US3751307A - Thermal-mechanically processed low-alloy steel - Google Patents

Thermal-mechanically processed low-alloy steel Download PDF

Info

Publication number
US3751307A
US3751307A US00247643A US3751307DA US3751307A US 3751307 A US3751307 A US 3751307A US 00247643 A US00247643 A US 00247643A US 3751307D A US3751307D A US 3751307DA US 3751307 A US3751307 A US 3751307A
Authority
US
United States
Prior art keywords
steel
alloy
armor
thermal
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00247643A
Inventor
B Briggs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Application granted granted Critical
Publication of US3751307A publication Critical patent/US3751307A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Disclosed is a low carbon-low alloy content steel which is highly responsive to thermal-mechanical processing with air hardening capability. The steel is compatible process-wise with typical tool steels useful in the impact layer of armor. The alloy steel of this invention yields a high toughness material useful as the backing material for the impact layer of armor.

Description

United States Patent 11 1 UNITED STATES PATENTS 8/1943 Bagsar 75/128 w Briggs 1 Aug. 7, 1973 [5 1 THERMAL-MECHANICALLY PROCESSED 3,164,495 1/l965 Furgason 75/123 w LOW ALLOY STEEL 3,615,879 l0/l97l Herzog 75/l28 W [75] Inventor: Bill N. Briggs, Santa Ana, Calif.
. Primary Examiner-L. Dewayne Rutledge [73] Asslgnee' r g 'lz gs is s txgg i Assislq tt Examiner- -w. R. Satterfield V V A y, Washington, DC. itgrney-Harry M. Saragoynz, Edward J. Kelly [22] Filed: Apr. 26, 1972 [21] Appl. No 247,643 [57] ABSTRACT Disclosed is a low carbon-low alloy content steel which v [52] US. Cl. 148/36, 75/128 W is g y responsive to thermaLmechanical processing [5] l llll. CL... C22C 29/00, C22C 39/20 with air hardening capabimy The stee| is compatime [58] held 0 Search 75/28 W, l28 Y, process wise with ypi tool steels useful in the 75/,26 C1 126 E; 148/36 pact layer of armor. The alloy steel of this invention yields a high toughness material useful as the backing [56] References cued material for the impact layer of armor.
3 Claims, No Drawings THERMAL-MECHANICALLY PROCESSED LOW-ALLOY STEEL This is a division of application Ser. No. 143,232, filed May 13,1971.
BACKGROUND OF THE INVENTION Armor steel requirements establish that a high hardness steel is needed to be effective in breaking up armor piercing projectiles. To prevent shattering of the armor a high toughness is required. Thus, a certain hardness and toughness of the armor is a requirement.
Earlier approaches to making armor material has included processing a homogeneous material in attempts to produce high strength material while retaining toughness in the material. Later conclusions drawn from earlier testing has indicated that a homogeneous steel panel when processed to yield sufficient hardness to break up a projectile generally results in panel shattering which defeats usefulness for multiple hit capability.
Recently, steels of high alloy content have been pro vided which steels have been used in combinations to provide a high hardness impact layer of armor with a lower hardness backup layer of armor. The steels having the necessary hardness and toughness have not been metallurgically compatible, i.e., achieve optimum properties under the same processing parameters. The cost of the alloys has been higher due to higher alloy content and special processing conditions necessary due to the metallurgical incompatibility of the alloys.
An object of this invention is to provide a steel alloy composition which is metallurgically compatible with a steel used for the impact layer of armor.
Another object is to provide a steel lower in alloy content which can be processed to yield a lower hardness and higher toughness for the backup layer as compared with the steel used for the impact layer.
SUMMARY OF THE INVENTION A steel alloyprepared by consumable arc vacuum melt technique, and having the nominal chemistry set forth below in Table I, imparts improved performance for the backup alloy of steel armor when thermalmechanically processed as later herein described.
DESCRIPTION OF THE PREFERRED EMBODIMENT The steel alloy of this invention has the nominal chemistry in weight percent as set forth hereinbelow under heading Alloy ADPX-27."
ALLOY ADPX-27 NOMINAL COMPOSITION Mn Si Cr 0.65 0.25 1.00
The above steel alloy is processed by hot rolling at about 2,000F and air cooled. After rolling and air cooling the steel is austenitized at 1900F 1 hr/inch thickness, thermal-mechanically processed 50 percent over a falling temperature range of approximately l500-l200F, 'oil quenched and tempered at a selected tempering temperature from about 400F to about 1050F for about 2 hours to result in a hardness in the range of about 50-55 R, (Rockwell c" scale). The alloy when processed as described yields a Charpy Impact Energy value exceeding 40 ft-lbs. Testspecimens were tested at F in accordance with Watertown Arsenal Laboratory 112/89 (REV). For additional information on testing refer to: Impact Testing No. 1, Calibration of the Charpy Impact Machine and Procedures for Inspection and Testing of Charpy V- Notch Impact Speciments, Watertown Arsenal Laboratory, dated November 1958.
The merit ratings of alloy ADPX-27 were established by testing with an impact alloy of 5% chromiu'm, 1% molybdenum, 1% silicon, and 0.40% carbon and an impact alloy of chromium 1.00%, molybdenum 2.00, silicon 0.40%, carbon 0.44%, manganese 0.72%, nickel 0.60% and vanadium 0.50%. In either combination a merit rating (e.g., respective to performance as an armor) up to 10% greater is obtained. In addition the mechanical properties of alloy ADPX-27 have proven to be outstanding, exhibiting both greater strength and toughness when tempered at either 400F'or 1050F than a commercially utilized backup alloy steel, HP 9-4-30, having a nominal chemistry of nickel 9%, cobalt 4%, chromium 1%, molybdenum 1%, and carbon 0.30%.
The advantages of alloy ADPX-27 over the prior art alloy similarly used are:
1. More economical to produce and to process into armor.
2. Metallurgically compatible with alloy steel used for impact layer of armor which permits processing together.
3. Provides a tougher and mechanically stronger backup panel for impact layer alloy.
4. Has greater response to thermal-mechanical processing (e.g., yields a hardness of 4-6 points R greater than the value obtained in the conventionally heat treated condition).
The nickel content may be decreased to as low as 2 percent when adequate carbon, molybdenum and chromiumv are present to achieve hardenability and strength required in a particular use. Steel having about 2 -to about 3.5 percent by weight nickel is the preferred range.
The steel alloy of this invention is air hardening, as is true of prior art steel HP 9-4-.30, which renders this alloy steel accessible to production methods.
The steel alloy of this invention is improved in ballistic performance by surface grinding when used with some composites; however, the alloy chemistry has been shown to be very influential on both decarburization and scale. Chromium content has been shown to significantly reduce decarburization and scale.
The steel alloy of this invention when tempered at about 400F has a tensile strength (KS1) of about 289 whereas the tensile strength of the comparable prior art steel HP 9-4-.30 has a tensile strength of about 275 when tempered at about 400F.
As a result of tests to indicate adequate toughness at the high-hardness levels, an essential quality for an armor backup material, the steel alloy of this invention withstood testing to which the prior art alloy failed. The tests indicate an improvement in the steels capability to rapidly distribute within a test panel both the stress and resulting strain caused by a rapidly applied load.
I claim:
1. A hot rolled and heat treated low carbon-low alloy steel consisting essentially of, in weight percent, about 0.27 carbon, 0.65 manganese, 0.25 silicon, LOO chromium, 2.00 molybdenum, 0.10 vanadium, from about 2.00 to about 3.50 percent nickel, and the balance iron, said steel having been hot rolled at about 2000F, air cooled, and subsequently thermal-mechanically processed by:
a. austenitizing at about 1900F for 1 hour per inch thickness,
b. air cooling to 1500F and holding at said temperature for about 5 minutes,
c. rolling until about 50 percent reduction in thickness is achieved, immediately oil quenching and d. tempering for about 2 hours at a temperature within the range of from about 400F to about 1050F.
2. The low carbon-low alloy content steel of claim I wherein said nominal chemical composition of nickel is about 3.25 percent by weight and said tempering is accomplished at about 400F.
3. The low carbon-low alloy content steel of claim 1 wherein said nominal chemical composition of nickel is about 3.25 percent by weight and said tempering is accomplished at about 1050F.

Claims (2)

  1. 2. The low carbon-low alloy content steel of claim 1 wherein said nominal chemical composition of nickel is about 3.25 percent by weight and said tempering is accomplished at about 400*F.
  2. 3. The low carbon-low alloy content steel of claim 1 wherein said nominal chemical composition of nickel is about 3.25 percent by weight and said tempering is accomplished at about 1050*F.
US00247643A 1972-04-26 1972-04-26 Thermal-mechanically processed low-alloy steel Expired - Lifetime US3751307A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24764372A 1972-04-26 1972-04-26

Publications (1)

Publication Number Publication Date
US3751307A true US3751307A (en) 1973-08-07

Family

ID=22935720

Family Applications (1)

Application Number Title Priority Date Filing Date
US00247643A Expired - Lifetime US3751307A (en) 1972-04-26 1972-04-26 Thermal-mechanically processed low-alloy steel

Country Status (1)

Country Link
US (1) US3751307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150147545A1 (en) * 2013-11-25 2015-05-28 The Government Of The Us, As Represented By The Secretary Of The Navy Elastomeric bilayer armor incorporating surface-hardened substrates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2327490A (en) * 1941-01-02 1943-08-24 Sun Oil Co Apparatus for treating hydrocarbon oils
US3164495A (en) * 1961-09-26 1965-01-05 Ladish Co Ultra high strength alloy steels
US3615879A (en) * 1967-08-08 1971-10-26 Pont A Mousson Centrifugal mold for the casting of liquid metal and the process for producing said centrifugal mold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2327490A (en) * 1941-01-02 1943-08-24 Sun Oil Co Apparatus for treating hydrocarbon oils
US3164495A (en) * 1961-09-26 1965-01-05 Ladish Co Ultra high strength alloy steels
US3615879A (en) * 1967-08-08 1971-10-26 Pont A Mousson Centrifugal mold for the casting of liquid metal and the process for producing said centrifugal mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150147545A1 (en) * 2013-11-25 2015-05-28 The Government Of The Us, As Represented By The Secretary Of The Navy Elastomeric bilayer armor incorporating surface-hardened substrates

Similar Documents

Publication Publication Date Title
US8956470B2 (en) Bainite steel and methods of manufacture thereof
US4645720A (en) Armour-plate and process for its manufacture
US9051635B2 (en) Lower-cost, ultra-high-strength, high-toughness steel
US3366471A (en) High strength alloy steel compositions and process of producing high strength steel including hot-cold working
EP2841612B1 (en) High strength, high toughness steel alloy
US20120132322A1 (en) Abrasion resistant steel, method of manufacturing an abrasion resistant steel and articles made therefrom
US5908710A (en) Process for manufacturing a clad sheet which includes an abrasion-resistant layer made of tool steel, and clad sheet obtained
US10450621B2 (en) Low alloy high performance steel
KR870002074B1 (en) Cobalt free maraging steel
USRE28523E (en) High strength alloy steel compositions and process of producing high strength steel including hot-cold working
US2572191A (en) Alloy steel having high strength at elevated temperature
JPH0152462B2 (en)
EP0249855B1 (en) Hot work tool steel
US3288600A (en) Low carbon, high strength alloy steel
US3912553A (en) Press forging die
US3899368A (en) Low alloy, high strength, age hardenable steel
JPH0260748B2 (en)
US2516125A (en) Alloy steel
US3751307A (en) Thermal-mechanically processed low-alloy steel
US20120134872A1 (en) Abrasion resistant steel, method of manufacturing an abrasion resistant steel and articles made therefrom
US3336168A (en) Weldable tough steel essentially composed of chromium and manganese and method of manufacturing the same
US3736129A (en) Alloy steel
US3316084A (en) Forging steel for elevated temperature service
US3117863A (en) Alloy steels
US2586041A (en) Low-alloy, high-hardenability steel with high toughness at high hardness levels