US3750741A - Method for improved extrusion of essentially inviscid jets - Google Patents

Method for improved extrusion of essentially inviscid jets Download PDF

Info

Publication number
US3750741A
US3750741A US00105719A US3750741DA US3750741A US 3750741 A US3750741 A US 3750741A US 00105719 A US00105719 A US 00105719A US 3750741D A US3750741D A US 3750741DA US 3750741 A US3750741 A US 3750741A
Authority
US
United States
Prior art keywords
orifice
molten
spinning
crucible
jets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00105719A
Inventor
L Rakestraw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Application granted granted Critical
Publication of US3750741A publication Critical patent/US3750741A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • D01D4/022Processes or materials for the preparation of spinnerettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/08Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
    • C03B37/083Nozzles; Bushing nozzle plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/08Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on beryllium oxide

Definitions

  • This invention relates to improvements in the spinning of molten metals and alloys thereof.
  • the apparatus employed to facilitate spinning of molten filamentary jets in forming fine diameter wire generally comprises a crucible having an orifice in its base, either as a part of the crucible base, or preferably, as an orifice insert.
  • the crucible is provided with means for melting the metallic charge and maintaining a desired degree of superheat for the molten metal charge contained in the crucible and, additionally, means for applying a positive pressure to the head of the molten charge to force the molten metal through the orifice at desirable jet velocities.
  • the FIGURE is a cross-sectional view of a representative unit useful for spinning fine diameter wire
  • a molten metal is contained in crucible 2 having base plate 3, the crucible and base plate being supported on pedestal 4 and enclosed within an insulating cylinder 5 and a susceptor 6 employed in conjunction with inductionheating coils 7.
  • the unit is pressurized within by a pressure source 8 through top 9.
  • Sealing rings 10 serve to maintain the pressure within the enclosure and prohibit leakage past the base plate.
  • the molten metal 1 is forced through orifice 11 in orifice plate 12 by the force of pressure supplied by pressure source 8 at sufficient velocities to provide a filamentary shaped molten jet 13.
  • the nascent jet passes through a film-forming atmosphere contained within the provided by the pedestal 4.
  • the requirements for materials used to define fine diameter orifices in melt spinning processes are critical to the successful operation of prolonged spinning. vInitially, the material must be resistant to thermal fracture generally caused by elevating the temperature and by temperature gradients across the face of the disc during the spinningoperation. Insofar as it is desirable to employ orifices having aspect ratios of between about land 20 the orifice defining plate or disc from which fine diameter wire is spun is usually quite thin in the vicinity of the orifice and yet its strength at the spinning temperature, of steel for example, must be of such magnitude that it can withstand the high pressure necessary to force the molten metal through the samll orifice at reasonably high velocities.
  • polycrystalline beryllium oxide having a density of greater than percent of the theoretical density and purity of at least 99.5 percent and single crystal beryllium oxide serve well as orifice defining materials in the spinning of molten metals without significant problems of thermal or mechanical failure, chemical reactivity, or orifice erosion or occlusion clue to the solubility characteristics of beryllia.
  • Plates or discs of single crystal or polycrystalline beryllia can be readily machined to suitable size, shapes by means known to those skilled in the art. Fine diameter orifices are generally provided by machining a countersink in the feed face of the orifice plate and thereafter drilling and polishing an orifice of desired diameter concentric with the countersink. Additionally, orifice plates composed of polycrystalline beryllia can be conveniently prepared by a bisque process wherein the plate is shaped and the orifice drilled before the final firing. The greenware plate is thereafter fired to appropriate densities, after which the orifice is polished to reduce minor crystal imperfection.
  • the orifice defining member may additionally serve as the base plate of the crucible assembly.
  • the insert type or orifice plate is conveniently circular and may, if desired, be secured in the base plate using a clamp or hold down ring.
  • Multiple orifice insert discs may, of course, be employed in the base plate of the crucible.
  • the orifice should have an aspect ratio of between I and 20, preferably less than 10, exclusive of the countersink and, although slightly tapered orifices have been used, straight bore orifices are preferred because of greater ease in fabrication.
  • EXAMPLE I An apparatus, similar in construction to that depicted in the FIGURE, was employed to produce metal filaments from a composition comprising 9Q weight percent type 304 stainless steel and 1 weight percent type I345 aluminum.
  • the metal charge was placed in the crucible which had been prefitted with a beryllium oxide (BeO) orifice insert 12 having a tapered orifice construction wherein the taper, adjacent the melt, had an included angle of 12.
  • BeO beryllium oxide
  • the orifice capillary diameter was 6 mils and an aspect ratio (length/diameter) of approximately 2.5.
  • the apparatus was cooled down and the beryllium oxide orifice insert was removed from the crucible whereupon it was microscopically examined for structuraldefects such as surface flaws and/or cracks and for orifice ero- C by means of an inert gas pressure of 40 sion.
  • the examination disclosed no imperfections nor any measurable degree of orifice erosion.
  • Example II The orifice insert of Example I was reinstalled in the apparatus thereof and an identical metal composition was melted and extruded at a melt temperature of l,690 C into an atmosphere of carbon monoxide.
  • the melt extrusion pressure was increased to 30 psig and that in combination with the increase in the melt temperature provided extremely long filaments having nodes spaced at approximately 15 to 20 inch intervals.
  • Example I After the spinning run was completed the beryllium oxide insert was again microscopically examined as in Example I with no detectable structural failure nor measurable degree of orifice erosion.
  • Example I and II were unexpected because thermodynamic data indicated that beryllia would dissolve in molten steel to such an extent that it would not be satisfactory orifice material.
  • Example III The spinning run of Example I was repeated with the exception that the orifice insert 12 was constructed of zirconium oxide (ZrO and included a tapered orifice inlet having a 27 included angle.
  • the orifice capillary diameter was 7 mils and the orifice aspect ratio was Melt streaming was initiated through the orifice but ceased after one minute duration.
  • Example IV The apparatus of Example I with the exception that a one-piece beryllium oxide crucible was employed for the production of copper filaments.
  • the crucible was provided with an orifice having a diameter of 4 mils and a capillary length of 6 mils which was fabricated in the base of the crucible.
  • the crucible along with a charge of electrolytic grade copper was placed in the melt spinning heat whereupon it was melted and extruded at a temperature of l,200 psig. into a stabilizing atmosphere "of propane.
  • EXAMPLE V A ZrO, orifice insert was fabricated having a 4 mil diameter orifice with an aspect ratio of 5. The orifice insert was placed in the melt spinning apparatus and the assembly was elevated in temperature to l,600 C. in the absence of a metal charge. The temperature was maintained for 5 hours and after cooling down the equipment the orifice insert was removed therefrom and microscopically examined.
  • metallic char e is maintained at a tem erature reater 1.
  • a process for the manufacture of fine diameter than l g p g steel or copper wire directly from a molten metallic charge which comprises spinning a molten metallic T clam 2 wherem the molten charge under pressure through a fine diameter orifice, metalhc charge compnses PP the improvement which comprises passing said molten The improvement of claim 2 Where!" the molten metallic charge through an orifice defined by single metallic Charge comprises Steel.

Abstract

High density, high purity polycrystalline and single crystal beryllium oxide orifice plates have been successfully employed in wire manufacturing processes which comprise spinning molten metals through fine diameter orifices as molten metallic jets.

Description

11] 3,750,741 1451 Aug. 7, 1973 United States Patent 1191 Rakestraw METHOD FOR IMPROVED EXTRUSION OF [56] References Cited UNITED STATES PATENTS ESSENTIALLY INVISCID JETS [75] Inventor: Lawreriee F. Ralrestraw,
Raleigh, N.C. [73] Assigneez 1666551116 Company, St. LouisJVlo.
Primary Examiner-R. Spencer Annear Attorney-James W. Williams, Jr. et al.
[22] Filed: Jan. 11, 1971 [21] App]. No.: 105,719
ABSTRACT Related US. Application Data [62] Division of Ser. No. 845,336, Jul
y 28, 1969, Pat. N0. I 1
High density, high purity polycrystalline and single crystal beryllium oxide orifice plates have been suc- 52 us. 164/82, 164/138 cessfully p y in wire m fa uring p ocesses 511 lm. 822d 11/00, B220 1/00 which comprise Spinning molten metals through fine 58 Field 61 Search........................ 164/66, 82, 13s, diameter orifices as m l en me allic jets.
4 Claims, 1 Drawing Figure w s.. s as VIIIIIIIIIIIIII an g g g METHOD FOR IMPROVED EXTRUSION OF ESSENTIALLY lNVlSCID JETS This is a division of application Ser. No. 845,336, filed July 28, 1969.
This invention relates to improvements in the spinning of molten metals and alloys thereof.
i the molten filamentary stream. The film negates the effects of surface tension and prevents breakup of the molten stream for a sufficient period of time to allow the molten stream to freeze or solidify in filamentary form. The apparatus employed to facilitate spinning of molten filamentary jets in forming fine diameter wire generally comprises a crucible having an orifice in its base, either as a part of the crucible base, or preferably, as an orifice insert. Typically, the crucible is provided with means for melting the metallic charge and maintaining a desired degree of superheat for the molten metal charge contained in the crucible and, additionally, means for applying a positive pressure to the head of the molten charge to force the molten metal through the orifice at desirable jet velocities.
The FIGURE is a cross-sectional view of a representative unit useful for spinning fine diameter wire where a molten metal is contained in crucible 2 having base plate 3, the crucible and base plate being supported on pedestal 4 and enclosed within an insulating cylinder 5 and a susceptor 6 employed in conjunction with inductionheating coils 7. The unit is pressurized within by a pressure source 8 through top 9. Sealing rings 10 serve to maintain the pressure within the enclosure and prohibit leakage past the base plate. The molten metal 1 is forced through orifice 11 in orifice plate 12 by the force of pressure supplied by pressure source 8 at sufficient velocities to provide a filamentary shaped molten jet 13. The nascent jet passes through a film-forming atmosphere contained within the provided by the pedestal 4.
Although materials science has developed at a rapid pace in recent years there nevertheless appears to be limited data reported on the strength, solubilities and chemical reactivities of materials at temperatures above l,000 C. Thus, in the manufacture of copper and steel wire, for example, directly from their respective melts considerable time and effort have been spent defining the nature and performance of materials used to handle molten metals at high temperature as well as the effect of molten metals on such materials.
Perhaps the most critical element of the spinning assemblies used to" make wire according to the process outlined above is the member defining the orifice through which molten metal is spun under pressure. While the glass fiber art has developed its bushings and the synthetic fiber art its spinnerets," little useful information has been reported in the literature relating to orifice defining members employed for spinning cavity 14 generally molten metals. Because of the nature of the charge and conditions employed in the manufacture offine diameter wire (below about 35 mils) by melt spinning pro: cesses process, development has been seriously handicapped by repeated failure of the materials used to define the spinning orifice. Materials such as high density alumina, sapphire, zirconia (calcium oxide stabilized), AI O cr,o, ceramic and others frequently employed to contain molten metals, such as steel, in metallurgical processes fail to perform satisfactorily as orifice defining members through which molten metals can be spun as fine diameter filamentary jets. The cause of such failures can be variously attributed to insufficient strength, low thermal fracture resistance and poor chemical stability under the conditions of temperature and pressure required to spin molten metals from orifices having diameters below about 35 mils. Such failures have been noted to be particularly aggravated at temperatures above about l,000 C. and with decreases in orifice diameter, particularly where the orifice diameter is below about 15 mils.
As already indicated the requirements for materials used to define fine diameter orifices in melt spinning processes are critical to the successful operation of prolonged spinning. vInitially, the material must be resistant to thermal fracture generally caused by elevating the temperature and by temperature gradients across the face of the disc during the spinningoperation. Insofar as it is desirable to employ orifices having aspect ratios of between about land 20 the orifice defining plate or disc from which fine diameter wire is spun is usually quite thin in the vicinity of the orifice and yet its strength at the spinning temperature, of steel for example, must be of such magnitude that it can withstand the high pressure necessary to force the molten metal through the samll orifice at reasonably high velocities. Cracked orifice defining discs caused by thermal fracture or by mechanical failure under pressure result in abortive operations in. wire manufacturing process. Chemical reactivity or solubility with the molten metallic charge can result in erosion of the orifice or deposition of occlusions in the fine diameter orifice, neither of which can be tolerated in an industrial spinning process. Moreover, chemical reactivity of the ceramic ma.- terial with graphite assembly parts presents serious problems. For example, both alumina and zirconia readily react with graphite at elevated temperatures. 4 Thus, a suitable orifice defining member of a spinning assembly must adhere to a combination of physical and chemical requirements. i i
While the property requirements of orifice plate are severe in high temperature spinning, the crucible assembly as a whole should adhere to the chemical reactivity and solubility requirements.
It has now been discovered that polycrystalline beryllium oxide having a density of greater than percent of the theoretical density and purity of at least 99.5 percent and single crystal beryllium oxide serve well as orifice defining materials in the spinning of molten metals without significant problems of thermal or mechanical failure, chemical reactivity, or orifice erosion or occlusion clue to the solubility characteristics of beryllia.
Plates or discs of single crystal or polycrystalline beryllia can be readily machined to suitable size, shapes by means known to those skilled in the art. Fine diameter orifices are generally provided by machining a countersink in the feed face of the orifice plate and thereafter drilling and polishing an orifice of desired diameter concentric with the countersink. Additionally, orifice plates composed of polycrystalline beryllia can be conveniently prepared by a bisque process wherein the plate is shaped and the orifice drilled before the final firing. The greenware plate is thereafter fired to appropriate densities, after which the orifice is polished to reduce minor crystal imperfection.
As above indicated the orifice defining member may additionally serve as the base plate of the crucible assembly. However, it has been found desirable to employ orifice plate inserts in the base plate of the crucible as indicated in the FIGURE. The insert type or orifice plate is conveniently circular and may, if desired, be secured in the base plate using a clamp or hold down ring. Multiple orifice insert discs may, of course, be employed in the base plate of the crucible. The orifice should have an aspect ratio of between I and 20, preferably less than 10, exclusive of the countersink and, although slightly tapered orifices have been used, straight bore orifices are preferred because of greater ease in fabrication.
Where spinning assemblies incorporating the beryllia orifice plates of this invention are used it has been found convenient to use beryllia crucible base plate members insofar as the chemical reactivity and solubility characteristics are suitable for high temperature spinning. Additionally, it has been discovered that beryllia crucible assembly members are inert to graphite parts of the spinning units.
The following examples illustrate the utilization of low viscosity melt spinning orifices constructed of beryllium oxide (BeO) and zirconium oxide (ZrO,) for spinning molten metals.
EXAMPLE I An apparatus, similar in construction to that depicted in the FIGURE, was employed to produce metal filaments from a composition comprising 9Q weight percent type 304 stainless steel and 1 weight percent type I345 aluminum.
The metal charge was placed in the crucible which had been prefitted with a beryllium oxide (BeO) orifice insert 12 having a tapered orifice construction wherein the taper, adjacent the melt, had an included angle of 12. The orifice capillary diameter was 6 mils and an aspect ratio (length/diameter) of approximately 2.5.
After placing the metal charge in the crucible it was elevated in temperature to 1,670 C under the influence of a vacuum. Subsequent to melting an inert gas (argon) under psig pressure was applied to the melt whereby streaming of the melt through the orifice was effected. Upon the initiation of streaming the melt temperature was reduced to l,620 C (to reduce the amount of superheat).
The molten metal streamed into the cavity 14 which was occupied by an atmosphere of carbon monoxide (CO) whereby the molten stream was stabilized against breakup until solidification thereof took place. Very long filaments were produced having nodes spaced approximately at 8 to l0 inch intervals.
Subsequent to the completion of the spinning run the apparatus was cooled down and the beryllium oxide orifice insert was removed from the crucible whereupon it was microscopically examined for structuraldefects such as surface flaws and/or cracks and for orifice ero- C by means of an inert gas pressure of 40 sion. The examination disclosed no imperfections nor any measurable degree of orifice erosion.
EXAMPLE II The orifice insert of Example I was reinstalled in the apparatus thereof and an identical metal composition was melted and extruded at a melt temperature of l,690 C into an atmosphere of carbon monoxide. The melt extrusion pressure was increased to 30 psig and that in combination with the increase in the melt temperature provided extremely long filaments having nodes spaced at approximately 15 to 20 inch intervals.
After the spinning run was completed the beryllium oxide insert was again microscopically examined as in Example I with no detectable structural failure nor measurable degree of orifice erosion.
The results obtained in Example I and II were unexpected because thermodynamic data indicated that beryllia would dissolve in molten steel to such an extent that it would not be satisfactory orifice material.
EXAMPLE III The spinning run of Example I was repeated with the exception that the orifice insert 12 was constructed of zirconium oxide (ZrO and included a tapered orifice inlet having a 27 included angle. The orifice capillary diameter was 7 mils and the orifice aspect ratio was Melt streaming was initiated through the orifice but ceased after one minute duration.
Subsequent microscopic examination of the orifice disclosed that plugging had occurred due to the formation of an oxide deposit therein.
EXAMPLE IV The apparatus of Example I with the exception that a one-piece beryllium oxide crucible was employed for the production of copper filaments.
The crucible was provided with an orifice having a diameter of 4 mils and a capillary length of 6 mils which was fabricated in the base of the crucible.
The crucible along with a charge of electrolytic grade copper was placed in the melt spinning heat whereupon it was melted and extruded at a temperature of l,200 psig. into a stabilizing atmosphere "of propane.
Subsequent to the complete melt extrusion of the copper charge the spinning apparatus was cooled down and disassembled whereupon the crucible and orifice were examined under a microscope. The examination revealed that no apparent erosion of the orifice had occurred. 1
EXAMPLE V A ZrO, orifice insert was fabricated having a 4 mil diameter orifice with an aspect ratio of 5. The orifice insert was placed in the melt spinning apparatus and the assembly was elevated in temperature to l,600 C. in the absence of a metal charge. The temperature was maintained for 5 hours and after cooling down the equipment the orifice insert was removed therefrom and microscopically examined.
The examination revealed that the orifice was completely plugged with a clear crystalline material. The bottom of the insert in contact with the graphite had undergone severe reaction resulting in loss of gas pressure seals.
A similar study using an A1 single crystal orifice oxide having a purity of at least 99.5 percent and a deninsert substantially the same conditions as above regity greater th 95 percent of the theoretical densit sulted in reaction with graphite to thereby destroy the f beryllium oxide. l e and Severely damaged the orifice 2. The improvement of claim I wherein the molten c arm: 5
metallic char e is maintained at a tem erature reater 1. In a process for the manufacture of fine diameter than l g p g steel or copper wire directly from a molten metallic charge which comprises spinning a molten metallic T clam 2 wherem the molten charge under pressure through a fine diameter orifice, metalhc charge compnses PP the improvement which comprises passing said molten The improvement of claim 2 Where!" the molten metallic charge through an orifice defined by single metallic Charge comprises Steel.
crystal beryllium oxide or polycrystalline beryllium 3"

Claims (3)

  1. 2. The improvement of claim 1 wherein the molten metallic charge is maintained at a temperature greater than 1,000* C.
  2. 3. The improvement of claim 2 wherein the molten metallic charge comprises copper.
  3. 4. The improvement of claim 2 wherein the molten metallic charge comprises steel.
US00105719A 1969-07-28 1971-01-11 Method for improved extrusion of essentially inviscid jets Expired - Lifetime US3750741A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84533669A 1969-07-28 1969-07-28
US10571971A 1971-01-11 1971-01-11

Publications (1)

Publication Number Publication Date
US3750741A true US3750741A (en) 1973-08-07

Family

ID=26802879

Family Applications (1)

Application Number Title Priority Date Filing Date
US00105719A Expired - Lifetime US3750741A (en) 1969-07-28 1971-01-11 Method for improved extrusion of essentially inviscid jets

Country Status (1)

Country Link
US (1) US3750741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585151B1 (en) 2000-05-23 2003-07-01 The Regents Of The University Of Michigan Method for producing microporous objects with fiber, wire or foil core and microporous cellular objects
US20080047736A1 (en) * 2006-08-25 2008-02-28 David Levine Lightweight composite electrical wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976590A (en) * 1959-02-02 1961-03-28 Marvalaud Inc Method of producing continuous metallic filaments
US3490516A (en) * 1967-07-24 1970-01-20 Us Air Force Inverted conical tip crucible for casting
US3516478A (en) * 1967-12-05 1970-06-23 Monsanto Co Apparatus for separation of impurities from metal melts in a filament spinning device
US3645657A (en) * 1969-07-02 1972-02-29 Monsanto Co Method and apparatus for improved extrusion of essentially inviscid jets

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976590A (en) * 1959-02-02 1961-03-28 Marvalaud Inc Method of producing continuous metallic filaments
US3490516A (en) * 1967-07-24 1970-01-20 Us Air Force Inverted conical tip crucible for casting
US3516478A (en) * 1967-12-05 1970-06-23 Monsanto Co Apparatus for separation of impurities from metal melts in a filament spinning device
US3645657A (en) * 1969-07-02 1972-02-29 Monsanto Co Method and apparatus for improved extrusion of essentially inviscid jets

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585151B1 (en) 2000-05-23 2003-07-01 The Regents Of The University Of Michigan Method for producing microporous objects with fiber, wire or foil core and microporous cellular objects
US20080047736A1 (en) * 2006-08-25 2008-02-28 David Levine Lightweight composite electrical wire
US7626122B2 (en) 2006-08-25 2009-12-01 David Levine Lightweight composite electrical wire
US20100071931A1 (en) * 2006-08-25 2010-03-25 David Levine Lightweight composite electrical wire with bulkheads
US8697998B2 (en) 2006-08-25 2014-04-15 David Levine Lightweight composite electrical wire with bulkheads

Similar Documents

Publication Publication Date Title
US3608050A (en) Production of single crystal sapphire by carefully controlled cooling from a melt of alumina
US4781771A (en) Amorphous Co-based metal filaments and process for production of the same
US3771982A (en) Orifice assembly for extruding and attenuating essentially inviscid jets
US4802436A (en) Continuous casting furnace and die system of modular design
US3584678A (en) Orifice plate for spinning fine diameter wire
US3750741A (en) Method for improved extrusion of essentially inviscid jets
US2679080A (en) Production of single crystals of germanium
JPH03128149A (en) Twin roll type continuous casting machine
US3761295A (en) Directionally solidified refractory oxide eutectic
US3926248A (en) Orifice structure for extruding molten metal to form fine diameter wire
US3613158A (en) Orifice assembly for spinning low viscosity melts
US4899801A (en) Method for continuous casting of metal and an apparatus therefor
US4170533A (en) Refractory article for electrolysis with a protective coating made of corundum crystals
US2667722A (en) Mold for use in the manufacture of dry rectifiers
US3366362A (en) Metal shaping tools includng columnar structures
US4372789A (en) Directionally strengthened copper alloy parts for a gas turbine
Spalvins Characterization of defect growth structrures in ion-plated films by scanning electron microscopy
SU1448505A1 (en) Method of producing metal bands from melt
US3583027A (en) Pedestal configuration for spinning low-viscosity melts
US3788786A (en) Orifice assembly for extruding low-viscosity melts
US3809147A (en) Method for making products suitable for use in forming composite superconductors
Sato et al. Production of Aluminum Profile rods by a moldless upward Continuous Casting Process using Formers
JPH01224153A (en) Graphite-made nozzle for continuous casting
RU2164192C2 (en) Method of producing castings from high-temperature alloys with directed or single-crystal structure
JPH06104266B2 (en) Method of preventing vertical cracking of slab in high speed casting