of a shape corresponding to that of an armature plate 74, is formed in the cover plate 54.
  • the armature plate 74 is constituted by a double-armed lever which is adapted to swing about a spindle 75.
  • This spindle consists of a rod which is fitted in a groove 76 in the armature plate and in grooves 77 on both sides of the chamber 73.
  • Connected to the armature plate is a leaf spring 78 which is outwardly biased within a range defined by a clip 79.
  • the free end 80 of this spring presses on a closure member 81 of a valve that closes the opening 64 and is guided in a bore 82 parallel with the drive shaft 52.
  • FIG. 5 illustrates the form of the armature plate 74 and of the low-pressure chamber 73. It can also be seen that the cover plate 54 is secured to the casing 51 with the aid of screws 83, and that passages 84 run out from the cover plate 54 and cooperate with corresponding passages in the cover 53. V
  • the electro-magnet 66 When current is received by the electric motor driving the geared pump, the electro-magnet 66 is also energized. The armature plate 74 is pulled up and the closure member 81 is pressed against the opening 64 by the end 80 of the spring, so that this opening is closed.
  • the motor is switched off and the elctro-magnet 66 is therefore de-energized, oil located on the delivery side 62, 63 of the pump, presses the closure member 81 to the left, so that the armature plate 74 is swung about the spindle in the clockwise direction.
  • the pressure in the direction of the low-pressure side relaxes very rapidly with the result that the cut-off valve also closes rapidly.
  • a pump assembly comprising a casing, pumping elements mounted to said casing, fluid intake and exhaust passages formed in said casing, bypass passage means between said intake and exhaust passages, a combination valve and armature plate unit for opening and closing said bypass passage means, and electromagnetic coil means mounted in said casing for actuat- 6 ing said valve and armature plate unit to close said byunit to said casing.
  • a pump assembly according to daim 5 including cPmbinatiPn armature Plate and f f a P shaft means connected to said pumping elements, said of Sam bypass passage means bemg m sald arma' coupling means being disposed eccentrically relative to ture plate and valve unit, coupling means between said 5 unit and said casing, said coupling means providing a pivotal mounting for said member and has the form of A pump assmbliy accwdmgfo clfmn 5 whgerem a fluid conveying tube. recess IS fonned m said casing, said unit being disposed 2.
  • a pump assembly according to claim 4 wherein in Said ss. said coupling means is the sole means attaching said 10 the axis of said shaft means.

Abstract

The invention relates to an oil pump assembly comprising a casing in which pumping elements are disposed and in which fluid intake and exhaust passages are formed. A bypass passage with valve means therein is between the intake and exhaust passages. An electromagnet is mounted in the casing and the armature thereof is associated with and operates the valve means. The electromagnet is controlled jointly with the motor which drives the pump assembly in a manner such that the valve means are closed when pump assembly is operating and open when the pump assembly is turned off. The opening of the valve means in this manner permits pressurized fluid to be bypassed to the intake passage such that the usual pressure regulating and cut-off valve connected to the exhaust or pressure outlet side will close instantaneously upon the motor being turned off by reason of the instantaneous reduction of pressure caused by the instantaneous bypassing of the pressuized fluid.

Description

United States Patent 11 1 Hansen et a1.
[451 Aug. 14, 1973 OIL PUMP FOR HEATING INSTALLATIONS Inventors: Gunner Lyshoj Hansen; .lorgen Rono-Clausen, both of Nordborg, Denmark Filed:
Foreign Application Priority Data June 26, 1971 Germany P 21 31 857.0
US. Cl Int. Cl.
417/310, 417/505, 251/141 F04b 49/00 Field of Search 417/299, 302, 304,
References Cited UNITED STATES PATENTS Painter 417/310 Shaw 418/132 Connelly 417/310 Lundvik 417/304 Cutler 251/141 Johnson.... 251/138 Primary Examiner-William L. Freeh Assistant Examiner-Gregory LaPointe Attorney-Wayne B. Easton [57] ABSTRACT The invention relates to an oil pump assembly comprising a casing in which pumping elements are disposed and in which fluid intake and exhaust passages are formed. A bypass passage with valve means therein is between the intake and exhaust passages. An electromagnet is mounted in the casing and the armature thereof is associated with and operates the valve means. The electromagnet is controlled jointly with the motor which drives the pump assembly in a manner such that the valve means are closed when pump assembly is operating and open when the pump assembly is turned off. The opening of the valve means in this manner permits pressurized fluid to be bypassed to the intake passage such that the usual pressure regulating and cut-off valve connected to the exhaust or pressure outlet side will close instantaneously upon the motor being turned off by reason of the instantaneous reduction of pressure caused by the instantaneous bypassing of the pressuized fluid.
4 Claims, 5 Drawing Figures Patented Aug. 14, I973 3,752,602
2 Sheets-Sheet. 1
1 OIL PUMP FOR HEATING INSTALLATIONS The invention relates to an oil pump for heating installations, in which pump a pair of gearwheels, held between a cover plate and a wall solid with the casing, is located between the casing, accommodating the drive shaft, and a cover.
Oil pumps of this kind have proved successful on a large scale. The cover encloses a filter and an intake chamber. The casing contains ports for pipework supplying the nozzles, an intake pipe and a discharge pipe, as well as a pressure-regulating and cut-off valve.
It is also known to fit an oil pump for heating installations with a magnetic valve which, when the pump is switched off, connects the delivery side with the lowpressure side (intake and discharge side respectively).
This causes the pump pressure to drop rapidly when the pump is switched off, so that the cut-oif valve closes more rapidly even if the design is a simple one, and dripping of oil and its carbonizing effect can thus be prevented. In this connection a magnetic valve comprising a plunger-type armature is known, the casing of which valve can be'titted between an oil pump and a pressure-regulating and cut-off valve arrangement, the
magnet being arranged at the side of this casing. This arrangement occupies a lot of space and is expensive.
The object of the invention is ,thatof fitting an oil pump with a magnetic valve in such a way that a construction that occupies little space and is cheap is obtained.
According to the invention, this object is achieved by means of an oil pump of the initially stated kind that is characterized in that there is associated therewith in known manner a magnetic valve which, when the pump is switched off, connects the delivery side to the lowpressure side (intake and discharge side respectively) and in that the magnet is accommodated in the cover, and an armature plate, actuated by the magnet, is accommodated in a low-pressure chamber between the cover and'cover plate, a valve opening connected to the delivery side being closed with the aid of said armature plate.
In this construction, the oil pump only requires to be extended slightly in the axial direction. Because of its slight thickness, the armature plate contributes hardly anything to this increase. Since an adequate crosssectional area is available, the magnet can be made fiat. The additional cost as. compared withthe known magneticvalves that are not built into the system is considerably lower since economies can be effected not only in material but also in pipe connections.
In a preferred arrangement, the armature plate is designed as the valve plate and, for the purpose of closing the valve opening, it bears against a wall by that of its end faces remote from the casing. In this way, the functions of the valve and the armature are combined. Special valves for effecting opening can generally be dispensed with, since when the magnet is energized the armature plate lifts from the wall under the effect of the pressurized oil that is to be sealed off, whereupon the valve opening communicates with the low-pressure chamber.
Considerable advantage accrues if the valve opening is provided in the armature plate, and pressure-valve passages in the armature plate and the cover plate are interconnected by way of a movable coupling. In this way, a short connection between the delivery side and the associated valve opening is achieved. Moreover, this valve opening can be provided within the crosssection of the magnet, i.e., in the zone where the greatest force of attraction is present.
In another very advantageous arrangement, the armature plate actuates the closure member which closes the valve opening. By separating; the functions of the armature and the closure member from each other, the two parts can be designed in the best possible manner.
It is particularly advantageous if the armature plate is part of a. swingable double-armed lever, that arm of which remote from the magnet actuates the closure member, the latter being guided in a bore formed in the cover plate and disposed parallel with the drive shaft. In this way, the closure member is closed towards the pair of gearwheels and, since it is accommodated in the cover plate, it does not occupy any additional space.
Furthermore, the closure member may close the valve opening in a direction opposite that of the flow of the oil passing from the delivery side to the lowpressure side. When the magnet is energized, the oil under pressure automatically opens the valve and lifts the armature plate.
A particularly simple form of construction is obtained if the cover plate contains a recess matched to the shape of the armature plate, and the point of rotation of the double-armed lever is formed by a spindle which engages in a groove in the armature plate and in a groove in the cover plate on both sides of the recess. The individual components then only require to be pushed one into the other for the purpose of their assembly. I
In order to prevent overloading of the valve, the armature plate may be provided with a leaf spring which acts on the closure member. The bias of the leaf spring may be so selected that when the armature is pulled up,
exactly the correct valve-closing pressure is obtained.
In a preferred arrangement, connecting ports and/or a pressure-regulating and cut-off valve are located in the cover alongside the magnet. In this way, the somewhat greater depth of cover necessitated by the magnet can be used for accommodating further components. Conversely, in many cases the pump casing can then be reduced in size in the axial direction.
The invention will now be described in more detail by reference to embodiments illustrated in the drawing, in which:
FIG. 1 is a longitudinal section through part of an oil pump in accordance with the invention,
FIG. 2 is a diagram showing .how the pump seen in FIG. 1 is connected up,
FIG. 3 illustrates a special form of the valve plate;
FIG. 4 is a longitudinal section through part of another form of the oil pump in accordance with the invention, and
FIG. 5 is a plan view of the cover plate of the pump seen in FIG. 4.
Referring to FIG. 2, an oil pump 2, a pressureregulating and cut-off valve 3, and a magnetic valve 4 constitute part of a unit I. The pipework supplying the nozzles is connected to the port 5, the intake pipe running from the oil tank is connected to the port 6, and the discharge pipe returning to the oil tank is connected to the port 7. In a single-line operation, the intake side 8 and the discharge side 9 may be connected through a passage 10, the port 7 being closed. The magnetic valve 4 connects the delivery side 11 of the pump to the discharge side 9. When the pump 2 is switched off, this valve opens. Consequently, the pressure on the delivery side 11 drops immediately and the cut-off valve 3 closes.
As shown in more detail in FIG. 1, the unit 1 consists of a casing 12 in which the drive shaft 13 is mounted, and of a cover 14 which is secured to the casing 12 by means of screws 15, an O-ring 16 being interposed between the cover and the casing. The pump 2 is located between a casing wall 17 and a cover plate 18. It comprises an externally toothed wheel 19 which is arranged eccentrically in an internally toothed ring, which in turn is rotatable in a ring 21 solidly connected to the casing. The cover plate 18 is secured to the casing 12 by means of screws not illustrated. The cover-plate contains an intake groove 22 which is connected by way of a passage 23 to an annular intake chamber 24 in which is also located a filter 25. This intake chamber communicates by way of a passage 26 with a bore 27 in the cover 14, at the inlet of which is located the port 6. Also provided in the cover plate 18 is a pressure groove 28 which communicates with the pipework for the nozzles and, by way of the passage 29, with a firmly inserted small tube 30.
The cover plate 18 contains a recess 31 which is of less depth near the tube 30. Fitted in this recess is an armature plate 32 in which there runs a pressure passage 33. This connects the tube 30 to a valve opening 34. For the purpose of efiecting a pressure-tight transfer at the coupling point, there is provided an O-ring 35 which surrounds the tube 30 and is axially compressed between the armature plate 32 and an intermediate plate 18. This compression takes place when the cover 14 is drawn towards the casing 12 with the aid of the screws 15, and the inner face of the cover bears against the armature plate 32, a partition 36 being interposed.
Provided in the cover 14 is a magnet 37 consisting of E-shaped laminations and of a coil 39. It is pressed against the partition 36 by a spring 40 backed by a clo-.
sure plate 41. The closure plate 41 is secured to the cover 14 with the aid of screws 42. Near the screws 15, the closure plate 41 contains openings so that this plate 41 and the electro-magnet 37 can be removed after the screws 42 have been loosened, without the cover 14 being detached from the casing 12. The recess 31 accommodating the armature plate 32 constitutes a lowpressure chamber 43 which, by way of a passage 44 in the intermediate plate 18, the partition 36 and the cover 14, communicates with a bore which is an extension of the bore 27 and constitutes the port 7 at the opposite end. A screw 45 between this bore and the bore 27 closes the passage 10.
When the electro-magnet 37 is energized, the armature plate 32 is drawn towards the partition 36, so that the valve opening 34, which communicates with the delivery side of the pump, is closed. When the-electromagnet 37 is de-energized and the pump is switched off, the pressure obtaining in the passage 33 applies a force such that the armature plate 32 swings about the point of suspension on the tube 30, so that the pressure rapidly relaxes towards the low-pressure side. Consequently, the pressure-regulating and cut-off valve 3, disposed alongside the magnet 37 in the cover 14, rapidly closes the pipe leading to the port 5.
The armature plate 32 can be produced in a very simple manner from two discs 46 and 47, each of which contains an opening 48 and 49 and at least one channel 50 which interconnects the openings. These two discs can be welded or bonded to each other.
In an arrangement shown in FIGS. 4 and 5, the pump has a casing 51 in which the drive shaft 52 is mounted. A cover 53 is secured to the casing. Clamped between these two parts is a cover plate 54 and a ring 55 solidly connected to the casing. In the annular space 56 surrounding these parts there is located a filter 57. Rotatable in the ring 55 is an internally toothed ring 58 which cooperates with an externally toothed wheel 59 which is driven by the shaft 52. Associated with the chambers formed between the teeth is an intake groove 60 which communicates through a passage 61 with the annular chamber 56, and also associated with the chambers is a pressure groove 62 which communicates with the delivery side of the pump and, through a passage 63, with a valve bore 64.
The coil 65 of an electro-magnet 66 is located in a recess in the cover 53. The coil surrounds a magnet core 67, which is secured to an end plate 68 which presses the coil against the spring 69. The magnet core 67 extends through a sleeve 70 of non-magnetic material which is supported on the magnetically conductive cover 53, an O-ring being interposed between the sleeve and the cover. The cover also accommodates a pressure-regulating and cut-off valve 71. Further bores 72 are provided for connecting intake and pressure passages.
A low-pressure chamber 73, of a shape corresponding to that of an armature plate 74, is formed in the cover plate 54. The armature plate 74 is constituted by a double-armed lever which is adapted to swing about a spindle 75. This spindle consists of a rod which is fitted in a groove 76 in the armature plate and in grooves 77 on both sides of the chamber 73. Connected to the armature plate is a leaf spring 78 which is outwardly biased within a range defined by a clip 79. The free end 80 of this spring presses on a closure member 81 of a valve that closes the opening 64 and is guided in a bore 82 parallel with the drive shaft 52.
FIG. 5 illustrates the form of the armature plate 74 and of the low-pressure chamber 73. It can also be seen that the cover plate 54 is secured to the casing 51 with the aid of screws 83, and that passages 84 run out from the cover plate 54 and cooperate with corresponding passages in the cover 53. V
When current is received by the electric motor driving the geared pump, the electro-magnet 66 is also energized. The armature plate 74 is pulled up and the closure member 81 is pressed against the opening 64 by the end 80 of the spring, so that this opening is closed. When the motor is switched off and the elctro-magnet 66 is therefore de-energized, oil located on the delivery side 62, 63 of the pump, presses the closure member 81 to the left, so that the armature plate 74 is swung about the spindle in the clockwise direction. The pressure in the direction of the low-pressure side relaxes very rapidly with the result that the cut-off valve also closes rapidly.
I claim:
1. A pump assembly comprising a casing, pumping elements mounted to said casing, fluid intake and exhaust passages formed in said casing, bypass passage means between said intake and exhaust passages, a combination valve and armature plate unit for opening and closing said bypass passage means, and electromagnetic coil means mounted in said casing for actuat- 6 ing said valve and armature plate unit to close said byunit to said casing. pass means, said valve and armature plate unit being a 3, A pump assembly according to daim 5 including cPmbinatiPn armature Plate and f f a P shaft means connected to said pumping elements, said of Sam bypass passage means bemg m sald arma' coupling means being disposed eccentrically relative to ture plate and valve unit, coupling means between said 5 unit and said casing, said coupling means providing a pivotal mounting for said member and has the form of A pump assmbliy accwdmgfo clfmn 5 whgerem a fluid conveying tube. recess IS fonned m said casing, said unit being disposed 2. A pump assembly according to claim 4 wherein in Said ss. said coupling means is the sole means attaching said 10 the axis of said shaft means.

Claims (4)

1. A pump assembly comprising a casing, pumping elements mounted to said casing, fluid intake and exhaust passages formed in said casing, bypass passage means between said intake and exhaust passages, a combination valve and armature plate unit for opening and closing said bypass passage means, and electromagnetic coil means mounted in said casing for actuating said valve and armature plate unit to close said bypass means, said valve and armature plate unit being a combination armature plate and valve member, a portion of said bypass passage means being in said armature plate and valve unit, coupling means between said unit and said casing, said coupling means providing a pivotal mounting for said member and has the form of a fluid conveying tube.
2. A pump assembly according to claim 4 wherein said coupling means is the sole means attaching said unit to said casing.
3. A pump assembly according to claim 5 including shaft means connected to said pumping elements, said coupling means being disposed eccentrically relative to the axis of said shaft means.
4. A pump assembly according to claim 5 wherein a recess is formed in said casing, said unit being disposed in said recess.
US00170773A 1971-06-26 1971-08-11 Oil pump for heating installations Expired - Lifetime US3752602A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19712131857 DE2131857C3 (en) 1971-06-26 oil pump for firing systems

Publications (1)

Publication Number Publication Date
US3752602A true US3752602A (en) 1973-08-14

Family

ID=5811899

Family Applications (1)

Application Number Title Priority Date Filing Date
US00170773A Expired - Lifetime US3752602A (en) 1971-06-26 1971-08-11 Oil pump for heating installations

Country Status (1)

Country Link
US (1) US3752602A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850549A (en) * 1971-08-11 1974-11-26 Danfoss As Oil pump for heating installations
US5115982A (en) * 1988-10-10 1992-05-26 Siemens Automotive L.P. Electromagnetic fuel injector with tilt armature
CN102518859A (en) * 2011-12-08 2012-06-27 合肥美亚光电技术股份有限公司 Electromagnetic valve and electromagnetic valve system
US11054040B2 (en) * 2018-07-18 2021-07-06 Mikuni Corporation Electromagnetic valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380783A (en) * 1941-04-07 1945-07-31 Gerotor May Company Pump structure
US2405061A (en) * 1942-12-02 1946-07-30 Eaton Mfg Co Pump structure
US2836197A (en) * 1955-08-26 1958-05-27 Arthur W Johnson Zone-controlled heating system
US3140727A (en) * 1961-12-26 1964-07-14 Gen Electric Pilot controlled valve
US3210041A (en) * 1962-07-30 1965-10-05 Robertshaw Controls Co Electromagnetic actuator
US3224663A (en) * 1963-05-13 1965-12-21 Stal Refrigeration Ab Means for starting compressors in unloaded state
US3655299A (en) * 1970-11-12 1972-04-11 Eaton Corp Rotary pump with pressure relief

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380783A (en) * 1941-04-07 1945-07-31 Gerotor May Company Pump structure
US2405061A (en) * 1942-12-02 1946-07-30 Eaton Mfg Co Pump structure
US2836197A (en) * 1955-08-26 1958-05-27 Arthur W Johnson Zone-controlled heating system
US3140727A (en) * 1961-12-26 1964-07-14 Gen Electric Pilot controlled valve
US3210041A (en) * 1962-07-30 1965-10-05 Robertshaw Controls Co Electromagnetic actuator
US3224663A (en) * 1963-05-13 1965-12-21 Stal Refrigeration Ab Means for starting compressors in unloaded state
US3655299A (en) * 1970-11-12 1972-04-11 Eaton Corp Rotary pump with pressure relief

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850549A (en) * 1971-08-11 1974-11-26 Danfoss As Oil pump for heating installations
US5115982A (en) * 1988-10-10 1992-05-26 Siemens Automotive L.P. Electromagnetic fuel injector with tilt armature
CN102518859A (en) * 2011-12-08 2012-06-27 合肥美亚光电技术股份有限公司 Electromagnetic valve and electromagnetic valve system
CN102518859B (en) * 2011-12-08 2013-06-26 合肥美亚光电技术股份有限公司 Electromagnetic valve and electromagnetic valve system
US11054040B2 (en) * 2018-07-18 2021-07-06 Mikuni Corporation Electromagnetic valve

Also Published As

Publication number Publication date
DE2131857B2 (en) 1977-02-24
DE2131857A1 (en) 1973-01-11

Similar Documents

Publication Publication Date Title
US6554587B2 (en) Pump and diaphragm for use therein
US2785638A (en) Force pump for slurries
JPH11501383A (en) High pressure fuel generator for fuel injection mechanism used in internal combustion engine
US6568911B1 (en) Compressor arrangement
US3302582A (en) Electromagnetic pump
US3285285A (en) Valve
US3791770A (en) Electromagnetic pump or motor device with axially spaced piston members
US5503736A (en) Hydroboost piston pump for reverse osmosis system
US10738770B2 (en) Isolated chamber pump with recirculation of leakages
US2515029A (en) Valve
EP0898653B1 (en) Hydraulic pressure control system for a pump
JPH02501295A (en) Hydraulic pump with integrated sump and accumulator
US2988264A (en) Alternating movement synchronous compressor
US3791780A (en) Vacuum pump
US5273409A (en) Compressor assembly including an electromagnetically triggered pressure actuated internal clutch
US3752602A (en) Oil pump for heating installations
US3850549A (en) Oil pump for heating installations
US3360930A (en) Electro-hydraulic valve operator
US4781551A (en) Rotary compressor with low-pressure and high-pressure gas cut-off valves
EP0084222B1 (en) Hydraulic piston pump
US3481363A (en) Combination pressure regulator and shutoff valve
GB1039165A (en) Improvements in or relating to reciprocating fluid pumps
CN104806518A (en) Electronic control converging pump achieving variable displacement of gear pumps
US5360319A (en) Compressor assembly having control valve for triggered pressure actuated clutch
US5364237A (en) Compressor assembly having a clutch triggered by a small compressor and actuated by discharge pressure