US3746350A - Sealing assembly with pump device - Google Patents
Sealing assembly with pump device Download PDFInfo
- Publication number
- US3746350A US3746350A US00018820A US3746350DA US3746350A US 3746350 A US3746350 A US 3746350A US 00018820 A US00018820 A US 00018820A US 3746350D A US3746350D A US 3746350DA US 3746350 A US3746350 A US 3746350A
- Authority
- US
- United States
- Prior art keywords
- shaft
- thread
- bore
- medium
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
- F16J15/3404—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S277/00—Seal for a joint or juncture
- Y10S277/93—Seal including heating or cooling feature
Definitions
- ABSTRACT Asealing assembly for a rotatable shaft, wherein a cooling, lubricating, or buffer medium is circulated by means of an external thread on a rotatable member and an internal thread in a non-rotatable member.
- the internal thread has a hand opposite to that of the external thread and surrounds the latter with a small radial clearance.
- This invention relates to sealing assemblies or mechanical seals of the kind having at least onepump de vice arranged adjacent to the slide surfaces within the shaft-receiving bore containing the seal, said pump device serving to circulate a cooling, lubricating, buffer or sealing medium, the partof said pump rotating with the shaft having an external thread coaxially surrounding the shaft and intended to convey the medium.
- seals will be referred to hereinafter as seals of the type stated.
- the pump device serves as a rule to convey a fluid-coolant to a heat-exchanger arrangedoutside of the seal, and back to the seal.
- a disadvantage in pump devices in which the externalthread rotating with the shaft is surrounded by a smooth, stationary, cylindrical bore, is that the necessary circulating quantity and thus adequate cooling can be achieved only at high numbers of revolution. This is attributable to the fact that the known conveying thread results only at high circumferential speeds in apressure which is sufficient to overcome the flow resistance of the circulatory path in which magnetic filters, separators and the like may be arranged.
- An object of the present invention is to provide a seal of the kind stated whose pump device has a small radial dimension, but produces a high conveying pressure and output of the conveyed medium, even at relatively low numbers of revolution.
- the internal thread is preferably formed in a separate, immovable bush set in the shaft-receiving bore.
- the external thread may be formed on a component adapted to rotate with the shaft but axially movable relative thereto.
- the component may be a rotating slidering itself.
- the axial reactive thrust generated by the conveyance of the medium on the external thread may be used to modify the pressure force exerted by the slide-ring on the counter-ring, depending on the direction of rotation and on the number of revolutions.
- FIG. I is a fractional axial section through a first embodiment of a seal assembly according to the invention, in which the outer thread serving for conveyance is arranged on a sleeve carrying the rotating counter-ring member;
- FIG. 2 is a fractional axial section through a second embodimentof a seal assembly according to the invention, in which the outer thread is arranged in a sleeve 2v. carrying the rbtatingslide-ring member and a guideplate is proyided to direct the flow of fluid to the sealing surfaces;
- FIG. 3 is a fractional axial section through a third em,- bodiment showing a double sealaccordingto the invention, wherein the outer thread is formed in a bush,
- FIG. 4 is a fractionalaxial section through a fourth.
- FIG. 5 is a fractional axialsectionthrough a fifth embodiment of a seal according to the invention, in which the pressure spring of the slide-ring forms the conveyor. thread;
- FIGS. 6 and 7 show details.
- a shaft sleeve 2 is rigidly mounted about ashaft I in apfluid-tight manner, a carrier sleeve 3b being mounted on the shaft sleeve 2 and held in; place by a screw 4.
- AnO ring 6 in an annular groove 5 of the carrier sleeve 3b serves as a seal between the sleeves 2 and 3b.
- a counter-ring member 7! is rigidly seated in carrier sleeve 3b, a non-rotatable slide-ring member 8a bearing against said counter-ring member 7b and being rigidly seated in a carrier sleeve 9a which is in turn seated non-rotatably but in the axial direction movably in an annular groove 10 of a cover 13 closing off the stepped, shaft-receiving through-bore ll of a casing 12.
- Cover 13 is secured in a fluid-tight manner to casing 12 which is stationary relative to shaft 1 and may be mounted on a support (not shown). Casing 12 and cover 13 together form the housing of the sealing assembly.
- the carrier sleeve and slide-ring 8a are urged towards the counter-ring 7b by a plurality of springs 14a, one of which is shown in FIG.]
- An 0- ring 10 R is positioned between carrier sleeve 9a and cover 13.
- a multiple external thread 15 is tapped in the outer circumference of carrier sleeve 3b, said thread, in axial section, having a rectangular shape. It should be noted that thread 15 is positioned within bore 11 in spaced relationship to the wall of the bore. ,7
- the carrier sleeve 3b whose bounding surface envelope is cylindrical, is surrounded with slight radial clearance by a bush or bushing 16 of approximately the same axial length, which is immovably set in the stepped bore ll.
- a thread 17 is tapped in the cylindrical bore of bush l6, the thread 17 being similar to the thread 15 in carrier sleeve 3b, but the hands of the threads being opposite to each other.
- a left-hand thread 15 will be associated with a right-hand thread 17, and vice versa.
- the two threads 15 and 17 form the active parts of a pump device which, when shaft 1 rotates, sucks in a cooling, lubricating, buffer or sealing medium by way of an inlet bore 18 provided incasing l2, and conveys or propels it from there above counter-and slide-ring members 7b and 8a to an outlet bore 19 passing through cover 13.
- the inlet bore 18 and outlet bore 19 are connected by way of conduits with a heatexchanger (not shown in FIG. 1) which cools the medium before it enters the seal again.
- Screw 4 is preferably provided in the vicinity of the axial end region of thread 15, and then only a small reduction in the hydraulic efficiency occurs because of the disturbance in the contour of the conveying threads.
- the required pump capacity and pressure can be obtained by changing the number of threads, the thread pitch and the groove dimensions. 7 It will be clear that the arrangement shown is adapted to prevent leakage from the casing interior at the left hand side of FIG. 1 to the outside in the direction towards cover 13 while effectively circulating a cooling, lubricating or buffer medium through the casing.
- the embodiment according to FIG. 2 differs from that just described in that slide-ring member 8b, which is set into carrier sleeve 9b and is strutted in the axial direction by a spring 14b, rotates with the shaft, whereas the counter-ring member 7a is arranged to be stationary and is supported by two O-rings 6b in a twopart cover 13,13.
- the internal thread serving to convey the medium as in the first embodiment, is formed in a bush 16 mounted in the shaft bore 11, while the external thread is formed in the cylindrical circumference of carrier sleeve 9b.
- the external coolant circuit may be the same as that described for FIG. 1.
- FIG. 3 shows a double seal constructed according to the invention, such as is used, for example, in rendering a nuclear reactor fluid-tight or a pump intended therefor.
- the sealing medium is in this case active in the space or chamber between the two pairs of slideand counter-ring members 7'a, 8b and 7"a, 8"b and circulates through a high-pressure heat-exchanger 21 which is connectedto the chamber.
- a supply container 22 adpated to replenish the circulating medium and charged with gas keeps the sealing medium at a pressure a few atmospheres above the highest pressure to be sealed off and thus augments the sealing effect.
- a further feature is that the external thread 15 is cut into a separate sleeve 23 which is mounted independently of the sealing means and surrounds the carrier-sleeves 9'b and 9"b over a part of the axial length, and which is prevented from substantially moving axially and circumferentially relative to shaft 1 by a grub-screw or setscrew 24.
- An internal shoulder 25 on an extension of the bush 16 which has the internal thread, at the same time provides a support for the stationary counter-ring member 7"a.
- FIG. 4 which corresponds in some essential details of construction and arrangement of the slideand counterring units to the double seal of FIG. 3, no separate sleeve is provided for the external thread 15.
- two external threads 15' and 15" are provided on two rotating slide-ring members 9'b and 9"b, while two internal threads 17' and 17" cooperating with the two external threads are provided in separate bushes l6, 16".
- Each of the internal threads 17' and 17" has a hand opposite to that of the external thread 15' or 15" with which it is associated, the hands of the external threads in turn being opposite to each other. It follows that the internal threads likewise are of opposite hands.
- a bore 19 connected to the heat-exchanger 21 opens into said chamber while two bores 18 and 18" which are likewise connected to the heat exchanger terminate at opposite ends of the bushes l6 and 16" which ends are disposed axially at opposite sides of bore 19.
- the bores 18', 18" will serve as the inlet openings and bore 19 as the outlet opening, but the functions of the bores would be reversed if the shaft rotates in the opposite direction.
- the pressure-spring 26 for the rotating slide-ring member 8b which spring preferably has multiple coils of rectangular cross-sections, can at the same time be used as an external thread for conveying the enclosed medium, resulting in a saving in manufacturing costs and radial height.
- Spring 26 is connected to shaft sleeve 2 for rotation therewith.
- groove means in the sliding surfaces of the slideor counter-ring units. This is indicated, by way of example, at 27 in FIG. 1 where the rotatable counter-ring 7b is provided with groove means, and at 28 in FIGS. 3 and 4 where the stationary counter-rings 7'a and 7"a are provided with such groove means.
- FIG. 6 shows the grooved end face of the rotatable counter-ring 7b of FIG. 1 in elevation and illustrates the shape of grooves 27, each of which starts at one point of the outer circumference of the ring and leads back to another point of the same circumference so that each groove communicates with the medium under pressure, the medium surrounding the ring, see FIG. I.
- the grooves are symmetrically arranged on the respective end face as shown in FIG. 6, and each groove has the shape of a circular arc, but other forms may likewise be used, for example, a straight chord-like shape or a polygonal shape.
- FIG. 7 shows an elevational view of the grooved end of stationary counter-ring 7'a as provided in FIGS. 3 and 4. It will be apparent that the grooves 28 0f FIG. 7 correspond in principle to grooves 27 of FIG. 6.
- sealing means comprising a slide-ring unit coaxially surrounding said shaft within said bore and arranged for movement axially of said shaft under resilient pressure; a counter-ring unit similar to said slide ring unit but prevented from axial movement relative to said shaft when in operating position; one of said ring units being mounted for rotation with said shaft, and each of said ring units having an end face for mutual contact under said resilient pressure to form a seal; an external thread of a predetermined hand on said one ring unit; and means stationary relative to said housing and forming an internal thread within said bore, said internal thread having a hand opposite to said hand of the external thread and surrounding thelatter with a radial clearance so small that upon rotation of the shaft said external and internal threads are adpated to cooperate for propelling said medium over said end faces and through said openings in the housing, each of said internal and external threads having thread length and thread spacing essentially
- sealing assembly according to claim 1, wherein said sealing'means includes groove means formed in said end faces, said groove means starting and terminating at the circumference of one end face for communication with said medium.
- said groove means comprises a plurality of grooves symmetrically arranged on one end face.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mechanical Sealing (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Abstract
A sealing assembly for a rotatable shaft, wherein a cooling, lubricating, or buffer medium is circulated by means of an external thread on a rotatable member and an internal thread in a non-rotatable member. The internal thread has a hand opposite to that of the external thread and surrounds the latter with a small radial clearance.
Description
United States Patent [191 Mayer et al.
SEALING ASSEMBLY WITH PUMP DEVICE Inventors: Ehrhard Mayer, Birkenallee 13,
819i Eurasburg; Rudolf Koch, Torringstrasse 57, 819 Wolfratshausen, both of Germany Filed: Mar. 12, 1970 Appl. No.: 18,820
Foreign Application Priority Data Mar. l7, I969 Germany P l9 13 397.2
US. Cl 277/67, 277/15, 277/96, 415/169 A, 415/73, 277/134 Int. Cl Fl6j 15/40 Field of Search FI6j/l5/34; 415/72, 4l5/l 10, I12, 169 A; 277/134, 3,15, 22, 67, 96
References Cited UNITED STATES PATENTS I/l97l Van Herpt ..4lS/l69AUX Primary Examiner-Samuel B. Rothberg A tlorney--Dezsoe Steinherz [57] ABSTRACT Asealing assembly for a rotatable shaft, wherein a cooling, lubricating, or buffer medium is circulated by means of an external thread on a rotatable member and an internal thread in a non-rotatable member. The internal thread has a hand opposite to that of the external thread and surrounds the latter with a small radial clearance.
4 Claims, 7 Drawing Figures PAIENImJuL 1 1 ms SHEEI 1 BF 4 PATENIED 3. 746.350
saw u 0F 4 SEALING ASSEMBLY WITH PUMP DEVICE This invention relates to sealing assemblies or mechanical seals of the kind having at least onepump de vice arranged adjacent to the slide surfaces within the shaft-receiving bore containing the seal, said pump device serving to circulate a cooling, lubricating, buffer or sealing medium, the partof said pump rotating with the shaft having an external thread coaxially surrounding the shaft and intended to convey the medium. Such sealswill be referred to hereinafter as seals of the type stated.
In aknown seal of such type, the pump device serves as a rule to convey a fluid-coolant to a heat-exchanger arrangedoutside of the seal, and back to the seal. A disadvantage in pump devices in which the externalthread rotating with the shaft is surrounded by a smooth, stationary, cylindrical bore, is that the necessary circulating quantity and thus adequate cooling can be achieved only at high numbers of revolution. This is attributable to the fact that the known conveying thread results only at high circumferential speeds in apressure which is sufficient to overcome the flow resistance of the circulatory path in which magnetic filters, separators and the like may be arranged.
Other pump devices known in sea] assemblies have a relatively large radial dimension and, therefore, cannot be arranged in the shaft-receiving. bore containing the seal assembly, or are very inefficient, which, in itself, is disadvantageous on account of the additional heating thereby generated in the coolant.
An object of the present invention is to provide a seal of the kind stated whose pump device has a small radial dimension, but produces a high conveying pressure and output of the conveyed medium, even at relatively low numbers of revolution.
According to the invention we provide a seal of the kind stated, inwhich an internal thread stationary in relation to the casing containing the shaft-receiving bore surrounds the external thread with a small radial clearance, the hand of said internal thread being opposite to that of the outer thread. Tests have established that the pressure generated by such a pump device is up to eight times higher than by one wherein a conveyor thread rotates in a smooth bore, and thus a very high degree of hydraulic efficiency can be attained.
I The internal thread is preferably formed in a separate, immovable bush set in the shaft-receiving bore.
The external thread may be formed on a component adapted to rotate with the shaft but axially movable relative thereto. The component may be a rotating slidering itself. The axial reactive thrust generated by the conveyance of the medium on the external thread may be used to modify the pressure force exerted by the slide-ring on the counter-ring, depending on the direction of rotation and on the number of revolutions.
Embodiments of the invention will now be described by way of example, with reference to the drawings, in which:
FIG. I is a fractional axial section through a first embodiment of a seal assembly according to the invention, in which the outer thread serving for conveyance is arranged on a sleeve carrying the rotating counter-ring member;
FIG. 2 is a fractional axial section through a second embodimentof a seal assembly according to the invention, in which the outer thread is arranged in a sleeve 2v. carrying the rbtatingslide-ring member and a guideplate is proyided to direct the flow of fluid to the sealing surfaces;
FIG. 3 is a fractional axial section through a third em,- bodiment showing a double sealaccordingto the invention, wherein the outer thread is formed in a bush,
which is separate from and surrounds carrier-sleeve means;
FIG. 4 is a fractionalaxial section through a fourth.
embodiment showing a double seal according to the invention, in which two pairsof outer and inner threads.
are provided;
FIG. 5 is a fractional axialsectionthrough a fifth embodiment of a seal according to the invention, in which the pressure spring of the slide-ring forms the conveyor. thread; I
FIGS. 6 and 7 show details.
Identical or identically-acting components are designated with corresponding reference numerals throughout the drawings. The suftixed letters a and b indicate whether certain sealing elements are non-rotatable or rotatable, respectively.
In the embodiment of FIG. 1, a shaft sleeve 2 is rigidly mounted about ashaft I in apfluid-tight manner, a carrier sleeve 3b being mounted on the shaft sleeve 2 and held in; place by a screw 4. AnO ring 6 in an annular groove 5 of the carrier sleeve 3b serves as a seal between the sleeves 2 and 3b. A counter-ring member 7!; is rigidly seated in carrier sleeve 3b, a non-rotatable slide-ring member 8a bearing against said counter-ring member 7b and being rigidly seated in a carrier sleeve 9a which is in turn seated non-rotatably but in the axial direction movably in an annular groove 10 of a cover 13 closing off the stepped, shaft-receiving through-bore ll of a casing 12. Cover 13 is secured in a fluid-tight manner to casing 12 which is stationary relative to shaft 1 and may be mounted on a support (not shown). Casing 12 and cover 13 together form the housing of the sealing assembly. The carrier sleeve and slide-ring 8a are urged towards the counter-ring 7b by a plurality of springs 14a, one of which is shown in FIG.] An 0- ring 10 R is positioned between carrier sleeve 9a and cover 13.
A multiple external thread 15 is tapped in the outer circumference of carrier sleeve 3b, said thread, in axial section, having a rectangular shape. It should be noted that thread 15 is positioned within bore 11 in spaced relationship to the wall of the bore. ,7
The carrier sleeve 3b, whose bounding surface envelope is cylindrical, is surrounded with slight radial clearance by a bush or bushing 16 of approximately the same axial length, which is immovably set in the stepped bore ll. A thread 17 is tapped in the cylindrical bore of bush l6, the thread 17 being similar to the thread 15 in carrier sleeve 3b, but the hands of the threads being opposite to each other. Thus, a left-hand thread 15 will be associated with a right-hand thread 17, and vice versa. i
The two threads 15 and 17 form the active parts of a pump device which, when shaft 1 rotates, sucks in a cooling, lubricating, buffer or sealing medium by way of an inlet bore 18 provided incasing l2, and conveys or propels it from there above counter-and slide- ring members 7b and 8a to an outlet bore 19 passing through cover 13. The inlet bore 18 and outlet bore 19 are connected by way of conduits with a heatexchanger (not shown in FIG. 1) which cools the medium before it enters the seal again.
The embodiment according to FIG. 2 differs from that just described in that slide-ring member 8b, which is set into carrier sleeve 9b and is strutted in the axial direction by a spring 14b, rotates with the shaft, whereas the counter-ring member 7a is arranged to be stationary and is supported by two O-rings 6b in a twopart cover 13,13. An annular guide-plate 20, which directsthe coolant flow into the immediate vicinity of the contacting faces of slide-ring member 8b and counter-ring member 7a, is provided apporoximately in the radial plane containing said contacting faces which form a seal.
The internal thread serving to convey the medium as in the first embodiment, is formed in a bush 16 mounted in the shaft bore 11, while the external thread is formed in the cylindrical circumference of carrier sleeve 9b. The external coolant circuit may be the same as that described for FIG. 1.
FIG. 3 shows a double seal constructed according to the invention, such as is used, for example, in rendering a nuclear reactor fluid-tight or a pump intended therefor. The sealing medium is in this case active in the space or chamber between the two pairs of slideand counter-ring members 7'a, 8b and 7"a, 8"b and circulates through a high-pressure heat-exchanger 21 which is connectedto the chamber. According to the invention, a supply container 22 adpated to replenish the circulating medium and charged with gas keeps the sealing medium at a pressure a few atmospheres above the highest pressure to be sealed off and thus augments the sealing effect. A further feature is that the external thread 15 is cut into a separate sleeve 23 which is mounted independently of the sealing means and surrounds the carrier-sleeves 9'b and 9"b over a part of the axial length, and which is prevented from substantially moving axially and circumferentially relative to shaft 1 by a grub-screw or setscrew 24. An internal shoulder 25 on an extension of the bush 16 which has the internal thread, at the same time provides a support for the stationary counter-ring member 7"a.
' In the present embodiment it is possible to use units comprising slide-and counter-ring members and carrier sleeves of normal construction such as are employed for seals which do not have circulation of a sealing medium.
In the further embodiment according to FIG. 4, which corresponds in some essential details of construction and arrangement of the slideand counterring units to the double seal of FIG. 3, no separate sleeve is provided for the external thread 15. On the contrary, in a manner partly similar to that shown in FIG. 2, two external threads 15' and 15" are provided on two rotating slide-ring members 9'b and 9"b, while two internal threads 17' and 17" cooperating with the two external threads are provided in separate bushes l6, 16". Each of the internal threads 17' and 17" has a hand opposite to that of the external thread 15' or 15" with which it is associated, the hands of the external threads in turn being opposite to each other. It follows that the internal threads likewise are of opposite hands. As a result, a conveyance of the medium takes place in a direction depending on the direction of rotation of the shaft, the medium passing through the space or chamber remaining between the two bushes 16, 16'. A bore 19 connected to the heat-exchanger 21 opens into said chamber while two bores 18 and 18" which are likewise connected to the heat exchanger terminate at opposite ends of the bushes l6 and 16" which ends are disposed axially at opposite sides of bore 19. In a certain direction of rotation of the shaft as assumed in the embodiment of FIG. 4, the bores 18', 18" will serve as the inlet openings and bore 19 as the outlet opening, but the functions of the bores would be reversed if the shaft rotates in the opposite direction.
According to the embodiment shown in FIG. 5, the pressure-spring 26 for the rotating slide-ring member 8b which spring preferably has multiple coils of rectangular cross-sections, can at the same time be used as an external thread for conveying the enclosed medium, resulting in a saving in manufacturing costs and radial height. Spring 26 is connected to shaft sleeve 2 for rotation therewith.
In all embodiments of the invention it is preferable, in particular in the case of highly loaded seals, to form groove means in the sliding surfaces of the slideor counter-ring units. This is indicated, by way of example, at 27 in FIG. 1 where the rotatable counter-ring 7b is provided with groove means, and at 28 in FIGS. 3 and 4 where the stationary counter-rings 7'a and 7"a are provided with such groove means.
FIG. 6 shows the grooved end face of the rotatable counter-ring 7b of FIG. 1 in elevation and illustrates the shape of grooves 27, each of which starts at one point of the outer circumference of the ring and leads back to another point of the same circumference so that each groove communicates with the medium under pressure, the medium surrounding the ring, see FIG. I. Preferably, the grooves are symmetrically arranged on the respective end face as shown in FIG. 6, and each groove has the shape of a circular arc, but other forms may likewise be used, for example, a straight chord-like shape or a polygonal shape.
FIG. 7 shows an elevational view of the grooved end of stationary counter-ring 7'a as provided in FIGS. 3 and 4. It will be apparent that the grooves 28 0f FIG. 7 correspond in principle to grooves 27 of FIG. 6.
The described arrangement of grooves results in an intended irregularity in the cooling of at least one of the rings which both slide upon each other and tend to heat up due to friction. This in turn will result in warping of the irregularly cooled ring. Though the extent of such warping will be very small, particules of the cooling and lubricating medium to be sealed will then wedge into the interstices formed between the cooperating end faces of the sealing rings; thus, beneficial hydrodynamic lubrication will be obtained in a manner similar to that observed in the case of thrust bearings. Accordingly, metal to metal contact will be minimized at the cooperating end faces of the sealing rings so that the amount of friction and resulting wear will be reduced.
Smalllosses of cooling and lubricating medium may occur due to slight leakage caused by warping, but this is inconsequential in view of the great advantages obtained by hydrodynamic behavior. When rotation of shaft 1 is stopped, the development of heat will cease and the warping will disappear so that both cooperating end faces of the rings will again be plane and full contact of these end faces will be reestablished.
What is claimed is:
l. A shaft sealing assembly with a pump device for circulating a liquid medium around a rotatable shaft, a
housing stationary relative to said shaft and provided with a wall having a bore, said housing provided with openings for admission and discharge of said medium, said shaft extending through said bore; sealing means comprising a slide-ring unit coaxially surrounding said shaft within said bore and arranged for movement axially of said shaft under resilient pressure; a counter-ring unit similar to said slide ring unit but prevented from axial movement relative to said shaft when in operating position; one of said ring units being mounted for rotation with said shaft, and each of said ring units having an end face for mutual contact under said resilient pressure to form a seal; an external thread of a predetermined hand on said one ring unit; and means stationary relative to said housing and forming an internal thread within said bore, said internal thread having a hand opposite to said hand of the external thread and surrounding thelatter with a radial clearance so small that upon rotation of the shaft said external and internal threads are adpated to cooperate for propelling said medium over said end faces and through said openings in the housing, each of said internal and external threads having thread length and thread spacing essentially equal to one-half pitch.
2. A sealing assembly according to claim 1, wherein said sealing'means includes groove means formed in said end faces, said groove means starting and terminating at the circumference of one end face for communication with said medium.
3. A sealing assembly according to claim 2, wherein said groove means has the shape of a circular arc.
4. A sealing assembly according to claim 2, wherein said groove means comprises a plurality of grooves symmetrically arranged on one end face.
* t a: a 1:
Claims (4)
1. A shaft sealing assembly with a pump device for circulating a liquid medium around a rotatable shaft, a housing stationary relative to said shaft and provided with a wall having a bore, said housing provided with openings for admission and discharge of said medium, said shaft extending through said bore; sealing means comprising a slide-ring unit coaxially surrounding said shaft within said bore and arranged for movement axially of said shafT under resilient pressure; a counter-ring unit similar to said slide ring unit but prevented from axial movement relative to said shaft when in operating position; one of said ring units being mounted for rotation with said shaft, and each of said ring units having an end face for mutual contact under said resilient pressure to form a seal; an external thread of a predetermined hand on said one ring unit; and means stationary relative to said housing and forming an internal thread within said bore, said internal thread having a hand opposite to said hand of the external thread and surrounding the latter with a radial clearance so small that upon rotation of the shaft said external and internal threads are adpated to cooperate for propelling said medium over said end faces and through said openings in the housing, each of said internal and external threads having thread length and thread spacing essentially equal to one-half pitch.
2. A sealing assembly according to claim 1, wherein said sealing means includes groove means formed in said end faces, said groove means starting and terminating at the circumference of one end face for communication with said medium.
3. A sealing assembly according to claim 2, wherein said groove means has the shape of a circular arc.
4. A sealing assembly according to claim 2, wherein said groove means comprises a plurality of grooves symmetrically arranged on one end face.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1913397A DE1913397B2 (en) | 1969-03-17 | 1969-03-17 | Mechanical seal with screw pump |
Publications (1)
Publication Number | Publication Date |
---|---|
US3746350A true US3746350A (en) | 1973-07-17 |
Family
ID=5728344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00018820A Expired - Lifetime US3746350A (en) | 1969-03-17 | 1970-03-12 | Sealing assembly with pump device |
Country Status (5)
Country | Link |
---|---|
US (1) | US3746350A (en) |
CH (1) | CH489732A (en) |
DE (1) | DE1913397B2 (en) |
FR (1) | FR2037367A5 (en) |
GB (1) | GB1282915A (en) |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3811658A (en) * | 1972-01-24 | 1974-05-21 | H Heidrich | Extruder for processing plastics and rubber |
US3884482A (en) * | 1973-03-08 | 1975-05-20 | Borg Warner | Cooled seal cartridge |
US3888495A (en) * | 1972-06-09 | 1975-06-10 | Ehrhard Mayer | Dual-cooled slide ring seal |
US3937477A (en) * | 1973-12-26 | 1976-02-10 | Borg-Warner Corporation | Mechanical seal system |
US3938811A (en) * | 1974-10-11 | 1976-02-17 | Kommanditbolaget United Stirling (Sweden) Ab & Co. | Sealing means for stirling engine crankcases |
US3963247A (en) * | 1970-12-01 | 1976-06-15 | Stamicarbon B.V. | Shaft seal |
US3968969A (en) * | 1974-03-01 | 1976-07-13 | Ehrhard Mayer | Sealing arrangement |
US3999882A (en) * | 1975-03-17 | 1976-12-28 | Dresser Industries, Inc. | Flushing and cooling system for shaft seals and pumps |
US4084825A (en) * | 1976-03-31 | 1978-04-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Counter pumping debris excluder and separator |
DE2844335A1 (en) * | 1978-10-11 | 1980-04-30 | Burgmann Dichtungswerk Feodor | Shaft seal with rotating slide ring - has segment-section wings causing centrifugal deflection, to give oil pressure areas on slide surface |
US4224009A (en) * | 1977-03-21 | 1980-09-23 | Termomeccanica Italiana S.P.A. | Submersible pump with improved sealing means |
US4243230A (en) * | 1979-10-01 | 1981-01-06 | Crane Packing Co. | Low energy tandem seal |
US4300772A (en) * | 1978-09-30 | 1981-11-17 | Pintsch Bamag Antriebs-Und Verkehrstechnik Gmbh | Sealing arrangement for rotatably mounted shafts |
US4368895A (en) * | 1980-12-01 | 1983-01-18 | Mitsubishi Denki Kabushiki Kaisha | Shaft sealing device utilizing a non-uniform groove depth |
US4377290A (en) * | 1982-03-22 | 1983-03-22 | John Crane-Houdaille, Inc. | Symmetrical seal package for multiple face seals |
US4416586A (en) * | 1980-04-19 | 1983-11-22 | Klein, Schanzlin & Becker Aktiengesellschaft | Submersible motor pump assembly |
US4463957A (en) * | 1980-07-04 | 1984-08-07 | Tanken Seiko Corp. | Sealing device for rotary shaft and string-like member for defining spiral therefor |
US4466619A (en) * | 1981-07-13 | 1984-08-21 | Durametallic Corporation | Mechanical seal assembly with integral pumping device |
US4545588A (en) * | 1983-07-08 | 1985-10-08 | Tanken Seiko Corp. | Mechanical face seal for sealing slurry liquid |
US4606712A (en) * | 1984-11-14 | 1986-08-19 | Abex Corporation | Self-pumping pump shaft seal |
US4621975A (en) * | 1984-10-25 | 1986-11-11 | Graco Inc. | Centrifugal pump seal |
US4709930A (en) * | 1984-05-19 | 1987-12-01 | Firma Carl Freudenberg | Shaft and sealing ring |
US4723781A (en) * | 1986-05-23 | 1988-02-09 | Man Gutehoffnungshutte Gmbh | Liquid sealed shaft seal |
US5217234A (en) * | 1991-03-22 | 1993-06-08 | John Hornsby | Mechanical seal with barrier fluid circulation system |
WO1995002777A1 (en) * | 1993-07-14 | 1995-01-26 | Woodex Bearing Company, Inc. | Positive drive compensating shaft seal |
US5487550A (en) * | 1991-11-12 | 1996-01-30 | Bw/Ip International, Inc. | Secondary gas/liquid mechanical seal assembly |
US5516121A (en) * | 1990-01-18 | 1996-05-14 | Framatome | Dry slip ring seal having independent cooling loops |
US6210107B1 (en) * | 1990-03-12 | 2001-04-03 | John Crane Inc. | Barrier seal systems |
US6361271B1 (en) | 1999-11-19 | 2002-03-26 | Capstone Turbine Corporation | Crossing spiral compressor/pump |
US6494458B2 (en) | 2000-12-19 | 2002-12-17 | Karl E. Uth | Rotary sealing assembly |
US6565095B2 (en) * | 2001-07-12 | 2003-05-20 | Honeywell International, Inc. | Face seal with internal drain |
US6688601B2 (en) * | 2000-11-21 | 2004-02-10 | Eagle Industry Co., Ltd. | Mechanical seal |
US20040046322A1 (en) * | 2002-08-13 | 2004-03-11 | Berard Gerald M. | Face seal assembly |
WO2005026589A1 (en) * | 2003-09-18 | 2005-03-24 | Nuovo Pignone Holding S.P.A. | Heat exchanger device for a gas seal for centrifugal compressors |
US20060042789A1 (en) * | 2004-08-27 | 2006-03-02 | Zbigniew Kubala | Washpipe seal assembly |
US20100196836A1 (en) * | 2009-02-03 | 2010-08-05 | Craig Moller | Sealing Mechanism for a Vacuum Heat Treating Furnace |
CN101858435B (en) * | 2009-04-10 | 2011-11-09 | 江苏华阳重工科技股份有限公司 | Hydraulic self-balancing mechanical sealing device |
US20120133100A1 (en) * | 2010-11-25 | 2012-05-31 | Zainal Abidin Azhar Bin | Compression unit |
US9347565B2 (en) | 2014-05-09 | 2016-05-24 | Eagleburgmann Germany Gmbh & Co. Kg | Rotating mechanical seal arrangement with improved gas separation |
US20160252182A1 (en) * | 2013-11-22 | 2016-09-01 | Eagle Industry Co., Ltd. | Sliding parts |
US20170096905A1 (en) * | 2013-05-16 | 2017-04-06 | Dresser-Rand Sa | Bi-directional shaft seal |
US9657842B2 (en) * | 2012-08-10 | 2017-05-23 | Siemens Aktiengesellschaft | Shaft seal arrangement |
US20180187784A1 (en) * | 2015-06-27 | 2018-07-05 | Eagle Industry Co., Ltd. | Sliding component |
WO2019044504A1 (en) * | 2017-08-29 | 2019-03-07 | 株式会社 荏原製作所 | Seal system |
JP2019039415A (en) * | 2017-08-29 | 2019-03-14 | 株式会社荏原製作所 | Seal system |
JP2019039416A (en) * | 2017-08-29 | 2019-03-14 | 株式会社荏原製作所 | Seal system |
JP2019039417A (en) * | 2017-08-29 | 2019-03-14 | 株式会社荏原製作所 | Seal system |
DE102017220437B3 (en) | 2017-11-16 | 2019-03-28 | Eagleburgmann Germany Gmbh & Co. Kg | Pump arrangement, in particular for supplying a mechanical seal assembly |
US10274086B2 (en) * | 2014-09-20 | 2019-04-30 | Eagle Industry Co., Ltd. | Sliding component |
US10941863B2 (en) * | 2016-11-14 | 2021-03-09 | Eagle Industry Co., Ltd. | Sliding component |
CN112682513A (en) * | 2020-12-18 | 2021-04-20 | 武汉宇格电力设备有限公司 | Self-lubricating mechanical seal |
US11162504B2 (en) * | 2016-12-23 | 2021-11-02 | Grundfos Holding A/S | Centrifugal pump |
US20220120346A1 (en) * | 2020-10-16 | 2022-04-21 | Raytheon Technologies Corporation | Dual windage blocker and retention feature design for seal assembly |
US11402022B2 (en) * | 2017-11-19 | 2022-08-02 | Bejing GeRuiFu M.S.T. Co., Ltd | Mechanical seal having auxiliary lubricating device |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2233381C3 (en) * | 1972-07-07 | 1981-05-27 | Feodor Burgmann Dichtungswerk Gmbh & Co, 8190 Wolfratshausen | Cooled mechanical seal |
DE2228296C3 (en) * | 1972-06-09 | 1982-12-02 | Feodor Burgmann Dichtungswerk Gmbh & Co, 8190 Wolfratshausen | Double acting cooled mechanical seal |
US4109920A (en) * | 1977-09-06 | 1978-08-29 | Borg-Warner Corporation | Heat exchanger for shaft seal cartridge |
DE3443554C2 (en) * | 1983-12-02 | 1986-04-03 | Martin Merkel GmbH & Co KG, 2102 Hamburg | Slide ring seal assembly |
DE3509023A1 (en) * | 1985-03-13 | 1986-09-25 | Feodor Burgmann Dichtungswerke Gmbh & Co, 8190 Wolfratshausen | Pump unit |
DE4034104A1 (en) * | 1990-10-26 | 1992-04-30 | Klein Schanzlin & Becker Ag | MECHANICAL SEAL |
DE19848792C1 (en) * | 1998-10-22 | 2000-05-04 | Netzsch Mohnopumpen Gmbh | Submersible pump device for use in a borehole |
DE10042868C1 (en) * | 2000-08-18 | 2002-04-18 | Genadij Polak | Labyrinth pump has exchangeable lining on outside of bush on shaft and on inside of sleeve rigidly fixed in casing, with helical grooves on inside of sleeve's lining and on outside of bush's lining |
US7389832B2 (en) * | 2006-05-26 | 2008-06-24 | Dyna-Drill Technologies, Inc. | Hydrostatic mechanical seal with local pressurization of seal interface |
DE102011118477A1 (en) | 2011-11-14 | 2013-05-16 | Eagleburgmann Germany Gmbh & Co. Kg | Conveying thread for mechanical seal assembly, has rotary conveying element and stationary conveying element, where one of conveying elements has conveying grooves |
CN104676004B (en) * | 2015-02-13 | 2017-04-05 | 江苏科奥流体科技有限公司 | A kind of integral sealing means of hydraulic pump |
-
1969
- 1969-03-17 DE DE1913397A patent/DE1913397B2/en active Granted
- 1969-05-19 CH CH755169A patent/CH489732A/en not_active IP Right Cessation
- 1969-08-14 GB GB40582/69A patent/GB1282915A/en not_active Expired
-
1970
- 1970-02-10 FR FR7004696A patent/FR2037367A5/fr not_active Expired
- 1970-03-12 US US00018820A patent/US3746350A/en not_active Expired - Lifetime
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3963247A (en) * | 1970-12-01 | 1976-06-15 | Stamicarbon B.V. | Shaft seal |
US3811658A (en) * | 1972-01-24 | 1974-05-21 | H Heidrich | Extruder for processing plastics and rubber |
US3888495A (en) * | 1972-06-09 | 1975-06-10 | Ehrhard Mayer | Dual-cooled slide ring seal |
US3884482A (en) * | 1973-03-08 | 1975-05-20 | Borg Warner | Cooled seal cartridge |
US3937477A (en) * | 1973-12-26 | 1976-02-10 | Borg-Warner Corporation | Mechanical seal system |
US3968969A (en) * | 1974-03-01 | 1976-07-13 | Ehrhard Mayer | Sealing arrangement |
US3938811A (en) * | 1974-10-11 | 1976-02-17 | Kommanditbolaget United Stirling (Sweden) Ab & Co. | Sealing means for stirling engine crankcases |
US3999882A (en) * | 1975-03-17 | 1976-12-28 | Dresser Industries, Inc. | Flushing and cooling system for shaft seals and pumps |
US4084825A (en) * | 1976-03-31 | 1978-04-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Counter pumping debris excluder and separator |
US4224009A (en) * | 1977-03-21 | 1980-09-23 | Termomeccanica Italiana S.P.A. | Submersible pump with improved sealing means |
US4300772A (en) * | 1978-09-30 | 1981-11-17 | Pintsch Bamag Antriebs-Und Verkehrstechnik Gmbh | Sealing arrangement for rotatably mounted shafts |
DE2844335A1 (en) * | 1978-10-11 | 1980-04-30 | Burgmann Dichtungswerk Feodor | Shaft seal with rotating slide ring - has segment-section wings causing centrifugal deflection, to give oil pressure areas on slide surface |
US4243230A (en) * | 1979-10-01 | 1981-01-06 | Crane Packing Co. | Low energy tandem seal |
US4416586A (en) * | 1980-04-19 | 1983-11-22 | Klein, Schanzlin & Becker Aktiengesellschaft | Submersible motor pump assembly |
US4463957A (en) * | 1980-07-04 | 1984-08-07 | Tanken Seiko Corp. | Sealing device for rotary shaft and string-like member for defining spiral therefor |
US4368895A (en) * | 1980-12-01 | 1983-01-18 | Mitsubishi Denki Kabushiki Kaisha | Shaft sealing device utilizing a non-uniform groove depth |
US4466619A (en) * | 1981-07-13 | 1984-08-21 | Durametallic Corporation | Mechanical seal assembly with integral pumping device |
US4377290A (en) * | 1982-03-22 | 1983-03-22 | John Crane-Houdaille, Inc. | Symmetrical seal package for multiple face seals |
US4545588A (en) * | 1983-07-08 | 1985-10-08 | Tanken Seiko Corp. | Mechanical face seal for sealing slurry liquid |
US4709930A (en) * | 1984-05-19 | 1987-12-01 | Firma Carl Freudenberg | Shaft and sealing ring |
US4621975A (en) * | 1984-10-25 | 1986-11-11 | Graco Inc. | Centrifugal pump seal |
US4606712A (en) * | 1984-11-14 | 1986-08-19 | Abex Corporation | Self-pumping pump shaft seal |
US4723781A (en) * | 1986-05-23 | 1988-02-09 | Man Gutehoffnungshutte Gmbh | Liquid sealed shaft seal |
US5516121A (en) * | 1990-01-18 | 1996-05-14 | Framatome | Dry slip ring seal having independent cooling loops |
US6210107B1 (en) * | 1990-03-12 | 2001-04-03 | John Crane Inc. | Barrier seal systems |
US5217234A (en) * | 1991-03-22 | 1993-06-08 | John Hornsby | Mechanical seal with barrier fluid circulation system |
US5487550A (en) * | 1991-11-12 | 1996-01-30 | Bw/Ip International, Inc. | Secondary gas/liquid mechanical seal assembly |
WO1995002777A1 (en) * | 1993-07-14 | 1995-01-26 | Woodex Bearing Company, Inc. | Positive drive compensating shaft seal |
US5409241A (en) * | 1993-07-14 | 1995-04-25 | Woodex Bearing Company, Inc. | Positive drive compensating shaft seal |
US6361271B1 (en) | 1999-11-19 | 2002-03-26 | Capstone Turbine Corporation | Crossing spiral compressor/pump |
US6688601B2 (en) * | 2000-11-21 | 2004-02-10 | Eagle Industry Co., Ltd. | Mechanical seal |
US6494458B2 (en) | 2000-12-19 | 2002-12-17 | Karl E. Uth | Rotary sealing assembly |
US6565095B2 (en) * | 2001-07-12 | 2003-05-20 | Honeywell International, Inc. | Face seal with internal drain |
US6969071B2 (en) * | 2002-08-13 | 2005-11-29 | Perkinelmer, Inc. | Face seal assembly |
US20040046322A1 (en) * | 2002-08-13 | 2004-03-11 | Berard Gerald M. | Face seal assembly |
US8814508B2 (en) | 2003-09-18 | 2014-08-26 | General Electric Company | Heat exchanger for centrifugal compressor gas sealing |
WO2005026589A1 (en) * | 2003-09-18 | 2005-03-24 | Nuovo Pignone Holding S.P.A. | Heat exchanger device for a gas seal for centrifugal compressors |
US20070102139A1 (en) * | 2003-09-18 | 2007-05-10 | Marcello Puggioni | Heat exchanger for centrifugal compressor gas sealing |
US7343968B2 (en) | 2004-08-27 | 2008-03-18 | Deublin Company | Washpipe seal assembly |
US20060042789A1 (en) * | 2004-08-27 | 2006-03-02 | Zbigniew Kubala | Washpipe seal assembly |
US20100196836A1 (en) * | 2009-02-03 | 2010-08-05 | Craig Moller | Sealing Mechanism for a Vacuum Heat Treating Furnace |
US8992213B2 (en) * | 2009-02-03 | 2015-03-31 | Ipsen, Inc. | Sealing mechanism for a vacuum heat treating furnace |
CN101858435B (en) * | 2009-04-10 | 2011-11-09 | 江苏华阳重工科技股份有限公司 | Hydraulic self-balancing mechanical sealing device |
US20120133100A1 (en) * | 2010-11-25 | 2012-05-31 | Zainal Abidin Azhar Bin | Compression unit |
US9657842B2 (en) * | 2012-08-10 | 2017-05-23 | Siemens Aktiengesellschaft | Shaft seal arrangement |
US20170096905A1 (en) * | 2013-05-16 | 2017-04-06 | Dresser-Rand Sa | Bi-directional shaft seal |
US10605105B2 (en) * | 2013-05-16 | 2020-03-31 | Dresser-Rand S.A. | Bi-directional shaft seal |
US20160252182A1 (en) * | 2013-11-22 | 2016-09-01 | Eagle Industry Co., Ltd. | Sliding parts |
US9347565B2 (en) | 2014-05-09 | 2016-05-24 | Eagleburgmann Germany Gmbh & Co. Kg | Rotating mechanical seal arrangement with improved gas separation |
CN106461088A (en) * | 2014-05-09 | 2017-02-22 | 伊格尔博格曼德国有限公司 | Slip-ring seal assembly having improved gas separation |
US10274086B2 (en) * | 2014-09-20 | 2019-04-30 | Eagle Industry Co., Ltd. | Sliding component |
US10655736B2 (en) * | 2015-06-27 | 2020-05-19 | Eagle Industry Co., Ltd. | Sliding component |
US20180187784A1 (en) * | 2015-06-27 | 2018-07-05 | Eagle Industry Co., Ltd. | Sliding component |
US10941863B2 (en) * | 2016-11-14 | 2021-03-09 | Eagle Industry Co., Ltd. | Sliding component |
US11162504B2 (en) * | 2016-12-23 | 2021-11-02 | Grundfos Holding A/S | Centrifugal pump |
JP2019039416A (en) * | 2017-08-29 | 2019-03-14 | 株式会社荏原製作所 | Seal system |
JP2019039417A (en) * | 2017-08-29 | 2019-03-14 | 株式会社荏原製作所 | Seal system |
JP2019039415A (en) * | 2017-08-29 | 2019-03-14 | 株式会社荏原製作所 | Seal system |
WO2019044504A1 (en) * | 2017-08-29 | 2019-03-07 | 株式会社 荏原製作所 | Seal system |
US11698080B2 (en) | 2017-08-29 | 2023-07-11 | Ebara Corporation | Sealing system |
CN113309731A (en) * | 2017-08-29 | 2021-08-27 | 株式会社荏原制作所 | Sealing system |
US11441571B2 (en) | 2017-08-29 | 2022-09-13 | Ebara Corporation | Sealing system |
DE102017220437B3 (en) | 2017-11-16 | 2019-03-28 | Eagleburgmann Germany Gmbh & Co. Kg | Pump arrangement, in particular for supplying a mechanical seal assembly |
DE102017220437B8 (en) * | 2017-11-16 | 2019-06-19 | Eagleburgmann Germany Gmbh & Co. Kg | Pump arrangement, in particular for supplying a mechanical seal assembly |
US11402022B2 (en) * | 2017-11-19 | 2022-08-02 | Bejing GeRuiFu M.S.T. Co., Ltd | Mechanical seal having auxiliary lubricating device |
US20220120346A1 (en) * | 2020-10-16 | 2022-04-21 | Raytheon Technologies Corporation | Dual windage blocker and retention feature design for seal assembly |
US11846355B2 (en) * | 2020-10-16 | 2023-12-19 | Rtx Corporation | Dual windage blocker and retention feature design for seal assembly |
CN112682513B (en) * | 2020-12-18 | 2023-01-20 | 武汉宇格电力设备有限公司 | Self-lubricating mechanical seal |
CN112682513A (en) * | 2020-12-18 | 2021-04-20 | 武汉宇格电力设备有限公司 | Self-lubricating mechanical seal |
Also Published As
Publication number | Publication date |
---|---|
DE1913397C3 (en) | 1975-02-06 |
FR2037367A5 (en) | 1970-12-31 |
DE1913397B2 (en) | 1974-06-20 |
CH489732A (en) | 1970-04-30 |
GB1282915A (en) | 1972-07-26 |
DE1913397A1 (en) | 1970-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3746350A (en) | Sealing assembly with pump device | |
US3746349A (en) | Mechanical seals and or thrust bearings | |
US3756673A (en) | Stuffing box for a rotating shaft | |
US3724861A (en) | New trapped bushing seal | |
US3917289A (en) | Mechanical seal | |
US4290611A (en) | High pressure upstream pumping seal combination | |
US4257617A (en) | Shaft seal assembly | |
US3147013A (en) | Dry gas seal | |
US3057646A (en) | Rotary seal with cooling means | |
US3238000A (en) | Radial sliding bearing for traversing shafts | |
US3467396A (en) | Internally cooled seal assembly | |
US4514099A (en) | Hydrodynamic bearing assembly | |
CN106640740B (en) | The Double End fluid dynamic and static pressure mechanical seal of sodium-cooled fast reactor core main pump | |
US4381867A (en) | Automatically positionable mechanical shaft seal | |
JPS61119879A (en) | Sealing device sealed with fluid | |
US3617068A (en) | Floating ring seal for rotating shafts | |
US2805090A (en) | Liquid seals for gas-cooled dynamo electric machines | |
US3227463A (en) | Mechanical seal | |
US3979104A (en) | Shaft sealing device for a butterfly valve | |
GB853829A (en) | Rotary shaft seal | |
US3679217A (en) | Automatic shutdown seal | |
US3810635A (en) | Mechanical seal | |
US2835514A (en) | Rotary shaft seal | |
US3698726A (en) | Device for sealing and lubricating reciprocating machine members | |
GB1074036A (en) | Improvements in and relating to seals for rotating shafts |