US3746821A - Crossbar switch with ramp means facilitating conductor assembly subsequent to housing assembly - Google Patents

Crossbar switch with ramp means facilitating conductor assembly subsequent to housing assembly Download PDF

Info

Publication number
US3746821A
US3746821A US00257351A US3746821DA US3746821A US 3746821 A US3746821 A US 3746821A US 00257351 A US00257351 A US 00257351A US 3746821D A US3746821D A US 3746821DA US 3746821 A US3746821 A US 3746821A
Authority
US
United States
Prior art keywords
row
column
wires
housing
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00257351A
Inventor
M Harcourt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co PLC filed Critical General Electric Co PLC
Application granted granted Critical
Publication of US3746821A publication Critical patent/US3746821A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H67/00Electrically-operated selector switches
    • H01H67/22Switches without multi-position wipers
    • H01H67/26Co-ordinate-type selector switches not having relays at cross-points but involving mechanical movement, e.g. cross-bar switch, code-bar switch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • This invention relates to electric switches and particularly to crossbar switches such as may be used in telephone exchanges.
  • a feature of the switch of the present invention in common with that of the above patent application, is a conductor matrix comprising a plurality of tiers of conductors which, in each tier are arranged as rows and columns so that corresponding row wires in the different tiers form row planes and corresponding column wires in the different tiers form column planes, the intersection of a row plane and a column plane providing a crosspoint contact set which thus comprises a contact pair in each tier.
  • Each crosspoint contact set is then operable by a respective contact operating member which deflects all the rows wires at the crosspoint into electrical contact with the column wires at the crosspoint.
  • each crosspoint contact set has a respective housing member which locates the column wires of that crosspoint, the housing members of each column interlocking to prevent movement transverse to the column.
  • manufacture of the conductor matrix comprises assembly of individual contact operating members in their respective housing members, assembly of a matrix of the housing members and, the end-wise insertion of the row wires and column wires to form the conductor crosspoints.
  • the contact operating member is a comb member having a cantilever tooth for each contact pair, the tip of the tooth being formed so as to displace the row wire into and out of contact, with the column wire.
  • the column wires extend into further rows of the conductor matrix in" which rows the contact sets have contact pairs in selected groups only, of the tiers, the grouping varying with the row so that a multi wire path through the switch can be established with a choice of row plane, column plane and tier group, by operation of two contact sets in a column.
  • FIG. I is an exploded front elevation of the crossbar switch showing, in the upper part a conductor matrix, and in thelower part the operating mechanism;
  • FIG. 2 is a diagrammatic view of the conductor matrix;
  • FIG. 3 is part of a left-hand end elevation of the conductor matrix;
  • FIG. 4 is an underneath plan view of one column of the conductor matrix and
  • FIG. 5 is a sectionalelevation on the line V-V of FIG. 3.
  • the conductor matrix comprises twelve tiers of conductor wires, shown in FIG. 2, which, in each tier, are arranged as rows and columns. It will be appreciated that this designation of rows and columns is for convenience only in referring to the conductors of a rectangular coordinate matrix.
  • the wire arrangement of the level-switching rows is modified from the basic arrangement as will be explained.
  • the 12 tiers are superimposed so that corresponding columns in the different tiers form column planes and corresponding rows form row planes.
  • intersection of a row plane and a column plane provides a crosspoint contact set of 12 contact pairs, each such pair being formed by a row wire and a column wire.
  • the row wires are spaced apart slightly from the column wires so that normally there is no electrical contact between them.
  • any row wire (apart from those in the levelswitching rows) can be connected to any column wire by deflecting one or the other at the appropriate crosspoint.
  • the present switch is required to make multiple connections in unison for telephone purposes, and for this reason all 12 contact pairs of a crosspoint contact set are operated in unison.
  • the purpose of the three level-switching rows mentioned above is to select one of the three groups, each group comprising four contact pairs, that are provided by the 12 tiers, when all 12 contact pairs are operated.
  • Each contact set has a respective comb member having 12 cantilever teeth which interleave the tiers so that the tip of one tooth is adjacent to each contact pair.
  • a contact set is then operated by driving the comb transverse to the tiers so that each tooth tip drives a row wire into contact with a column wire.
  • Operation of the combs in this matrix may be effected by either of the mechanisms described in the above specification, that is, a mechanical or electrical latching mechanism for selecting and maintaining operated a particular contact set, or, preferably, by means of the mechanism described in copending application Ser. Nos. 64, 239 and 64, 300, both filed Aug. 17, 1970 and nowU. S. Pat. Nos. 3, 617, 961 and 3, 622, 924 respectively, and appearing in the lower part of FIG. I
  • Each column of the matrix has associated with'it a respective electromagnet assembly 62, sometimes referred to as a bridge magnet.
  • Each such bridge magnet has an armature 78 which extends the length of the column and which carries a column of interposer arms, one for each of the thirteen rows. Operation of the bridge magnet causes the interposer arms to move substantially lengthwise towards the comb members.
  • the interposer arms are flexible in the row planes and each carries an interposer block at its extremity.
  • the interposer blocks are normally displaced slightly in the row direction from the bottom ends 32 of the comb members so that operation of the bridge magnet alone causesno movement of the combs in the respective column because of the above mis-alignment of comb and interposer block.
  • Each row of interposer arms is coupled to a bar which extends the length of the row and is driven longitudinally by an electromagnet sometimes referred to as a select magnet.
  • the select magnets are housed in an assembly 123 at one end of the switch. Operation of a select magnet causes all of the interposer anns of the respective row to move in a direction such as to align the interposer blocks and their respective comb members in the row. Subsequent operation of a bridge magnet then drives the one comb which lies in both the selected row and the selected column.
  • Operation of a particular one of the 130 contact sets can thus be effected selectively. It will be noted that, because of the flexible nature of the interposer arms, operation of one contact set in a row does not prevent coincident operation of a further contact set in the same row. When a bridge magnet has been energised to drive a particular interposer block, that block becomes trapped and the select magnet which had made the selection of that block may then be released for subsequent selection of a further contact set in the same row.
  • External connections to the groups of wires of each row plane provide outlets from the switch while inlets are applied, indirectly, to groups of wires of selected column planes.
  • the particular group of column wires in a column plane is selected by means of the levelswitching rows mentioned above.
  • two select magnets are operated, one to select the outlet row and one, in the three level-switching rows, to select and make connection to the particular group or level of four tiers in that row.
  • a bridge magnet is then operated, thus selecting a particular inlet column to the switch, and the two contact sets selected are operated.
  • a fourwire route is thus set up from a chosen one of fourwire inlets to a chosen one of 30 (10 rows and three levels in each row) four-wire outlets.
  • the conductor matrix 51 is shown in the upper part of FIG. 1. Outlet terminal tags 43, of the switch, are connected to row wires 2 extending from left to light within the switch.
  • the matrix is broken away to show a contact set assembly 53 which includes a comb member 25. This comb member is movable vertically in the drawing by engagement of the lower end 32. The lower ends of the comb members of the other nine columns are also shown.
  • the conductor matrix 51 is mounted on a plate 61 of the mechanism 52 by means of clamping strips 55 having flanges 56.
  • the lower ends 32 of the columns of comb members project through slots in the plate 61 and normally terminate just above respective bridge bars 97 which are movable vertically to drive selected contact sets. 1
  • the particular contact set assembly 53 appearing in FIG. 1 is not one of the basic 10 X 10 matrix of such assemblies but is one in the third row from the rear face of the matrix, that is, in one of the level-switching rows. It can be seen in FIG. 1 that there are, in the exposed contact set assembly 53, only four row conductors and these occupy the top four tiers. These row conductors (which do not in fact extend beyond the particular contact set assembly) form input connections for the particular column and the particular level the top one of three. They are connected to terminal pins on the rear face of the matrix.
  • the short row conductors appearing in FIG. 1 are shown in FIG. 2 as the conductors 18. It can be seen how these are arranged in three groups, four in each group, the groups being staggered through the first three rows, the level-switching rows. The three groups are paralleled to provide a net four-wire input to each column. Operation of a level-switching contact set, such as that shown in FIG. 1, will therefore provide four-wire access to a particular column and to a particular one of three levels in that column. One of 10 fourwire outputs can then be selected by operation of one of the ten standard contact sets in the same column.
  • FIG. 3 shows (part broken away) one column assembly of 13 individual contact set assemblies. These contact set assemblies each comprise 12 contact pairs, and a comb member. Rows 1-3 on the left of FIG. 3 are the level-switching rows previously referred to. The remaining rows contain row wires 2 in every tier. The column wires 3 extend throughout the columns in each of the 12 tiers.
  • Each housing member 4 is a single moulding of plastics material. It comprises a rectangular back plate 6 (to the left of each housing in FIG. 3) of width equal to the pitch of the columns, and of height approximating to that of the 12 tiers.
  • the thickness of the housing 4, equal to the pitch of the rows, is set by upper and lower boss portions 7 and 8, leaving the intermediate space, in front of the back plate 6, to accommodate the contact set.
  • Thirteen of these housing members 4 fit together with the surfaces of the boss portions 7 and 8 of one housing member abutting the back surface 9 of the next, to form the column, as shown in FIG. 3.
  • Spigots 10 extend from the boss portions 7 and 8 and mate with corresponding recesses 11 on the surface 9 of the housing, the housings 4 thus interlocking and forming a unitary column assembly.
  • the left-hand end of the column assembly, as shown in FIG. 3 is closed by a connector housing 14 and the right-hand end of the column is closed by a side plate not shown.
  • This side plate forms a substitute for a succeeding housing 4 and retains the row wires .2 of row 13 in position.
  • each housing 4 has a portion 15 extending the height of the housing this portion 15 being set forward by a small distance from but still parallel to the remainder of the plate 6.
  • the portion 15 contains 12 pairs of holes 16 corresponding to the 12 tiers of the matrix.
  • the column wires 3 are carried by and are a close fit in these holes 16, the plate 6 thus forming a locating jig for the column wires.
  • the holes 16 are countersunk on the front face of the portion 15 to facilitate the insertion of the column wires 3.
  • each housing member 4 has, on the main portion of the back plate 6, a single vertical row of countersunk holes 17, also corresponding to the twelve tiers of the matrix, but individually positioned slightly below the corresponding holes 16.
  • the holes 17 are used only in the level-switching rows 1-13 for carrying terminal wires 18 in those rows.
  • the housing 4 is moulded so as to provide, in effect, a cut-away portion or channel 21 in each of the upper and lower boss portions 7 and 8.
  • the two channels are vertically aligned and their depth is such that the back plate 6 is continuous with them.
  • These channels 21 form a guide for vertical movement of the comb 25.
  • Movement of the comb within the housing 4 and as guided by the channels 21, is limited in the upward direction by a stop 30 on the comb 25 engaging one end of a recess 31 in the lower boss portion 8.
  • a shoulder 29 on the lower end of the comb 25 engages the channel part of the boss portion 8 to limit downward movement of the comb.
  • a cantilever spring arm 22 moulded integrally with the housing 4, projects across and above the back plate 6, inclined slightly downwardly from its root to its free end.
  • This arm 22 is arranged to engage, at its tip, the tip of a corresponding cantilever spring arm 23 integral with the comb 25, as seen in FIG. 5.
  • the double arm arrangement enables the necessary comb deflection to be obtained without excessive stressing of the material.
  • this comprises twelve cantilever teeth 26 and the comb back 27.
  • Upper and lower extensions 28 and 32 of the comb back 27 are a close sliding fit in the channels 21 of the housing 4.
  • the roots of the teeth 26 are slightly proud of the comb back 27, a recess thus formed between the roots of each pair of successive teeth accommodating a row wire 2 (in the standard rows).
  • the spring arm 23 previously referred to appears as a thirteenth tooth above the other twelve.
  • each tooth 26 is formed with a horizontal slot 33 (shown in FIGS. 3 and 5) which is open towards the front face of the comb, i.e. that shown in FIG. 5.
  • This slot 33 ' has a vertical width which is a close fit onthe diameter of the row wires 2.
  • an upper ramp formation 34 which is an upward incline leading smoothly into the slot 33.
  • a lower ramp formation 35 which is downwardly inclined towards the slot 33 below.
  • the two ramp formations 34 and 35 on adjacent teeth form a funnel for the guidance of a row wire 2 on insertion from the root end of a tooth 26 towards the free end.
  • each tooth 26 extend uniformly transverse to the comb, to the right in FIG. 3. This extension is accommodated by the offsetting of the portion of the back plate of the next housing 4, as shown in FIG. 4.
  • The-recess referred toabove, between the roots of the teeth 26, is thus more nearly aligned with the center of the slot 33, or, in other words, the slot 33 covers a greater part of the angle of view of this recess' (when the recess is closed by the adjacent housing backplate 6) and can thus be less easily avoided by the leading end of a row wire on insertion into an assembly of the housings.
  • the teeth 26 of the comb are inclined slightly upward so that a row wire 2, located in the slots 33 of successive columns, is not obstructed by the roots of the teeth 26 but lies freely in the center of the recess.
  • Each row wire 2 is thus supported within the matrix by the slots 33 of all the combs of the row.
  • a resilient mounting is thus provided for that section of a row wire 2 subject to the deflecting force of a comb 25 in the operation of a contact set.
  • the wire 2 is supported at one column pitch on either side of the deflection point by the tooth slots 33 of the adjacent combs of the row.
  • each comb 25 The downward biassing of each comb 25 by the two spring arms 22 and 23 ensures that the 12 row wires 2 of a contact set are returned to their normal unstressed state by the pressure of the upper walls of the associated slots 33.
  • the row wires 2 are thus located vertically by the tooth slots 33 and horizontally by the recesses and adjacent back plate 6.
  • the position of the column wires 3 relative to the row wires 2 can be seen from FIGS. 3 and 5.
  • the driving point of each tooth tip (that is, the walls of the slot 33) lies between and slightly beneath the two wires constituting each column wire 3.
  • each wire 3 extends through every tier and every column as in the column shown.
  • the looped end of each wire 3 is on the right, as shown, and'the left-hand ends lie freely, that is, without electrical connection, in the connector housing 14.
  • row wires 2 extend through the right-hand 10 rows in the manner just described. At one end of the matrix (on the left in FIG. 1) these 10 rows each of 12 tiers of row wires 2extend through an assembled column of further connector housings. These row connector housings are assembled in the same manner as a column of comb housings. Each row connector housing houses twelve row connectors, i.e. terminal tags 43, which protrude from the narrow face of the connector housing. The 12 row wires 2 extend through the housing and protrude from it alongside the row connectors. A wrapped connection is then made between the row wires 2 and the row connectors.
  • each column in each of these three levelswitchingrows has four terminal wires 18 which are of the same diameter as the standard row wires 2 but which are only relatively short lengths and of approximately right-angle form.
  • Each such terminal wire 18 has one arm of length approximating to the length of a tooth 26 of a comb 25 and the other arm of length sufficient to extend from the comb of the level-switching row in question, parallel to the columns, to column connectors 41 (i.e. terminal tags) mounted in the column connector housing 14 shown in FIG. 1.
  • the short arm of each terminal wire 18 lies on the tooth of a comb supported in the slot 33, in a positionsimilar to that of a standard row wire 2.
  • each terminal wire extends through the hole 17 in the wall 6 of the comb housing 4 and through similar holes in adjacent rows (if any) to the connector housing 14 where it is cranked as shown in FIG. 4 and supported in a slot to restrict rotational movement. Wrapped connections are made with the column connectors 41.
  • the combs 25 and comb housings 4 are assembled.
  • the elbow shaped terminal wires 18 are also inserted at this stage and the three housings 4 for these rows are interlocked.
  • the columns are then made up to 13 sub-assemblies of housings 4 and combs 25 by interlocking the comb housings as described.
  • a connector housing 14 for each column is assembled by inserting l2 connectors 41 in recesses in the housing and then mating the connector housing 14 with the first comb housing 4, feeding the terminal wires 18 through the connector-housing 14 at the same time.
  • the row housing and the column housings 14 are in fact identical mouldings but formed so that a terminal tag 43 or 41 may be inserted to protrude from the narrow or broad face according to the use.
  • the terminal tags are of hook or uneven U-shape to provide anchorage in the housing.
  • the end mouldings of the 11 column assemblies have spigots l and 42 which locate in upper and lower clamping strips which run along the ends of the column assemblies.
  • Tie rods (the heads of which are shown in FIG. I) extend through each column assembly (through the spigots to clamp the whole housing matrix between the clamping strips.
  • the lower clamping strip (55 in FIG. 1) has flanges 56 for mounting the matrix on a main plate 61 beneath which the operating mechanism is mounted.
  • the column wires 3 are inserted from one side of the assembly.
  • the countersinking of the holes 16 and the relatively short distance between the plates 6 of the comb housings 4 facilitates the insertion of the column wires.
  • the side plate for retaining the row wires of row 13 is then fixed and subsequently a cover plate to retain the column wires.
  • the row wires 2 are inserted from one end of the assembly the row wires being fed initially into the recesses which then guide the wires sufficiently for them to enter the slots 33. Wrapped connections are made between the row wires 2, the terminal wires 18 and the respective terminal tags 41 and 43.
  • a crossbar switch comprising a. a rectangular array of contact sets arranged in rows and columns,
  • each said contact set including a plurality of contact pairs
  • said contact sets being provided by a conductor matrix having straight conductor wires arranged in rows, columns and tiers,
  • each contact pair of a contact set being provided by the intersection of a row wire and a column wire
  • the crossbar switch further comprising a comb member in respect of each said contact set, each said comb member having a tooth member in re spect of each contact pair, each said tooth member being in cooperative engagement with a row conductor at a said intersection for driving said row conductor transversely to said array in the operation of a contact set,
  • the crossbar switch further comprising a respective housing member for each contact set
  • each housing member forming a housing and guide for a said comb member
  • each contact set and associated comb member being individually enclosed by the housing members
  • portions of the comb members and housing members lying adjacent to said conductor wires in the assembled crossbar switch being formed with ramp formations to permit assembly of said conductor wires subsequent to assembly of said housing members.
  • each said tooth member has oppositely directed ramp formations at its free end, the ramp formations of adjacent tooth members cooperating to provide a funnel formation assisting endwise assembly of said row wires.
  • each said housing member comprises a wall having a hole in respect of each column wire extending through that housing member, each said hole being countersunk to provide a said ramp formation assisting endwise assembly of said column wires.

Landscapes

  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

A conductor matrix is located and supported in a housing matrix having guide passages in rows, columns, and tiers so that the conductor matrix can be assembled by longitudinal insertion of row conductive wires and column conductive wires. Comb actuating members are also provided to drive said row conductive wires into contact with said column conductive wires. Said comb and housing members provide ram p formations to facilitate assembly of said conductive wires subsequent to assembly of said housing members.

Description

SUBSEQUENT TO HOUSING ASSEMBLY [75] Inventor: Michael David Harcourt, Coventry,
England [73] Assignee: The General Electric Company Limited, London, England [22] Filed: May 26, 1972 [21] Appl. No.: 257,351
1 Related US. Application Data [63] Continuation of Ser No. 33,615, May 1. 1970,
abandoned.
[52] US. Cl. 200/175, 29/624 [51] Int. CL. "01h 63/33, HOlh 63/34, HOlh 67/04 [58] Field of Search 200/175, 168 K, 176, 200/177, 178; 29/622, 624; 335/112, 111, 115
I56] References Cited UNITED STATES PATENTS 1,523.407 1/1925 Dobbin 200/175 United States Patent 1191 1111 3,746,821 Harcourt 1 July 17, 1973 [54] CROSSBAR SWITCH WITH RAMP MEANS 2,934,748 4/1960 Steimen 200/622 FACILITATING CONDUCTOR ASSEMBLY 3,386,056 5/1968 Frydmun 335/112 3.478.285 11/1969 Haincs ct ul 335/112 Primary Examiner-Robert K. Schaefer Assistant Examiner-Robert A. Vanderhye Attorney-Bertram Ottinger [57] ABSTRACT also provided to drive said row conductive wires into contact with said column conductive wires. Said comb and housing members provide ram p formations to fa cilitate assembly of said conductive wires subsequent to assembly of said housing members.
3 Claims, 5 Drawing Figures dru 7 as a Patented July 17, 1973 4 Sh eets-Sheet 1 lllrr NO v o o m AW H P EYs Patentd July 17, 1973 4 Sheets-Sheet z INym TOR ITTORNEyS PM M1913 fFigA -*Fig.5 i
INVENT'QR CROSSBAR SWITCH WITH RAMP MEANS FACILITATING CONDUCTOR ASSEMBLY SUBSEQUENT TO HOUSING ASSEMBLY This is a continuation of application Ser. No. 33,615
filed May I, 1970, now abandoned.
This invention relates to electric switches and particularly to crossbar switches such as may be used in telephone exchanges.
Two examples of crossbar switches are described in U.S. Pat. No. 3,478,285 and the present invention is directed to an improvement in such switches.
A feature of the switch of the present invention in common with that of the above patent application, is a conductor matrix comprising a plurality of tiers of conductors which, in each tier are arranged as rows and columns so that corresponding row wires in the different tiers form row planes and corresponding column wires in the different tiers form column planes, the intersection of a row plane and a column plane providing a crosspoint contact set which thus comprises a contact pair in each tier.
Each crosspoint contact set is then operable by a respective contact operating member which deflects all the rows wires at the crosspoint into electrical contact with the column wires at the crosspoint.
According to one feature of the invention each crosspoint contact set has a respective housing member which locates the column wires of that crosspoint, the housing members of each column interlocking to prevent movement transverse to the column.
According to a second feature of the invention manufacture of the conductor matrix comprises assembly of individual contact operating members in their respective housing members, assembly of a matrix of the housing members and, the end-wise insertion of the row wires and column wires to form the conductor crosspoints.
According to a further feature of the invention the contact operating member is a comb member having a cantilever tooth for each contact pair, the tip of the tooth being formed so as to displace the row wire into and out of contact, with the column wire.
According to a yet further feature of the invention the column wires extend into further rows of the conductor matrix in" which rows the contact sets have contact pairs in selected groups only, of the tiers, the grouping varying with the row so that a multi wire path through the switch can be established with a choice of row plane, column plane and tier group, by operation of two contact sets in a column.
A crossbar switch in accordance with the invention will now be described, by way of example, with reference to the accompanying drawings, of which: FIG. I is an exploded front elevation of the crossbar switch showing, in the upper part a conductor matrix, and in thelower part the operating mechanism; FIG. 2 is a diagrammatic view of the conductor matrix; FIG. 3 is part of a left-hand end elevation of the conductor matrix; FIG. 4 is an underneath plan view of one column of the conductor matrix and FIG. 5 is a sectionalelevation on the line V-V of FIG. 3.
The conductor matrix comprises twelve tiers of conductor wires, shown in FIG. 2, which, in each tier, are arranged as rows and columns. It will be appreciated that this designation of rows and columns is for convenience only in referring to the conductors of a rectangular coordinate matrix. There are basically I0 row wires and ten column wires in each tier, with an additional three rows which will be called level-switching rows. The wire arrangement of the level-switching rows is modified from the basic arrangement as will be explained. The 12 tiers are superimposed so that corresponding columns in the different tiers form column planes and corresponding rows form row planes. The intersection of a row plane and a column plane provides a crosspoint contact set of 12 contact pairs, each such pair being formed by a row wire and a column wire. In each tier the row wires are spaced apart slightly from the column wires so that normally there is no electrical contact between them.
Clearly, any row wire (apart from those in the levelswitching rows) can be connected to any column wire by deflecting one or the other at the appropriate crosspoint. However, the present switch is required to make multiple connections in unison for telephone purposes, and for this reason all 12 contact pairs of a crosspoint contact set are operated in unison. In general only four of the 12 connections are sufficient for a particular telephone call and its supervision, and the purpose of the three level-switching rows mentioned above is to select one of the three groups, each group comprising four contact pairs, that are provided by the 12 tiers, when all 12 contact pairs are operated.
Each contact set has a respective comb member having 12 cantilever teeth which interleave the tiers so that the tip of one tooth is adjacent to each contact pair. A contact set is then operated by driving the comb transverse to the tiers so that each tooth tip drives a row wire into contact with a column wire.
Operation of the combs in this matrix may be effected by either of the mechanisms described in the above specification, that is, a mechanical or electrical latching mechanism for selecting and maintaining operated a particular contact set, or, preferably, by means of the mechanism described in copending application Ser. Nos. 64, 239 and 64, 300, both filed Aug. 17, 1970 and nowU. S. Pat. Nos. 3, 617, 961 and 3, 622, 924 respectively, and appearing in the lower part of FIG. I
The latter mechanism is, briefly, as follows. Each column of the matrix has associated with'it a respective electromagnet assembly 62, sometimes referred to as a bridge magnet. Each such bridge magnet has an armature 78 which extends the length of the column and which carries a column of interposer arms, one for each of the thirteen rows. Operation of the bridge magnet causes the interposer arms to move substantially lengthwise towards the comb members. The interposer arms are flexible in the row planes and each carries an interposer block at its extremity. The interposer blocks are normally displaced slightly in the row direction from the bottom ends 32 of the comb members so that operation of the bridge magnet alone causesno movement of the combs in the respective column because of the above mis-alignment of comb and interposer block.
Each row of interposer arms is coupled to a bar which extends the length of the row and is driven longitudinally by an electromagnet sometimes referred to as a select magnet. The select magnets are housed in an assembly 123 at one end of the switch. Operation of a select magnet causes all of the interposer anns of the respective row to move in a direction such as to align the interposer blocks and their respective comb members in the row. Subsequent operation of a bridge magnet then drives the one comb which lies in both the selected row and the selected column.
Operation of a particular one of the 130 contact sets can thus be effected selectively. It will be noted that, because of the flexible nature of the interposer arms, operation of one contact set in a row does not prevent coincident operation of a further contact set in the same row. When a bridge magnet has been energised to drive a particular interposer block, that block becomes trapped and the select magnet which had made the selection of that block may then be released for subsequent selection of a further contact set in the same row.
External connections to the groups of wires of each row plane provide outlets from the switch while inlets are applied, indirectly, to groups of wires of selected column planes. The particular group of column wires in a column plane is selected by means of the levelswitching rows mentioned above. In setting up a fourwire route through the switch, therefore, two select magnets are operated, one to select the outlet row and one, in the three level-switching rows, to select and make connection to the particular group or level of four tiers in that row. A bridge magnet is then operated, thus selecting a particular inlet column to the switch, and the two contact sets selected are operated. A fourwire route is thus set up from a chosen one of fourwire inlets to a chosen one of 30 (10 rows and three levels in each row) four-wire outlets.
A fuller description of the above operating mechanism appears in the patent applications referred to above.
Having described the arrangement and its operation broadly, a detailed description will now be given of the conductor matrix for the switch.
The conductor matrix 51 is shown in the upper part of FIG. 1. Outlet terminal tags 43, of the switch, are connected to row wires 2 extending from left to light within the switch. The matrix is broken away to show a contact set assembly 53 which includes a comb member 25. This comb member is movable vertically in the drawing by engagement of the lower end 32. The lower ends of the comb members of the other nine columns are also shown.
The conductor matrix 51 is mounted on a plate 61 of the mechanism 52 by means of clamping strips 55 having flanges 56. The lower ends 32 of the columns of comb members project through slots in the plate 61 and normally terminate just above respective bridge bars 97 which are movable vertically to drive selected contact sets. 1
The particular contact set assembly 53 appearing in FIG. 1 is not one of the basic 10 X 10 matrix of such assemblies but is one in the third row from the rear face of the matrix, that is, in one of the level-switching rows. It can be seen in FIG. 1 that there are, in the exposed contact set assembly 53, only four row conductors and these occupy the top four tiers. These row conductors (which do not in fact extend beyond the particular contact set assembly) form input connections for the particular column and the particular level the top one of three. They are connected to terminal pins on the rear face of the matrix.
The arrangement of the conductor matrix can be seen more clearly from the diagrammatic FIG. 2. Dis crete contacts have been drawn in this FIG. 2 at each crosspoint of a row conductor 2 and a column conductor 3 for clarity, although in fact there are no such discrete contacts, the wires being quite continuous at the crosspoints.
The short row conductors appearing in FIG. 1 are shown in FIG. 2 as the conductors 18. It can be seen how these are arranged in three groups, four in each group, the groups being staggered through the first three rows, the level-switching rows. The three groups are paralleled to provide a net four-wire input to each column. Operation of a level-switching contact set, such as that shown in FIG. 1, will therefore provide four-wire access to a particular column and to a particular one of three levels in that column. One of 10 fourwire outputs can then be selected by operation of one of the ten standard contact sets in the same column.
Referring now to FIGS. 3, 4 and 5, FIG. 3 shows (part broken away) one column assembly of 13 individual contact set assemblies. These contact set assemblies each comprise 12 contact pairs, and a comb member. Rows 1-3 on the left of FIG. 3 are the level-switching rows previously referred to. The remaining rows contain row wires 2 in every tier. The column wires 3 extend throughout the columns in each of the 12 tiers.
Each housing member 4 is a single moulding of plastics material. It comprises a rectangular back plate 6 (to the left of each housing in FIG. 3) of width equal to the pitch of the columns, and of height approximating to that of the 12 tiers. The thickness of the housing 4, equal to the pitch of the rows, is set by upper and lower boss portions 7 and 8, leaving the intermediate space, in front of the back plate 6, to accommodate the contact set. Thirteen of these housing members 4 fit together with the surfaces of the boss portions 7 and 8 of one housing member abutting the back surface 9 of the next, to form the column, as shown in FIG. 3. Spigots 10 extend from the boss portions 7 and 8 and mate with corresponding recesses 11 on the surface 9 of the housing, the housings 4 thus interlocking and forming a unitary column assembly.
The left-hand end of the column assembly, as shown in FIG. 3 is closed by a connector housing 14 and the right-hand end of the column is closed by a side plate not shown. This side plate forms a substitute for a succeeding housing 4 and retains the row wires .2 of row 13 in position.
The back plate 6 of each housing 4 has a portion 15 extending the height of the housing this portion 15 being set forward by a small distance from but still parallel to the remainder of the plate 6. The portion 15 contains 12 pairs of holes 16 corresponding to the 12 tiers of the matrix. The column wires 3 are carried by and are a close fit in these holes 16, the plate 6 thus forming a locating jig for the column wires. The holes 16 are countersunk on the front face of the portion 15 to facilitate the insertion of the column wires 3. In addition to the holes 16 each housing member 4 has, on the main portion of the back plate 6, a single vertical row of countersunk holes 17, also corresponding to the twelve tiers of the matrix, but individually positioned slightly below the corresponding holes 16. The holes 17 are used only in the level-switching rows 1-13 for carrying terminal wires 18 in those rows.
The housing 4 is moulded so as to provide, in effect, a cut-away portion or channel 21 in each of the upper and lower boss portions 7 and 8. The two channels are vertically aligned and their depth is such that the back plate 6 is continuous with them. These channels 21 form a guide for vertical movement of the comb 25.
Movement of the comb within the housing 4 and as guided by the channels 21, is limited in the upward direction by a stop 30 on the comb 25 engaging one end of a recess 31 in the lower boss portion 8. A shoulder 29 on the lower end of the comb 25 engages the channel part of the boss portion 8 to limit downward movement of the comb.
Immediately beneath the upper boss portion 8 a cantilever spring arm 22, moulded integrally with the housing 4, projects across and above the back plate 6, inclined slightly downwardly from its root to its free end. This arm 22 is arranged to engage, at its tip, the tip of a corresponding cantilever spring arm 23 integral with the comb 25, as seen in FIG. 5. The double arm arrangement enables the necessary comb deflection to be obtained without excessive stressing of the material.
Referring to the comb 25 more specifically now, this .comprises twelve cantilever teeth 26 and the comb back 27. Upper and lower extensions 28 and 32 of the comb back 27 are a close sliding fit in the channels 21 of the housing 4. The roots of the teeth 26 are slightly proud of the comb back 27, a recess thus formed between the roots of each pair of successive teeth accommodating a row wire 2 (in the standard rows).
The spring arm 23 previously referred to appears as a thirteenth tooth above the other twelve.
The free end of each tooth 26 is formed with a horizontal slot 33 (shown in FIGS. 3 and 5) which is open towards the front face of the comb, i.e. that shown in FIG. 5. This slot 33 'has a vertical width which is a close fit onthe diameter of the row wires 2. Immediately before the slot 33 on each tooth is an upper ramp formation 34which is an upward incline leading smoothly into the slot 33. On the underside of each tooth 26 is a lower ramp formation 35 which is downwardly inclined towards the slot 33 below. The two ramp formations 34 and 35 on adjacent teeth form a funnel for the guidance of a row wire 2 on insertion from the root end of a tooth 26 towards the free end.
The ramp and slot formations on the end of each tooth 26 extend uniformly transverse to the comb, to the right in FIG. 3. This extension is accommodated by the offsetting of the portion of the back plate of the next housing 4, as shown in FIG. 4. The-recess referred toabove, between the roots of the teeth 26, is thus more nearly aligned with the center of the slot 33, or, in other words, the slot 33 covers a greater part of the angle of view of this recess' (when the recess is closed by the adjacent housing backplate 6) and can thus be less easily avoided by the leading end of a row wire on insertion into an assembly of the housings.
The teeth 26 of the comb are inclined slightly upward so that a row wire 2, located in the slots 33 of successive columns, is not obstructed by the roots of the teeth 26 but lies freely in the center of the recess. Each row wire 2 is thus supported within the matrix by the slots 33 of all the combs of the row. A resilient mounting is thus provided for that section of a row wire 2 subject to the deflecting force of a comb 25 in the operation of a contact set. The wire 2 is supported at one column pitch on either side of the deflection point by the tooth slots 33 of the adjacent combs of the row.
The downward biassing of each comb 25 by the two spring arms 22 and 23 ensures that the 12 row wires 2 of a contact set are returned to their normal unstressed state by the pressure of the upper walls of the associated slots 33. The row wires 2 are thus located vertically by the tooth slots 33 and horizontally by the recesses and adjacent back plate 6.
The position of the column wires 3 relative to the row wires 2 can be seen from FIGS. 3 and 5. The driving point of each tooth tip (that is, the walls of the slot 33) lies between and slightly beneath the two wires constituting each column wire 3.
Referring to FIG. 3 particularly, the column wires 3 extend through every tier and every column as in the column shown. The looped end of each wire 3 is on the right, as shown, and'the left-hand ends lie freely, that is, without electrical connection, in the connector housing 14.
As mentioned previously the row wires 2 extend through the right-hand 10 rows in the manner just described. At one end of the matrix (on the left in FIG. 1) these 10 rows each of 12 tiers of row wires 2extend through an assembled column of further connector housings. These row connector housings are assembled in the same manner as a column of comb housings. Each row connector housing houses twelve row connectors, i.e. terminal tags 43, which protrude from the narrow face of the connector housing. The 12 row wires 2 extend through the housing and protrude from it alongside the row connectors. A wrapped connection is then made between the row wires 2 and the row connectors.
In the remaining three rows there are, of course, no continuous row wires to be connected to terminals. However each column in each of these three levelswitchingrows has four terminal wires 18 which are of the same diameter as the standard row wires 2 but which are only relatively short lengths and of approximately right-angle form. Each such terminal wire 18 has one arm of length approximating to the length of a tooth 26 of a comb 25 and the other arm of length sufficient to extend from the comb of the level-switching row in question, parallel to the columns, to column connectors 41 (i.e. terminal tags) mounted in the column connector housing 14 shown in FIG. 1. The short arm of each terminal wire 18 lies on the tooth of a comb supported in the slot 33, in a positionsimilar to that of a standard row wire 2. Thelonger arm of each terminal wire extends through the hole 17 in the wall 6 of the comb housing 4 and through similar holes in adjacent rows (if any) to the connector housing 14 where it is cranked as shown in FIG. 4 and supported in a slot to restrict rotational movement. Wrapped connections are made with the column connectors 41.
As shown in FIG. 3, four terminal wires 18 are positioned on the lowest four teeth in row 1, four terminal wires 18 are positioned on the middle four teeth of row 2 and four on the upper four teeth of row 3. Clearly, operation of the contact set of row 1 will give the four lowermost column connectors 4] access to the four column wires 3 in the same tiers. Access to the middle and upper groups of column wires is similarly obtained by operation of the other two contact sets. The remaining columns are identical in respect of their terminal wire connections.
In assembling the matrix, first the combs 25 and comb housings 4 are assembled. In the case of the levelswitching rows the elbow shaped terminal wires 18 are also inserted at this stage and the three housings 4 for these rows are interlocked. The columns are then made up to 13 sub-assemblies of housings 4 and combs 25 by interlocking the comb housings as described. A connector housing 14 for each column is assembled by inserting l2 connectors 41 in recesses in the housing and then mating the connector housing 14 with the first comb housing 4, feeding the terminal wires 18 through the connector-housing 14 at the same time.
After assembling the 10 columns a further column of row connector housings is assembled. The row housing and the column housings 14 are in fact identical mouldings but formed so that a terminal tag 43 or 41 may be inserted to protrude from the narrow or broad face according to the use. The terminal tags are of hook or uneven U-shape to provide anchorage in the housing.
The end mouldings of the 11 column assemblies have spigots l and 42 which locate in upper and lower clamping strips which run along the ends of the column assemblies. Tie rods (the heads of which are shown in FIG. I) extend through each column assembly (through the spigots to clamp the whole housing matrix between the clamping strips. The lower clamping strip (55 in FIG. 1) has flanges 56 for mounting the matrix on a main plate 61 beneath which the operating mechanism is mounted.
After assembling the matrix of housing mouldings the column wires 3 are inserted from one side of the assembly. The countersinking of the holes 16 and the relatively short distance between the plates 6 of the comb housings 4 facilitates the insertion of the column wires. The side plate for retaining the row wires of row 13 is then fixed and subsequently a cover plate to retain the column wires. The row wires 2 are inserted from one end of the assembly the row wires being fed initially into the recesses which then guide the wires sufficiently for them to enter the slots 33. Wrapped connections are made between the row wires 2, the terminal wires 18 and the respective terminal tags 41 and 43.
I claim:
1. A crossbar switch comprising a. a rectangular array of contact sets arranged in rows and columns,
i. each said contact set including a plurality of contact pairs,
ii. said contact pairs being stacked transversely to the array,
iii. said contact sets being provided by a conductor matrix having straight conductor wires arranged in rows, columns and tiers,
iv. corresponding row wires in the different tiers forming row planes and corresponding column wires in the different tiers forming column planes,
v. the intersection of a row plane and a column plane providing said contact set, and
vi. each contact pair of a contact set being provided by the intersection of a row wire and a column wire,
b. the crossbar switch further comprising a comb member in respect of each said contact set, each said comb member having a tooth member in re spect of each contact pair, each said tooth member being in cooperative engagement with a row conductor at a said intersection for driving said row conductor transversely to said array in the operation of a contact set,
c. the crossbar switch further comprising a respective housing member for each contact set,
i. each housing member forming a housing and guide for a said comb member,
ii. each contact set and associated comb member being individually enclosed by the housing members, and
iii. portions of the comb members and housing members lying adjacent to said conductor wires in the assembled crossbar switch being formed with ramp formations to permit assembly of said conductor wires subsequent to assembly of said housing members.
2. A crossbar switch according to claim 1, wherein each said tooth member has oppositely directed ramp formations at its free end, the ramp formations of adjacent tooth members cooperating to provide a funnel formation assisting endwise assembly of said row wires.
3. A crossbar switch according to claim 1, wherein each said housing member comprises a wall having a hole in respect of each column wire extending through that housing member, each said hole being countersunk to provide a said ramp formation assisting endwise assembly of said column wires.

Claims (3)

1. A crossbar switch comprising a. a rectangular array of contact sets arranged in rows and columns, i. each said contact set including a plurality of contact pairs, ii. said contact pairs being stacked transversely to the array, iii. said contact sets being provided by a conductor matrix having straight conductor wires arranged in rows, columns and tiers, iv. corresponding row wires in the different tiers forming row planes and corresponding column wires in the different tiers forming column planes, v. the intersection of a row plane and a column plane providing said contact set, and vi. each contact pair of a contact set being provided by the intersection of a row wire and a column wire, b. the crossbar switch further comprising a comb member in respect of each said contact set, each said comb member having a tooth member in respect of each contact pair, each said tooth member being in cooperative engagement with a row conductor at a said intersection for driving said row conductor transversely to said array in the operation of a contact set, c. the crossbar switch further comprising a respective housing member for each contact set, i. each housing member forming a housing and guide for a said comb member, ii. each contact set and associated comb member being individually enclosed by the housing members, and iii. portions of the comb members and housing members lying adjacent to said conductor wires in the assembled crossbar switch being formed with ramp formations to permit assembly of said conductor wires subsequent to assembly of said housing members.
2. A crossbar switch according to claim 1, wherein each said tooth member has oppositely directed ramp formations at its free end, the ramp formations of adjacent tooth members cooperating to provide a funnel formation assisting endwise assembly of said row wires.
3. A crossbar switch according to claim 1, wherein each said housing member comprises a wall having a hole in respect of each column wire extending through that housing member, each said hole being countersunk to provide a said ramp formation assisting endwise assembly of said column wires.
US00257351A 1972-05-26 1972-05-26 Crossbar switch with ramp means facilitating conductor assembly subsequent to housing assembly Expired - Lifetime US3746821A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US25735172A 1972-05-26 1972-05-26

Publications (1)

Publication Number Publication Date
US3746821A true US3746821A (en) 1973-07-17

Family

ID=22975958

Family Applications (1)

Application Number Title Priority Date Filing Date
US00257351A Expired - Lifetime US3746821A (en) 1972-05-26 1972-05-26 Crossbar switch with ramp means facilitating conductor assembly subsequent to housing assembly

Country Status (1)

Country Link
US (1) US3746821A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1523407A (en) * 1922-12-30 1925-01-20 Western Electric Co Switching mechanism
US2934748A (en) * 1957-01-31 1960-04-26 United Shoe Machinery Corp Core mounting means
US3386056A (en) * 1965-09-13 1968-05-28 Telephone Mfg Co Ltd Electrical switch module
US3478285A (en) * 1966-12-22 1969-11-11 Gen Electric Co Ltd Electric crossbar switches

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1523407A (en) * 1922-12-30 1925-01-20 Western Electric Co Switching mechanism
US2934748A (en) * 1957-01-31 1960-04-26 United Shoe Machinery Corp Core mounting means
US3386056A (en) * 1965-09-13 1968-05-28 Telephone Mfg Co Ltd Electrical switch module
US3478285A (en) * 1966-12-22 1969-11-11 Gen Electric Co Ltd Electric crossbar switches

Similar Documents

Publication Publication Date Title
US4083615A (en) Connector for terminating a flat multi-wire cable
JP3195348B2 (en) Improved cross-connect system for telecommunications systems.
US4734042A (en) Multi row high density connector
US3777223A (en) Modular electrical junction and interconnection means with supporting means for terminal blocks
US3859724A (en) Method and apparatus for manufacturing electrical harnesses
US3518611A (en) Connector for telephone main distributing frame
US3702456A (en) Electrical terminal block for interconnecting a plurality of conductors
US3838317A (en) Cross connect switch
US3753216A (en) High voltage terminal strip
US3796848A (en) Pin connector switch
US4221445A (en) Cross connect distribution system and apparatus
US4533202A (en) Multiple electrical connector and block with printed circuit board connector clip
US4466687A (en) Low profile connector providing high density application
US3499515A (en) Modular electrical keyboard
US3345599A (en) Cross-connecting board
US3631523A (en) Electric switch
US3746821A (en) Crossbar switch with ramp means facilitating conductor assembly subsequent to housing assembly
US3631522A (en) Electric switches
US4425019A (en) Multiple electrical connector block with wire wrap pins
US3622924A (en) Electric switches
US4099823A (en) High density multipair cable connecting block
US3686617A (en) Multi-contact electrical connector assembly
US3478285A (en) Electric crossbar switches
US3340436A (en) Electrical component modules
US4021093A (en) Connection frame for electrical installations