US3746350A - Sealing assembly with pump device - Google Patents

Sealing assembly with pump device Download PDF

Info

Publication number
US3746350A
US3746350A US00018820A US3746350DA US3746350A US 3746350 A US3746350 A US 3746350A US 00018820 A US00018820 A US 00018820A US 3746350D A US3746350D A US 3746350DA US 3746350 A US3746350 A US 3746350A
Authority
US
United States
Prior art keywords
shaft
thread
bore
medium
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00018820A
Inventor
E Mayer
R Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3746350A publication Critical patent/US3746350A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S277/00Seal for a joint or juncture
    • Y10S277/93Seal including heating or cooling feature

Definitions

  • ABSTRACT Asealing assembly for a rotatable shaft, wherein a cooling, lubricating, or buffer medium is circulated by means of an external thread on a rotatable member and an internal thread in a non-rotatable member.
  • the internal thread has a hand opposite to that of the external thread and surrounds the latter with a small radial clearance.
  • This invention relates to sealing assemblies or mechanical seals of the kind having at least onepump de vice arranged adjacent to the slide surfaces within the shaft-receiving bore containing the seal, said pump device serving to circulate a cooling, lubricating, buffer or sealing medium, the partof said pump rotating with the shaft having an external thread coaxially surrounding the shaft and intended to convey the medium.
  • seals will be referred to hereinafter as seals of the type stated.
  • the pump device serves as a rule to convey a fluid-coolant to a heat-exchanger arrangedoutside of the seal, and back to the seal.
  • a disadvantage in pump devices in which the externalthread rotating with the shaft is surrounded by a smooth, stationary, cylindrical bore, is that the necessary circulating quantity and thus adequate cooling can be achieved only at high numbers of revolution. This is attributable to the fact that the known conveying thread results only at high circumferential speeds in apressure which is sufficient to overcome the flow resistance of the circulatory path in which magnetic filters, separators and the like may be arranged.
  • An object of the present invention is to provide a seal of the kind stated whose pump device has a small radial dimension, but produces a high conveying pressure and output of the conveyed medium, even at relatively low numbers of revolution.
  • the internal thread is preferably formed in a separate, immovable bush set in the shaft-receiving bore.
  • the external thread may be formed on a component adapted to rotate with the shaft but axially movable relative thereto.
  • the component may be a rotating slidering itself.
  • the axial reactive thrust generated by the conveyance of the medium on the external thread may be used to modify the pressure force exerted by the slide-ring on the counter-ring, depending on the direction of rotation and on the number of revolutions.
  • FIG. I is a fractional axial section through a first embodiment of a seal assembly according to the invention, in which the outer thread serving for conveyance is arranged on a sleeve carrying the rotating counter-ring member;
  • FIG. 2 is a fractional axial section through a second embodimentof a seal assembly according to the invention, in which the outer thread is arranged in a sleeve 2v. carrying the rbtatingslide-ring member and a guideplate is proyided to direct the flow of fluid to the sealing surfaces;
  • FIG. 3 is a fractional axial section through a third em,- bodiment showing a double sealaccordingto the invention, wherein the outer thread is formed in a bush,
  • FIG. 4 is a fractionalaxial section through a fourth.
  • FIG. 5 is a fractional axialsectionthrough a fifth embodiment of a seal according to the invention, in which the pressure spring of the slide-ring forms the conveyor. thread;
  • FIGS. 6 and 7 show details.
  • a shaft sleeve 2 is rigidly mounted about ashaft I in apfluid-tight manner, a carrier sleeve 3b being mounted on the shaft sleeve 2 and held in; place by a screw 4.
  • AnO ring 6 in an annular groove 5 of the carrier sleeve 3b serves as a seal between the sleeves 2 and 3b.
  • a counter-ring member 7! is rigidly seated in carrier sleeve 3b, a non-rotatable slide-ring member 8a bearing against said counter-ring member 7b and being rigidly seated in a carrier sleeve 9a which is in turn seated non-rotatably but in the axial direction movably in an annular groove 10 of a cover 13 closing off the stepped, shaft-receiving through-bore ll of a casing 12.
  • Cover 13 is secured in a fluid-tight manner to casing 12 which is stationary relative to shaft 1 and may be mounted on a support (not shown). Casing 12 and cover 13 together form the housing of the sealing assembly.
  • the carrier sleeve and slide-ring 8a are urged towards the counter-ring 7b by a plurality of springs 14a, one of which is shown in FIG.]
  • An 0- ring 10 R is positioned between carrier sleeve 9a and cover 13.
  • a multiple external thread 15 is tapped in the outer circumference of carrier sleeve 3b, said thread, in axial section, having a rectangular shape. It should be noted that thread 15 is positioned within bore 11 in spaced relationship to the wall of the bore. ,7
  • the carrier sleeve 3b whose bounding surface envelope is cylindrical, is surrounded with slight radial clearance by a bush or bushing 16 of approximately the same axial length, which is immovably set in the stepped bore ll.
  • a thread 17 is tapped in the cylindrical bore of bush l6, the thread 17 being similar to the thread 15 in carrier sleeve 3b, but the hands of the threads being opposite to each other.
  • a left-hand thread 15 will be associated with a right-hand thread 17, and vice versa.
  • the two threads 15 and 17 form the active parts of a pump device which, when shaft 1 rotates, sucks in a cooling, lubricating, buffer or sealing medium by way of an inlet bore 18 provided incasing l2, and conveys or propels it from there above counter-and slide-ring members 7b and 8a to an outlet bore 19 passing through cover 13.
  • the inlet bore 18 and outlet bore 19 are connected by way of conduits with a heatexchanger (not shown in FIG. 1) which cools the medium before it enters the seal again.
  • Screw 4 is preferably provided in the vicinity of the axial end region of thread 15, and then only a small reduction in the hydraulic efficiency occurs because of the disturbance in the contour of the conveying threads.
  • the required pump capacity and pressure can be obtained by changing the number of threads, the thread pitch and the groove dimensions. 7 It will be clear that the arrangement shown is adapted to prevent leakage from the casing interior at the left hand side of FIG. 1 to the outside in the direction towards cover 13 while effectively circulating a cooling, lubricating or buffer medium through the casing.
  • the embodiment according to FIG. 2 differs from that just described in that slide-ring member 8b, which is set into carrier sleeve 9b and is strutted in the axial direction by a spring 14b, rotates with the shaft, whereas the counter-ring member 7a is arranged to be stationary and is supported by two O-rings 6b in a twopart cover 13,13.
  • the internal thread serving to convey the medium as in the first embodiment, is formed in a bush 16 mounted in the shaft bore 11, while the external thread is formed in the cylindrical circumference of carrier sleeve 9b.
  • the external coolant circuit may be the same as that described for FIG. 1.
  • FIG. 3 shows a double seal constructed according to the invention, such as is used, for example, in rendering a nuclear reactor fluid-tight or a pump intended therefor.
  • the sealing medium is in this case active in the space or chamber between the two pairs of slideand counter-ring members 7'a, 8b and 7"a, 8"b and circulates through a high-pressure heat-exchanger 21 which is connectedto the chamber.
  • a supply container 22 adpated to replenish the circulating medium and charged with gas keeps the sealing medium at a pressure a few atmospheres above the highest pressure to be sealed off and thus augments the sealing effect.
  • a further feature is that the external thread 15 is cut into a separate sleeve 23 which is mounted independently of the sealing means and surrounds the carrier-sleeves 9'b and 9"b over a part of the axial length, and which is prevented from substantially moving axially and circumferentially relative to shaft 1 by a grub-screw or setscrew 24.
  • An internal shoulder 25 on an extension of the bush 16 which has the internal thread, at the same time provides a support for the stationary counter-ring member 7"a.
  • FIG. 4 which corresponds in some essential details of construction and arrangement of the slideand counterring units to the double seal of FIG. 3, no separate sleeve is provided for the external thread 15.
  • two external threads 15' and 15" are provided on two rotating slide-ring members 9'b and 9"b, while two internal threads 17' and 17" cooperating with the two external threads are provided in separate bushes l6, 16".
  • Each of the internal threads 17' and 17" has a hand opposite to that of the external thread 15' or 15" with which it is associated, the hands of the external threads in turn being opposite to each other. It follows that the internal threads likewise are of opposite hands.
  • a bore 19 connected to the heat-exchanger 21 opens into said chamber while two bores 18 and 18" which are likewise connected to the heat exchanger terminate at opposite ends of the bushes l6 and 16" which ends are disposed axially at opposite sides of bore 19.
  • the bores 18', 18" will serve as the inlet openings and bore 19 as the outlet opening, but the functions of the bores would be reversed if the shaft rotates in the opposite direction.
  • the pressure-spring 26 for the rotating slide-ring member 8b which spring preferably has multiple coils of rectangular cross-sections, can at the same time be used as an external thread for conveying the enclosed medium, resulting in a saving in manufacturing costs and radial height.
  • Spring 26 is connected to shaft sleeve 2 for rotation therewith.
  • groove means in the sliding surfaces of the slideor counter-ring units. This is indicated, by way of example, at 27 in FIG. 1 where the rotatable counter-ring 7b is provided with groove means, and at 28 in FIGS. 3 and 4 where the stationary counter-rings 7'a and 7"a are provided with such groove means.
  • FIG. 6 shows the grooved end face of the rotatable counter-ring 7b of FIG. 1 in elevation and illustrates the shape of grooves 27, each of which starts at one point of the outer circumference of the ring and leads back to another point of the same circumference so that each groove communicates with the medium under pressure, the medium surrounding the ring, see FIG. I.
  • the grooves are symmetrically arranged on the respective end face as shown in FIG. 6, and each groove has the shape of a circular arc, but other forms may likewise be used, for example, a straight chord-like shape or a polygonal shape.
  • FIG. 7 shows an elevational view of the grooved end of stationary counter-ring 7'a as provided in FIGS. 3 and 4. It will be apparent that the grooves 28 0f FIG. 7 correspond in principle to grooves 27 of FIG. 6.
  • sealing means comprising a slide-ring unit coaxially surrounding said shaft within said bore and arranged for movement axially of said shaft under resilient pressure; a counter-ring unit similar to said slide ring unit but prevented from axial movement relative to said shaft when in operating position; one of said ring units being mounted for rotation with said shaft, and each of said ring units having an end face for mutual contact under said resilient pressure to form a seal; an external thread of a predetermined hand on said one ring unit; and means stationary relative to said housing and forming an internal thread within said bore, said internal thread having a hand opposite to said hand of the external thread and surrounding thelatter with a radial clearance so small that upon rotation of the shaft said external and internal threads are adpated to cooperate for propelling said medium over said end faces and through said openings in the housing, each of said internal and external threads having thread length and thread spacing essentially
  • sealing assembly according to claim 1, wherein said sealing'means includes groove means formed in said end faces, said groove means starting and terminating at the circumference of one end face for communication with said medium.
  • said groove means comprises a plurality of grooves symmetrically arranged on one end face.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

A sealing assembly for a rotatable shaft, wherein a cooling, lubricating, or buffer medium is circulated by means of an external thread on a rotatable member and an internal thread in a non-rotatable member. The internal thread has a hand opposite to that of the external thread and surrounds the latter with a small radial clearance.

Description

United States Patent [191 Mayer et al.
SEALING ASSEMBLY WITH PUMP DEVICE Inventors: Ehrhard Mayer, Birkenallee 13,
819i Eurasburg; Rudolf Koch, Torringstrasse 57, 819 Wolfratshausen, both of Germany Filed: Mar. 12, 1970 Appl. No.: 18,820
Foreign Application Priority Data Mar. l7, I969 Germany P l9 13 397.2
US. Cl 277/67, 277/15, 277/96, 415/169 A, 415/73, 277/134 Int. Cl Fl6j 15/40 Field of Search FI6j/l5/34; 415/72, 4l5/l 10, I12, 169 A; 277/134, 3,15, 22, 67, 96
References Cited UNITED STATES PATENTS I/l97l Van Herpt ..4lS/l69AUX Primary Examiner-Samuel B. Rothberg A tlorney--Dezsoe Steinherz [57] ABSTRACT Asealing assembly for a rotatable shaft, wherein a cooling, lubricating, or buffer medium is circulated by means of an external thread on a rotatable member and an internal thread in a non-rotatable member. The internal thread has a hand opposite to that of the external thread and surrounds the latter with a small radial clearance.
4 Claims, 7 Drawing Figures PAIENImJuL 1 1 ms SHEEI 1 BF 4 PATENIED 3. 746.350
saw u 0F 4 SEALING ASSEMBLY WITH PUMP DEVICE This invention relates to sealing assemblies or mechanical seals of the kind having at least onepump de vice arranged adjacent to the slide surfaces within the shaft-receiving bore containing the seal, said pump device serving to circulate a cooling, lubricating, buffer or sealing medium, the partof said pump rotating with the shaft having an external thread coaxially surrounding the shaft and intended to convey the medium. Such sealswill be referred to hereinafter as seals of the type stated.
In aknown seal of such type, the pump device serves as a rule to convey a fluid-coolant to a heat-exchanger arrangedoutside of the seal, and back to the seal. A disadvantage in pump devices in which the externalthread rotating with the shaft is surrounded by a smooth, stationary, cylindrical bore, is that the necessary circulating quantity and thus adequate cooling can be achieved only at high numbers of revolution. This is attributable to the fact that the known conveying thread results only at high circumferential speeds in apressure which is sufficient to overcome the flow resistance of the circulatory path in which magnetic filters, separators and the like may be arranged.
Other pump devices known in sea] assemblies have a relatively large radial dimension and, therefore, cannot be arranged in the shaft-receiving. bore containing the seal assembly, or are very inefficient, which, in itself, is disadvantageous on account of the additional heating thereby generated in the coolant.
An object of the present invention is to provide a seal of the kind stated whose pump device has a small radial dimension, but produces a high conveying pressure and output of the conveyed medium, even at relatively low numbers of revolution.
According to the invention we provide a seal of the kind stated, inwhich an internal thread stationary in relation to the casing containing the shaft-receiving bore surrounds the external thread with a small radial clearance, the hand of said internal thread being opposite to that of the outer thread. Tests have established that the pressure generated by such a pump device is up to eight times higher than by one wherein a conveyor thread rotates in a smooth bore, and thus a very high degree of hydraulic efficiency can be attained.
I The internal thread is preferably formed in a separate, immovable bush set in the shaft-receiving bore.
The external thread may be formed on a component adapted to rotate with the shaft but axially movable relative thereto. The component may be a rotating slidering itself. The axial reactive thrust generated by the conveyance of the medium on the external thread may be used to modify the pressure force exerted by the slide-ring on the counter-ring, depending on the direction of rotation and on the number of revolutions.
Embodiments of the invention will now be described by way of example, with reference to the drawings, in which:
FIG. I is a fractional axial section through a first embodiment of a seal assembly according to the invention, in which the outer thread serving for conveyance is arranged on a sleeve carrying the rotating counter-ring member;
FIG. 2 is a fractional axial section through a second embodimentof a seal assembly according to the invention, in which the outer thread is arranged in a sleeve 2v. carrying the rbtatingslide-ring member and a guideplate is proyided to direct the flow of fluid to the sealing surfaces;
FIG. 3 is a fractional axial section through a third em,- bodiment showing a double sealaccordingto the invention, wherein the outer thread is formed in a bush,
which is separate from and surrounds carrier-sleeve means;
FIG. 4 is a fractionalaxial section through a fourth.
embodiment showing a double seal according to the invention, in which two pairsof outer and inner threads.
are provided;
FIG. 5 is a fractional axialsectionthrough a fifth embodiment of a seal according to the invention, in which the pressure spring of the slide-ring forms the conveyor. thread; I
FIGS. 6 and 7 show details.
Identical or identically-acting components are designated with corresponding reference numerals throughout the drawings. The suftixed letters a and b indicate whether certain sealing elements are non-rotatable or rotatable, respectively.
In the embodiment of FIG. 1, a shaft sleeve 2 is rigidly mounted about ashaft I in apfluid-tight manner, a carrier sleeve 3b being mounted on the shaft sleeve 2 and held in; place by a screw 4. AnO ring 6 in an annular groove 5 of the carrier sleeve 3b serves as a seal between the sleeves 2 and 3b. A counter-ring member 7!; is rigidly seated in carrier sleeve 3b, a non-rotatable slide-ring member 8a bearing against said counter-ring member 7b and being rigidly seated in a carrier sleeve 9a which is in turn seated non-rotatably but in the axial direction movably in an annular groove 10 of a cover 13 closing off the stepped, shaft-receiving through-bore ll of a casing 12. Cover 13 is secured in a fluid-tight manner to casing 12 which is stationary relative to shaft 1 and may be mounted on a support (not shown). Casing 12 and cover 13 together form the housing of the sealing assembly. The carrier sleeve and slide-ring 8a are urged towards the counter-ring 7b by a plurality of springs 14a, one of which is shown in FIG.] An 0- ring 10 R is positioned between carrier sleeve 9a and cover 13.
A multiple external thread 15 is tapped in the outer circumference of carrier sleeve 3b, said thread, in axial section, having a rectangular shape. It should be noted that thread 15 is positioned within bore 11 in spaced relationship to the wall of the bore. ,7
The carrier sleeve 3b, whose bounding surface envelope is cylindrical, is surrounded with slight radial clearance by a bush or bushing 16 of approximately the same axial length, which is immovably set in the stepped bore ll. A thread 17 is tapped in the cylindrical bore of bush l6, the thread 17 being similar to the thread 15 in carrier sleeve 3b, but the hands of the threads being opposite to each other. Thus, a left-hand thread 15 will be associated with a right-hand thread 17, and vice versa. i
The two threads 15 and 17 form the active parts of a pump device which, when shaft 1 rotates, sucks in a cooling, lubricating, buffer or sealing medium by way of an inlet bore 18 provided incasing l2, and conveys or propels it from there above counter-and slide- ring members 7b and 8a to an outlet bore 19 passing through cover 13. The inlet bore 18 and outlet bore 19 are connected by way of conduits with a heatexchanger (not shown in FIG. 1) which cools the medium before it enters the seal again.
Screw 4 is preferably provided in the vicinity of the axial end region of thread 15, and then only a small reduction in the hydraulic efficiency occurs because of the disturbance in the contour of the conveying threads. The required pump capacity and pressure can be obtained by changing the number of threads, the thread pitch and the groove dimensions. 7 It will be clear that the arrangement shown is adapted to prevent leakage from the casing interior at the left hand side of FIG. 1 to the outside in the direction towards cover 13 while effectively circulating a cooling, lubricating or buffer medium through the casing.
The embodiment according to FIG. 2 differs from that just described in that slide-ring member 8b, which is set into carrier sleeve 9b and is strutted in the axial direction by a spring 14b, rotates with the shaft, whereas the counter-ring member 7a is arranged to be stationary and is supported by two O-rings 6b in a twopart cover 13,13. An annular guide-plate 20, which directsthe coolant flow into the immediate vicinity of the contacting faces of slide-ring member 8b and counter-ring member 7a, is provided apporoximately in the radial plane containing said contacting faces which form a seal.
The internal thread serving to convey the medium as in the first embodiment, is formed in a bush 16 mounted in the shaft bore 11, while the external thread is formed in the cylindrical circumference of carrier sleeve 9b. The external coolant circuit may be the same as that described for FIG. 1.
FIG. 3 shows a double seal constructed according to the invention, such as is used, for example, in rendering a nuclear reactor fluid-tight or a pump intended therefor. The sealing medium is in this case active in the space or chamber between the two pairs of slideand counter-ring members 7'a, 8b and 7"a, 8"b and circulates through a high-pressure heat-exchanger 21 which is connectedto the chamber. According to the invention, a supply container 22 adpated to replenish the circulating medium and charged with gas keeps the sealing medium at a pressure a few atmospheres above the highest pressure to be sealed off and thus augments the sealing effect. A further feature is that the external thread 15 is cut into a separate sleeve 23 which is mounted independently of the sealing means and surrounds the carrier-sleeves 9'b and 9"b over a part of the axial length, and which is prevented from substantially moving axially and circumferentially relative to shaft 1 by a grub-screw or setscrew 24. An internal shoulder 25 on an extension of the bush 16 which has the internal thread, at the same time provides a support for the stationary counter-ring member 7"a.
' In the present embodiment it is possible to use units comprising slide-and counter-ring members and carrier sleeves of normal construction such as are employed for seals which do not have circulation of a sealing medium.
In the further embodiment according to FIG. 4, which corresponds in some essential details of construction and arrangement of the slideand counterring units to the double seal of FIG. 3, no separate sleeve is provided for the external thread 15. On the contrary, in a manner partly similar to that shown in FIG. 2, two external threads 15' and 15" are provided on two rotating slide-ring members 9'b and 9"b, while two internal threads 17' and 17" cooperating with the two external threads are provided in separate bushes l6, 16". Each of the internal threads 17' and 17" has a hand opposite to that of the external thread 15' or 15" with which it is associated, the hands of the external threads in turn being opposite to each other. It follows that the internal threads likewise are of opposite hands. As a result, a conveyance of the medium takes place in a direction depending on the direction of rotation of the shaft, the medium passing through the space or chamber remaining between the two bushes 16, 16'. A bore 19 connected to the heat-exchanger 21 opens into said chamber while two bores 18 and 18" which are likewise connected to the heat exchanger terminate at opposite ends of the bushes l6 and 16" which ends are disposed axially at opposite sides of bore 19. In a certain direction of rotation of the shaft as assumed in the embodiment of FIG. 4, the bores 18', 18" will serve as the inlet openings and bore 19 as the outlet opening, but the functions of the bores would be reversed if the shaft rotates in the opposite direction.
According to the embodiment shown in FIG. 5, the pressure-spring 26 for the rotating slide-ring member 8b which spring preferably has multiple coils of rectangular cross-sections, can at the same time be used as an external thread for conveying the enclosed medium, resulting in a saving in manufacturing costs and radial height. Spring 26 is connected to shaft sleeve 2 for rotation therewith.
In all embodiments of the invention it is preferable, in particular in the case of highly loaded seals, to form groove means in the sliding surfaces of the slideor counter-ring units. This is indicated, by way of example, at 27 in FIG. 1 where the rotatable counter-ring 7b is provided with groove means, and at 28 in FIGS. 3 and 4 where the stationary counter-rings 7'a and 7"a are provided with such groove means.
FIG. 6 shows the grooved end face of the rotatable counter-ring 7b of FIG. 1 in elevation and illustrates the shape of grooves 27, each of which starts at one point of the outer circumference of the ring and leads back to another point of the same circumference so that each groove communicates with the medium under pressure, the medium surrounding the ring, see FIG. I. Preferably, the grooves are symmetrically arranged on the respective end face as shown in FIG. 6, and each groove has the shape of a circular arc, but other forms may likewise be used, for example, a straight chord-like shape or a polygonal shape.
FIG. 7 shows an elevational view of the grooved end of stationary counter-ring 7'a as provided in FIGS. 3 and 4. It will be apparent that the grooves 28 0f FIG. 7 correspond in principle to grooves 27 of FIG. 6.
The described arrangement of grooves results in an intended irregularity in the cooling of at least one of the rings which both slide upon each other and tend to heat up due to friction. This in turn will result in warping of the irregularly cooled ring. Though the extent of such warping will be very small, particules of the cooling and lubricating medium to be sealed will then wedge into the interstices formed between the cooperating end faces of the sealing rings; thus, beneficial hydrodynamic lubrication will be obtained in a manner similar to that observed in the case of thrust bearings. Accordingly, metal to metal contact will be minimized at the cooperating end faces of the sealing rings so that the amount of friction and resulting wear will be reduced.
Smalllosses of cooling and lubricating medium may occur due to slight leakage caused by warping, but this is inconsequential in view of the great advantages obtained by hydrodynamic behavior. When rotation of shaft 1 is stopped, the development of heat will cease and the warping will disappear so that both cooperating end faces of the rings will again be plane and full contact of these end faces will be reestablished.
What is claimed is:
l. A shaft sealing assembly with a pump device for circulating a liquid medium around a rotatable shaft, a
housing stationary relative to said shaft and provided with a wall having a bore, said housing provided with openings for admission and discharge of said medium, said shaft extending through said bore; sealing means comprising a slide-ring unit coaxially surrounding said shaft within said bore and arranged for movement axially of said shaft under resilient pressure; a counter-ring unit similar to said slide ring unit but prevented from axial movement relative to said shaft when in operating position; one of said ring units being mounted for rotation with said shaft, and each of said ring units having an end face for mutual contact under said resilient pressure to form a seal; an external thread of a predetermined hand on said one ring unit; and means stationary relative to said housing and forming an internal thread within said bore, said internal thread having a hand opposite to said hand of the external thread and surrounding thelatter with a radial clearance so small that upon rotation of the shaft said external and internal threads are adpated to cooperate for propelling said medium over said end faces and through said openings in the housing, each of said internal and external threads having thread length and thread spacing essentially equal to one-half pitch.
2. A sealing assembly according to claim 1, wherein said sealing'means includes groove means formed in said end faces, said groove means starting and terminating at the circumference of one end face for communication with said medium.
3. A sealing assembly according to claim 2, wherein said groove means has the shape of a circular arc.
4. A sealing assembly according to claim 2, wherein said groove means comprises a plurality of grooves symmetrically arranged on one end face.
* t a: a 1:

Claims (4)

1. A shaft sealing assembly with a pump device for circulating a liquid medium around a rotatable shaft, a housing stationary relative to said shaft and provided with a wall having a bore, said housing provided with openings for admission and discharge of said medium, said shaft extending through said bore; sealing means comprising a slide-ring unit coaxially surrounding said shaft within said bore and arranged for movement axially of said shafT under resilient pressure; a counter-ring unit similar to said slide ring unit but prevented from axial movement relative to said shaft when in operating position; one of said ring units being mounted for rotation with said shaft, and each of said ring units having an end face for mutual contact under said resilient pressure to form a seal; an external thread of a predetermined hand on said one ring unit; and means stationary relative to said housing and forming an internal thread within said bore, said internal thread having a hand opposite to said hand of the external thread and surrounding the latter with a radial clearance so small that upon rotation of the shaft said external and internal threads are adpated to cooperate for propelling said medium over said end faces and through said openings in the housing, each of said internal and external threads having thread length and thread spacing essentially equal to one-half pitch.
2. A sealing assembly according to claim 1, wherein said sealing means includes groove means formed in said end faces, said groove means starting and terminating at the circumference of one end face for communication with said medium.
3. A sealing assembly according to claim 2, wherein said groove means has the shape of a circular arc.
4. A sealing assembly according to claim 2, wherein said groove means comprises a plurality of grooves symmetrically arranged on one end face.
US00018820A 1969-03-17 1970-03-12 Sealing assembly with pump device Expired - Lifetime US3746350A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1913397A DE1913397B2 (en) 1969-03-17 1969-03-17 Mechanical seal with screw pump

Publications (1)

Publication Number Publication Date
US3746350A true US3746350A (en) 1973-07-17

Family

ID=5728344

Family Applications (1)

Application Number Title Priority Date Filing Date
US00018820A Expired - Lifetime US3746350A (en) 1969-03-17 1970-03-12 Sealing assembly with pump device

Country Status (5)

Country Link
US (1) US3746350A (en)
CH (1) CH489732A (en)
DE (1) DE1913397B2 (en)
FR (1) FR2037367A5 (en)
GB (1) GB1282915A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811658A (en) * 1972-01-24 1974-05-21 H Heidrich Extruder for processing plastics and rubber
US3884482A (en) * 1973-03-08 1975-05-20 Borg Warner Cooled seal cartridge
US3888495A (en) * 1972-06-09 1975-06-10 Ehrhard Mayer Dual-cooled slide ring seal
US3937477A (en) * 1973-12-26 1976-02-10 Borg-Warner Corporation Mechanical seal system
US3938811A (en) * 1974-10-11 1976-02-17 Kommanditbolaget United Stirling (Sweden) Ab & Co. Sealing means for stirling engine crankcases
US3963247A (en) * 1970-12-01 1976-06-15 Stamicarbon B.V. Shaft seal
US3968969A (en) * 1974-03-01 1976-07-13 Ehrhard Mayer Sealing arrangement
US3999882A (en) * 1975-03-17 1976-12-28 Dresser Industries, Inc. Flushing and cooling system for shaft seals and pumps
US4084825A (en) * 1976-03-31 1978-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Counter pumping debris excluder and separator
DE2844335A1 (en) * 1978-10-11 1980-04-30 Burgmann Dichtungswerk Feodor Shaft seal with rotating slide ring - has segment-section wings causing centrifugal deflection, to give oil pressure areas on slide surface
US4224009A (en) * 1977-03-21 1980-09-23 Termomeccanica Italiana S.P.A. Submersible pump with improved sealing means
US4243230A (en) * 1979-10-01 1981-01-06 Crane Packing Co. Low energy tandem seal
US4300772A (en) * 1978-09-30 1981-11-17 Pintsch Bamag Antriebs-Und Verkehrstechnik Gmbh Sealing arrangement for rotatably mounted shafts
US4368895A (en) * 1980-12-01 1983-01-18 Mitsubishi Denki Kabushiki Kaisha Shaft sealing device utilizing a non-uniform groove depth
US4377290A (en) * 1982-03-22 1983-03-22 John Crane-Houdaille, Inc. Symmetrical seal package for multiple face seals
US4416586A (en) * 1980-04-19 1983-11-22 Klein, Schanzlin & Becker Aktiengesellschaft Submersible motor pump assembly
US4463957A (en) * 1980-07-04 1984-08-07 Tanken Seiko Corp. Sealing device for rotary shaft and string-like member for defining spiral therefor
US4466619A (en) * 1981-07-13 1984-08-21 Durametallic Corporation Mechanical seal assembly with integral pumping device
US4545588A (en) * 1983-07-08 1985-10-08 Tanken Seiko Corp. Mechanical face seal for sealing slurry liquid
US4606712A (en) * 1984-11-14 1986-08-19 Abex Corporation Self-pumping pump shaft seal
US4621975A (en) * 1984-10-25 1986-11-11 Graco Inc. Centrifugal pump seal
US4709930A (en) * 1984-05-19 1987-12-01 Firma Carl Freudenberg Shaft and sealing ring
US4723781A (en) * 1986-05-23 1988-02-09 Man Gutehoffnungshutte Gmbh Liquid sealed shaft seal
US5217234A (en) * 1991-03-22 1993-06-08 John Hornsby Mechanical seal with barrier fluid circulation system
WO1995002777A1 (en) * 1993-07-14 1995-01-26 Woodex Bearing Company, Inc. Positive drive compensating shaft seal
US5487550A (en) * 1991-11-12 1996-01-30 Bw/Ip International, Inc. Secondary gas/liquid mechanical seal assembly
US5516121A (en) * 1990-01-18 1996-05-14 Framatome Dry slip ring seal having independent cooling loops
US6210107B1 (en) * 1990-03-12 2001-04-03 John Crane Inc. Barrier seal systems
US6361271B1 (en) 1999-11-19 2002-03-26 Capstone Turbine Corporation Crossing spiral compressor/pump
US6494458B2 (en) 2000-12-19 2002-12-17 Karl E. Uth Rotary sealing assembly
US6565095B2 (en) * 2001-07-12 2003-05-20 Honeywell International, Inc. Face seal with internal drain
US6688601B2 (en) * 2000-11-21 2004-02-10 Eagle Industry Co., Ltd. Mechanical seal
US20040046322A1 (en) * 2002-08-13 2004-03-11 Berard Gerald M. Face seal assembly
WO2005026589A1 (en) * 2003-09-18 2005-03-24 Nuovo Pignone Holding S.P.A. Heat exchanger device for a gas seal for centrifugal compressors
US20060042789A1 (en) * 2004-08-27 2006-03-02 Zbigniew Kubala Washpipe seal assembly
US20100196836A1 (en) * 2009-02-03 2010-08-05 Craig Moller Sealing Mechanism for a Vacuum Heat Treating Furnace
CN101858435B (en) * 2009-04-10 2011-11-09 江苏华阳重工科技股份有限公司 Hydraulic self-balancing mechanical sealing device
US20120133100A1 (en) * 2010-11-25 2012-05-31 Zainal Abidin Azhar Bin Compression unit
US9347565B2 (en) 2014-05-09 2016-05-24 Eagleburgmann Germany Gmbh & Co. Kg Rotating mechanical seal arrangement with improved gas separation
US20160252182A1 (en) * 2013-11-22 2016-09-01 Eagle Industry Co., Ltd. Sliding parts
US20170096905A1 (en) * 2013-05-16 2017-04-06 Dresser-Rand Sa Bi-directional shaft seal
US9657842B2 (en) * 2012-08-10 2017-05-23 Siemens Aktiengesellschaft Shaft seal arrangement
US20180187784A1 (en) * 2015-06-27 2018-07-05 Eagle Industry Co., Ltd. Sliding component
WO2019044504A1 (en) * 2017-08-29 2019-03-07 株式会社 荏原製作所 Seal system
JP2019039415A (en) * 2017-08-29 2019-03-14 株式会社荏原製作所 Seal system
JP2019039416A (en) * 2017-08-29 2019-03-14 株式会社荏原製作所 Seal system
JP2019039417A (en) * 2017-08-29 2019-03-14 株式会社荏原製作所 Seal system
DE102017220437B3 (en) 2017-11-16 2019-03-28 Eagleburgmann Germany Gmbh & Co. Kg Pump arrangement, in particular for supplying a mechanical seal assembly
US10274086B2 (en) * 2014-09-20 2019-04-30 Eagle Industry Co., Ltd. Sliding component
US10941863B2 (en) * 2016-11-14 2021-03-09 Eagle Industry Co., Ltd. Sliding component
CN112682513A (en) * 2020-12-18 2021-04-20 武汉宇格电力设备有限公司 Self-lubricating mechanical seal
US11162504B2 (en) * 2016-12-23 2021-11-02 Grundfos Holding A/S Centrifugal pump
US20220120346A1 (en) * 2020-10-16 2022-04-21 Raytheon Technologies Corporation Dual windage blocker and retention feature design for seal assembly
US11402022B2 (en) * 2017-11-19 2022-08-02 Bejing GeRuiFu M.S.T. Co., Ltd Mechanical seal having auxiliary lubricating device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2233381C3 (en) * 1972-07-07 1981-05-27 Feodor Burgmann Dichtungswerk Gmbh & Co, 8190 Wolfratshausen Cooled mechanical seal
DE2228296C3 (en) * 1972-06-09 1982-12-02 Feodor Burgmann Dichtungswerk Gmbh & Co, 8190 Wolfratshausen Double acting cooled mechanical seal
US4109920A (en) * 1977-09-06 1978-08-29 Borg-Warner Corporation Heat exchanger for shaft seal cartridge
DE3443554C2 (en) * 1983-12-02 1986-04-03 Martin Merkel GmbH & Co KG, 2102 Hamburg Slide ring seal assembly
DE3509023A1 (en) * 1985-03-13 1986-09-25 Feodor Burgmann Dichtungswerke Gmbh & Co, 8190 Wolfratshausen Pump unit
DE4034104A1 (en) * 1990-10-26 1992-04-30 Klein Schanzlin & Becker Ag MECHANICAL SEAL
DE19848792C1 (en) * 1998-10-22 2000-05-04 Netzsch Mohnopumpen Gmbh Submersible pump device for use in a borehole
DE10042868C1 (en) * 2000-08-18 2002-04-18 Genadij Polak Labyrinth pump has exchangeable lining on outside of bush on shaft and on inside of sleeve rigidly fixed in casing, with helical grooves on inside of sleeve's lining and on outside of bush's lining
US7389832B2 (en) * 2006-05-26 2008-06-24 Dyna-Drill Technologies, Inc. Hydrostatic mechanical seal with local pressurization of seal interface
DE102011118477A1 (en) 2011-11-14 2013-05-16 Eagleburgmann Germany Gmbh & Co. Kg Conveying thread for mechanical seal assembly, has rotary conveying element and stationary conveying element, where one of conveying elements has conveying grooves
CN104676004B (en) * 2015-02-13 2017-04-05 江苏科奥流体科技有限公司 A kind of integral sealing means of hydraulic pump

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963247A (en) * 1970-12-01 1976-06-15 Stamicarbon B.V. Shaft seal
US3811658A (en) * 1972-01-24 1974-05-21 H Heidrich Extruder for processing plastics and rubber
US3888495A (en) * 1972-06-09 1975-06-10 Ehrhard Mayer Dual-cooled slide ring seal
US3884482A (en) * 1973-03-08 1975-05-20 Borg Warner Cooled seal cartridge
US3937477A (en) * 1973-12-26 1976-02-10 Borg-Warner Corporation Mechanical seal system
US3968969A (en) * 1974-03-01 1976-07-13 Ehrhard Mayer Sealing arrangement
US3938811A (en) * 1974-10-11 1976-02-17 Kommanditbolaget United Stirling (Sweden) Ab & Co. Sealing means for stirling engine crankcases
US3999882A (en) * 1975-03-17 1976-12-28 Dresser Industries, Inc. Flushing and cooling system for shaft seals and pumps
US4084825A (en) * 1976-03-31 1978-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Counter pumping debris excluder and separator
US4224009A (en) * 1977-03-21 1980-09-23 Termomeccanica Italiana S.P.A. Submersible pump with improved sealing means
US4300772A (en) * 1978-09-30 1981-11-17 Pintsch Bamag Antriebs-Und Verkehrstechnik Gmbh Sealing arrangement for rotatably mounted shafts
DE2844335A1 (en) * 1978-10-11 1980-04-30 Burgmann Dichtungswerk Feodor Shaft seal with rotating slide ring - has segment-section wings causing centrifugal deflection, to give oil pressure areas on slide surface
US4243230A (en) * 1979-10-01 1981-01-06 Crane Packing Co. Low energy tandem seal
US4416586A (en) * 1980-04-19 1983-11-22 Klein, Schanzlin & Becker Aktiengesellschaft Submersible motor pump assembly
US4463957A (en) * 1980-07-04 1984-08-07 Tanken Seiko Corp. Sealing device for rotary shaft and string-like member for defining spiral therefor
US4368895A (en) * 1980-12-01 1983-01-18 Mitsubishi Denki Kabushiki Kaisha Shaft sealing device utilizing a non-uniform groove depth
US4466619A (en) * 1981-07-13 1984-08-21 Durametallic Corporation Mechanical seal assembly with integral pumping device
US4377290A (en) * 1982-03-22 1983-03-22 John Crane-Houdaille, Inc. Symmetrical seal package for multiple face seals
US4545588A (en) * 1983-07-08 1985-10-08 Tanken Seiko Corp. Mechanical face seal for sealing slurry liquid
US4709930A (en) * 1984-05-19 1987-12-01 Firma Carl Freudenberg Shaft and sealing ring
US4621975A (en) * 1984-10-25 1986-11-11 Graco Inc. Centrifugal pump seal
US4606712A (en) * 1984-11-14 1986-08-19 Abex Corporation Self-pumping pump shaft seal
US4723781A (en) * 1986-05-23 1988-02-09 Man Gutehoffnungshutte Gmbh Liquid sealed shaft seal
US5516121A (en) * 1990-01-18 1996-05-14 Framatome Dry slip ring seal having independent cooling loops
US6210107B1 (en) * 1990-03-12 2001-04-03 John Crane Inc. Barrier seal systems
US5217234A (en) * 1991-03-22 1993-06-08 John Hornsby Mechanical seal with barrier fluid circulation system
US5487550A (en) * 1991-11-12 1996-01-30 Bw/Ip International, Inc. Secondary gas/liquid mechanical seal assembly
WO1995002777A1 (en) * 1993-07-14 1995-01-26 Woodex Bearing Company, Inc. Positive drive compensating shaft seal
US5409241A (en) * 1993-07-14 1995-04-25 Woodex Bearing Company, Inc. Positive drive compensating shaft seal
US6361271B1 (en) 1999-11-19 2002-03-26 Capstone Turbine Corporation Crossing spiral compressor/pump
US6688601B2 (en) * 2000-11-21 2004-02-10 Eagle Industry Co., Ltd. Mechanical seal
US6494458B2 (en) 2000-12-19 2002-12-17 Karl E. Uth Rotary sealing assembly
US6565095B2 (en) * 2001-07-12 2003-05-20 Honeywell International, Inc. Face seal with internal drain
US6969071B2 (en) * 2002-08-13 2005-11-29 Perkinelmer, Inc. Face seal assembly
US20040046322A1 (en) * 2002-08-13 2004-03-11 Berard Gerald M. Face seal assembly
US8814508B2 (en) 2003-09-18 2014-08-26 General Electric Company Heat exchanger for centrifugal compressor gas sealing
WO2005026589A1 (en) * 2003-09-18 2005-03-24 Nuovo Pignone Holding S.P.A. Heat exchanger device for a gas seal for centrifugal compressors
US20070102139A1 (en) * 2003-09-18 2007-05-10 Marcello Puggioni Heat exchanger for centrifugal compressor gas sealing
US7343968B2 (en) 2004-08-27 2008-03-18 Deublin Company Washpipe seal assembly
US20060042789A1 (en) * 2004-08-27 2006-03-02 Zbigniew Kubala Washpipe seal assembly
US20100196836A1 (en) * 2009-02-03 2010-08-05 Craig Moller Sealing Mechanism for a Vacuum Heat Treating Furnace
US8992213B2 (en) * 2009-02-03 2015-03-31 Ipsen, Inc. Sealing mechanism for a vacuum heat treating furnace
CN101858435B (en) * 2009-04-10 2011-11-09 江苏华阳重工科技股份有限公司 Hydraulic self-balancing mechanical sealing device
US20120133100A1 (en) * 2010-11-25 2012-05-31 Zainal Abidin Azhar Bin Compression unit
US9657842B2 (en) * 2012-08-10 2017-05-23 Siemens Aktiengesellschaft Shaft seal arrangement
US20170096905A1 (en) * 2013-05-16 2017-04-06 Dresser-Rand Sa Bi-directional shaft seal
US10605105B2 (en) * 2013-05-16 2020-03-31 Dresser-Rand S.A. Bi-directional shaft seal
US20160252182A1 (en) * 2013-11-22 2016-09-01 Eagle Industry Co., Ltd. Sliding parts
US9347565B2 (en) 2014-05-09 2016-05-24 Eagleburgmann Germany Gmbh & Co. Kg Rotating mechanical seal arrangement with improved gas separation
CN106461088A (en) * 2014-05-09 2017-02-22 伊格尔博格曼德国有限公司 Slip-ring seal assembly having improved gas separation
US10274086B2 (en) * 2014-09-20 2019-04-30 Eagle Industry Co., Ltd. Sliding component
US10655736B2 (en) * 2015-06-27 2020-05-19 Eagle Industry Co., Ltd. Sliding component
US20180187784A1 (en) * 2015-06-27 2018-07-05 Eagle Industry Co., Ltd. Sliding component
US10941863B2 (en) * 2016-11-14 2021-03-09 Eagle Industry Co., Ltd. Sliding component
US11162504B2 (en) * 2016-12-23 2021-11-02 Grundfos Holding A/S Centrifugal pump
JP2019039416A (en) * 2017-08-29 2019-03-14 株式会社荏原製作所 Seal system
JP2019039417A (en) * 2017-08-29 2019-03-14 株式会社荏原製作所 Seal system
JP2019039415A (en) * 2017-08-29 2019-03-14 株式会社荏原製作所 Seal system
WO2019044504A1 (en) * 2017-08-29 2019-03-07 株式会社 荏原製作所 Seal system
US11698080B2 (en) 2017-08-29 2023-07-11 Ebara Corporation Sealing system
CN113309731A (en) * 2017-08-29 2021-08-27 株式会社荏原制作所 Sealing system
US11441571B2 (en) 2017-08-29 2022-09-13 Ebara Corporation Sealing system
DE102017220437B3 (en) 2017-11-16 2019-03-28 Eagleburgmann Germany Gmbh & Co. Kg Pump arrangement, in particular for supplying a mechanical seal assembly
DE102017220437B8 (en) * 2017-11-16 2019-06-19 Eagleburgmann Germany Gmbh & Co. Kg Pump arrangement, in particular for supplying a mechanical seal assembly
US11402022B2 (en) * 2017-11-19 2022-08-02 Bejing GeRuiFu M.S.T. Co., Ltd Mechanical seal having auxiliary lubricating device
US20220120346A1 (en) * 2020-10-16 2022-04-21 Raytheon Technologies Corporation Dual windage blocker and retention feature design for seal assembly
US11846355B2 (en) * 2020-10-16 2023-12-19 Rtx Corporation Dual windage blocker and retention feature design for seal assembly
CN112682513B (en) * 2020-12-18 2023-01-20 武汉宇格电力设备有限公司 Self-lubricating mechanical seal
CN112682513A (en) * 2020-12-18 2021-04-20 武汉宇格电力设备有限公司 Self-lubricating mechanical seal

Also Published As

Publication number Publication date
DE1913397C3 (en) 1975-02-06
FR2037367A5 (en) 1970-12-31
DE1913397B2 (en) 1974-06-20
CH489732A (en) 1970-04-30
GB1282915A (en) 1972-07-26
DE1913397A1 (en) 1970-09-24

Similar Documents

Publication Publication Date Title
US3746350A (en) Sealing assembly with pump device
US3746349A (en) Mechanical seals and or thrust bearings
US3756673A (en) Stuffing box for a rotating shaft
US3724861A (en) New trapped bushing seal
US3917289A (en) Mechanical seal
US4290611A (en) High pressure upstream pumping seal combination
US4257617A (en) Shaft seal assembly
US3147013A (en) Dry gas seal
US3057646A (en) Rotary seal with cooling means
US3238000A (en) Radial sliding bearing for traversing shafts
US3467396A (en) Internally cooled seal assembly
US4514099A (en) Hydrodynamic bearing assembly
CN106640740B (en) The Double End fluid dynamic and static pressure mechanical seal of sodium-cooled fast reactor core main pump
US4381867A (en) Automatically positionable mechanical shaft seal
JPS61119879A (en) Sealing device sealed with fluid
US3617068A (en) Floating ring seal for rotating shafts
US2805090A (en) Liquid seals for gas-cooled dynamo electric machines
US3227463A (en) Mechanical seal
US3979104A (en) Shaft sealing device for a butterfly valve
GB853829A (en) Rotary shaft seal
US3679217A (en) Automatic shutdown seal
US3810635A (en) Mechanical seal
US2835514A (en) Rotary shaft seal
US3698726A (en) Device for sealing and lubricating reciprocating machine members
GB1074036A (en) Improvements in and relating to seals for rotating shafts