US3746173A - Liquid separator - Google Patents

Liquid separator Download PDF

Info

Publication number
US3746173A
US3746173A US00155767A US3746173DA US3746173A US 3746173 A US3746173 A US 3746173A US 00155767 A US00155767 A US 00155767A US 3746173D A US3746173D A US 3746173DA US 3746173 A US3746173 A US 3746173A
Authority
US
United States
Prior art keywords
pump
inlet
rotor
liquid separator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00155767A
Inventor
W Daniel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3746173A publication Critical patent/US3746173A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/12Centrifuges in which rotors other than bowls generate centrifugal effects in stationary containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0217Separation of non-miscible liquids by centrifugal force

Definitions

  • Another object of the present invention is the provision of a centrifugal liquid separator that effects a relatively fine separation between the liquid components.
  • centrifugal liquid separator which will be relatively simple and inexpensive to manufacture, easy to operate, maintain and repair and rugged and durable in use.
  • FIG. 1 is a somewhat schematic cross-sectional view of a liquid separator according to the present invention
  • FIG. 2 is a view of the pump rotor, looking in the direction in which the feed enters the inlet;
  • FIG. 3 is a perspective view of the rotor of either of the pumps.
  • FlG.'4 is a cross-sectional view perpendicular to the axis of the pump and showing the rotor vanes in cross section and indicating generally the direction of liquid flow.
  • liquid separator apparatus comprising a pair of centrifugal pumps 1 and 3 of the airfoil type, which may be of the type disclosed in my copending application entitled AlRFOlL VACUUM PUMP WITH TAPERED RO- TOR filed on even date herewith, to which reference is made for a more complete disclosure.
  • Pumps 1 and 3 may also be generally similar to each other, so that a description of one suffices for the other, except where noted.
  • each pump 1 or 3 comprises a casing 5 of tapered configuration, that is, that increases progressively in diameter in a direction away from the axially central inlet 7 toward the peripheral outlet 9, thereby to define a pump chamber 11 of generally conical configuration.
  • a rotor 13 Disposed in each chamber 11 is a rotor 13 comprising a shaft 15 axially disposed of the rotor with means (not shown) to rotate the shaft 15 thereby to drive the rotor and hence the pump.
  • Shaft 15 is mounted in a bearing 17 through a side wall of easing 5, and carries at its end a circular flat plate 19 closely spaced from and parallel to the corresponding flat plate forming a portion of the casing 5.
  • Each plate 19 carries at least one and preferably a plurality of vanes 21 thereon, each of which is mounted at its base 23 on the outer periphery of plate 19 and extends away from shaft 15 in the direction of inlet 7 and is radially inwardly inclined in a direction generally parallel to the adjacent inclined side walls of casing 5, to a tip 25.
  • Each vane 21 is bounded by a leading edge 27 and a trailing edge 29, which converge radially inwardly, that is, in a direction away from the plate 19.
  • each vane 21 decreases in a direction away from the plate 19 so that the airfoil cross-sectional configuration of the vane 21 at base 23 is congruent with but substantially larger than the airfoil cross-sectional configuration of vane 21 at tip 25, as can best be seen in FIG. 2.
  • Each vane 21 has a region of greatest thickness; and from that region of greatest thickness rearwardly to the trailing edge of the vane, the radially outer surface of the vane is concentric with the pump and parallel to the adjacent side wall of casing 5.
  • the liquid first comes under the influence of the relatively small and relatively slowly moving radially inner portions of the vanes 21 adjacent the tips 25. Because these tips 25 are relatively small and travelling at a relatively low tangential velocity, the liquid tends to be relatively little influenced by the initial portion of the rotor that it contacts. Also, the casing is at its widest adjacent the axial inlet thereto. But as the liquid moves radially outwardly, three things happen: (1 the portion of vanes 21 contacted by the liquid increases in cross sectional configuration and so the force, or rather the suction, exerted on the liquid by the vanes progressively increases;
  • the radially outwardly converging side walls of the casing confine the liquid to a progressively more narrow channel, so that the liquid must travel increasingly faster by virtue of the casing configuration.
  • the liquid progressively accelerates and progressively increases in pressure, during its path through each chamber 11 from inlet 7 to the outlet 9, whereby smooth laminar flow with high pump efficiency is achieved.
  • the liquid to be separated is fed to pump 1 through a conduit 31 immersed in a tank 33 or other source of liquid mixture to be separated.
  • the separated lighter component travels to the pump 3 under control of a valve 35 through a conduit 37 which is concentric with and disposed within the inlet 7 of pump 1.
  • the liquid flowing through conduit 1 thus flows about the conduit 37 and into pump 1 for its principal separation and about an outwardly tapered annular bafile 39 at the intake end of conduit 37 and thence into conduit 37 for flow to the left as seen in FIG. 1, into the inlet of the pump 3.
  • the lighter liquid is discharged peripherally of pump 3, there being substantially no separation in pump 3 because the separation is very largely completed in pump 1.
  • the outlet of pump 3 could be connected to the inlet of a further pump 1 associated with a still further pump 3, etc., through as many serially arranged separation stages as were needed.
  • pump 3 competes successfully with pump 1 for the lighter liquid. Therefore, the intake vacuum of pump 3 should be greater than that of pump 1, and can for example be twenty inches of Hg. as opposed to twelve inches of Hg. for pump 1.
  • the relative flow rates and intake pressures can of course be adjusted by manipulation of valve 35.
  • a liquid separator comprising a pair of centrifugal pumps each having a pump chamber and an axial inlet and a peripheral outlet, means to feed liquid to be separated to said inlet of one of said pumps, means to withdraw heavier liquid from the outlet of said one pump, and means to feed lighter liquid from a central portion of the pump chamber of said one pump to the inlet of the other said pump, said one pump comprising a rotor rotatable in a casing, said rotor having at least two airfoil vanes thereon that are inclined radially inwardly in a direction toward said inlet of said one pump and away from said rotor, said casing having a side wall inclined radially inwardly in the same direction as said at least two airfoil vanes.
  • a liquid separator as claimed in claim 1 the inlet of said other pump communicating with said one pump through a conduit extending and terminating axially of said one pump, said at least two airfoil vanes axially overlying the inlet end of said conduit.
  • each of said pumps comprising a rotor rotatable in a casing whose side walls converge radially outwardly, each said rotor having at least two airfoil vanes thereon that are inclined radially inwardly in a direction toward said inlet and away from its associated said rotor.
  • a liquid separator as claimed in claim I the inlet suction of said one pump being less than the inlet suction of said other pump.

Abstract

A centrifugal separator comprises a pair of centrifugal pumps of the airfoil type. A mixture of liquids of different specific gravities is fed centrally to one pump and the heavier liquid is withdrawn from the periphery of that pump. The other pump withdraws the lighter liquid from the center of the first pump and discharges the lighter liquid peripherally.

Description

[ 1 July 17, 1973 IJnited States Patent 1 Daniel I FOREIGN PATENTS OR APPLICATIONS LIQUID SEPARATOR William H. Daniel, 54] Putman Road, Rogers, Ark. 72756 June 23, 1971 707,767 5/1941 Germany 416/185 [76] Inventor:
Primary Examiner-Samih N. Zaharna Assistant ExaminerF. F. Calvetti Alt0rney-Young & Thompson 221 Filed:
211 App]. No.1 155,767
nu w
2 u "I. c u 4 n "u m 1 em mZ m m M4 UIF HUN 0 UNITED STATES PATENTS 3,347,371 Verbaere........................ 210/512 X 9 Claims 4 Drawing Figures 3,261,297 7/1966 Daniel 415/213 R JJFF Patented July 17, 1973 I 3,746,173
2 Sheets-Sheet l Patented July 17,1973
2 Sheets-Sheet 2 INVENTOR. MAW/am H 05 0 /'Z/ Mung 1% 7750/0 2500 LIQUID SEPARATOR The present invention relates to centrifugal liquid separators.
It is an object of thepresent invention to provide a centrifugal liquid separator in which the separation of large quantities of liquid is effected very rapidly.
Another object of the present invention is the provision of a centrifugal liquid separator that effects a relatively fine separation between the liquid components.
Finally, it is an object of the present invention to provide a centrifugal liquid separator which will be relatively simple and inexpensive to manufacture, easy to operate, maintain and repair and rugged and durable in use.
Briefly, these objects are achieved in the present invention by providing a pair of centrifugal pumps of the air-foil type one of which discharges the heavier liquid at its periphery and the other of which has its intake disposed centrally of the first-mentioned pump. As a result, the liquid mixture to be separated flows into the first-mentioned pump and the heavier liquid is discharged therefrom under the impetus of the first pump, while the lighter liquid is discharged under the impetus of the second pump.
Other objects, features and advantages of the present invention will become apparent from the consideration of the following description, taken in connection with the accompanying drawings, in which:
FIG. 1 is a somewhat schematic cross-sectional view of a liquid separator according to the present invention;
FIG. 2 is a view of the pump rotor, looking in the direction in which the feed enters the inlet;
FIG. 3 is a perspective view of the rotor of either of the pumps; and
FlG.'4 is a cross-sectional view perpendicular to the axis of the pump and showing the rotor vanes in cross section and indicating generally the direction of liquid flow.
Referring now to the drawings in greater detail, there is shown liquid separator apparatus according to the present invention, comprising a pair of centrifugal pumps 1 and 3 of the airfoil type, which may be of the type disclosed in my copending application entitled AlRFOlL VACUUM PUMP WITH TAPERED RO- TOR filed on even date herewith, to which reference is made for a more complete disclosure.
Pumps 1 and 3 may also be generally similar to each other, so that a description of one suffices for the other, except where noted.
Accordingly, each pump 1 or 3 comprises a casing 5 of tapered configuration, that is, that increases progressively in diameter in a direction away from the axially central inlet 7 toward the peripheral outlet 9, thereby to define a pump chamber 11 of generally conical configuration. Disposed in each chamber 11 is a rotor 13 comprising a shaft 15 axially disposed of the rotor with means (not shown) to rotate the shaft 15 thereby to drive the rotor and hence the pump. Shaft 15 is mounted in a bearing 17 through a side wall of easing 5, and carries at its end a circular flat plate 19 closely spaced from and parallel to the corresponding flat plate forming a portion of the casing 5. Each plate 19 carries at least one and preferably a plurality of vanes 21 thereon, each of which is mounted at its base 23 on the outer periphery of plate 19 and extends away from shaft 15 in the direction of inlet 7 and is radially inwardly inclined in a direction generally parallel to the adjacent inclined side walls of casing 5, to a tip 25. Each vane 21 is bounded by a leading edge 27 and a trailing edge 29, which converge radially inwardly, that is, in a direction away from the plate 19. Also, the thickness of each vane 21 decreases in a direction away from the plate 19 so that the airfoil cross-sectional configuration of the vane 21 at base 23 is congruent with but substantially larger than the airfoil cross-sectional configuration of vane 21 at tip 25, as can best be seen in FIG. 2.
Each vane 21 has a region of greatest thickness; and from that region of greatest thickness rearwardly to the trailing edge of the vane, the radially outer surface of the vane is concentric with the pump and parallel to the adjacent side wall of casing 5.
Accordingly, as liquid flows in the inlet of each pump, the liquid first comes under the influence of the relatively small and relatively slowly moving radially inner portions of the vanes 21 adjacent the tips 25. Because these tips 25 are relatively small and travelling at a relatively low tangential velocity, the liquid tends to be relatively little influenced by the initial portion of the rotor that it contacts. Also, the casing is at its widest adjacent the axial inlet thereto. But as the liquid moves radially outwardly, three things happen: (1 the portion of vanes 21 contacted by the liquid increases in cross sectional configuration and so the force, or rather the suction, exerted on the liquid by the vanes progressively increases;
(2) the radially farther out along the vane the liquid progresses, the higher the tangential velocity of the portion of the vane contacted by the liquid, so that the vane in effect travels progressively faster with respect to a radially outwardly moving portion of liquid, which increased velocity has the effect of increasing the pressure and velocity of the liquid; and
3. as the liquid travels radially outwardly in the pump, the radially outwardly converging side walls of the casing confine the liquid to a progressively more narrow channel, so that the liquid must travel increasingly faster by virtue of the casing configuration. As a result, the liquid progressively accelerates and progressively increases in pressure, during its path through each chamber 11 from inlet 7 to the outlet 9, whereby smooth laminar flow with high pump efficiency is achieved.
At the same time, very rapid and efficient separation is achieved, the heavier liquid being discharged from the outlet 9 of pump 1 and the lighter liquid accumulating centrally of pump 1.
The liquid to be separated is fed to pump 1 through a conduit 31 immersed in a tank 33 or other source of liquid mixture to be separated. The separated lighter component travels to the pump 3 under control of a valve 35 through a conduit 37 which is concentric with and disposed within the inlet 7 of pump 1. The liquid flowing through conduit 1 thus flows about the conduit 37 and into pump 1 for its principal separation and about an outwardly tapered annular bafile 39 at the intake end of conduit 37 and thence into conduit 37 for flow to the left as seen in FIG. 1, into the inlet of the pump 3. The lighter liquid is discharged peripherally of pump 3, there being substantially no separation in pump 3 because the separation is very largely completed in pump 1. Of course, if further separation were needed, then the outlet of pump 3 could be connected to the inlet of a further pump 1 associated with a still further pump 3, etc., through as many serially arranged separation stages as were needed.
In effect, pump 3 competes successfully with pump 1 for the lighter liquid. Therefore, the intake vacuum of pump 3 should be greater than that of pump 1, and can for example be twenty inches of Hg. as opposed to twelve inches of Hg. for pump 1. The relative flow rates and intake pressures can of course be adjusted by manipulation of valve 35.
in view of the foregoing disclosure therefore, it will be evident that all of the initially recited objects of the present invention have been achieved.
Although the present invention has been described and illustrated in connection with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit of the invention, as those skilled in this art will readily understand. Such modifications and variations are considered to be within the purview and scope of the present invention as defined by the appended claims.
Having described my invention, 1 claim:
, l. A liquid separator comprising a pair of centrifugal pumps each having a pump chamber and an axial inlet and a peripheral outlet, means to feed liquid to be separated to said inlet of one of said pumps, means to withdraw heavier liquid from the outlet of said one pump, and means to feed lighter liquid from a central portion of the pump chamber of said one pump to the inlet of the other said pump, said one pump comprising a rotor rotatable in a casing, said rotor having at least two airfoil vanes thereon that are inclined radially inwardly in a direction toward said inlet of said one pump and away from said rotor, said casing having a side wall inclined radially inwardly in the same direction as said at least two airfoil vanes.
2. A liquid separator as claimed in claim 1, said at least two vanes having leading and trailing edges that converge in a direction away from said rotor.
3. A liquid separator as claimed in claim 2, said at least two vanes being thickest adjacent said rotor and thinnest remote from said rotor.
4. A liquid separator as claimed in claim 1, the inlet of said other pump communicating with said one pump through a conduit extending and terminating axially of said one pump, said at least two airfoil vanes axially overlying the inlet end of said conduit.
5. A liquid separator as claimed in claim 4, said inlet of said one pump being annular about said conduit.
6. A liquid separator as claimed in claim I, each of said pumps comprising a rotor rotatable in a casing whose side walls converge radially outwardly, each said rotor having at least two airfoil vanes thereon that are inclined radially inwardly in a direction toward said inlet and away from its associated said rotor.
7. A liquid separator as claimed in claim 6, said at least two vanes having leading and trailing edges that converge in a direction away from said rotor.
8. A liquid separator as claimed in claim 1, and valve means in the inlet of at least one of said pumps to reglate the flow to the inlets of the pumps relative to each other.
9. A liquid separator as claimed in claim I, the inlet suction of said one pump being less than the inlet suction of said other pump.

Claims (9)

1. A liquid separator comprising a pair of centrifugal pumps each having a pump chamber and an axial inlet and a peripheral outlet, means to feed liquid to be separated to said inlet of one of said pumps, means to withdraw heavier liquid from the outlet of said one pump, and means to feed lighter liquid from a central portion of the pump chamber of said one pump to the inlet of the other said pump, said one pump comprising a rotor rotatable in a casing, said rotor having at least two airfoil vanes thereon that are inclined radially inwardly in a direction toward said inlet of said one pump and away from said rotor, said casing having a side wall inclined radially inwardly in the same direction as said at least two airfoil vanes.
2. A liquid separator as claimed in claim 1, said at least two vanes having leading and trailing edges that converge in a direction away from said rotor.
3. A liquid separator as claimed in claim 2, said at least two vanes being thickest adjacent said rotor and thinnest remote from said rotor.
4. A liquid separator as claimed in claim 1, the inlet of said other pump communicating with said one pump through a conduit extending and terminating axially of said one pump, said at least two airfoil vanes axially overlying the inlet end of said conduit.
5. A liquid separator as claimed in claim 4, said inlet of said one pump being annular about said conduit.
6. A liquid separator as claimed in claim 1, each of said pumps comprising a rotor rotatable in a casing whose side walls converge radially outwardly, each said rotor having at least two airfoil vanes thereon that are inclined radially inwardly in a direction toward said inlet and away from its associated said rotor.
7. A liquid separator as claimed in claim 6, said at least two vanes having leading and trailing edges that converge in a direction away from said rotor.
8. A liquid separator as claimed in claim 1, and valve means in the inlet of at least one of said pumps to reglate the flow to the inlets of the pumps relative to each other.
9. A liquid separator as claimed in claim 1, the inlet suction of said one pump being less than the inlet suction of said other pump.
US00155767A 1971-06-23 1971-06-23 Liquid separator Expired - Lifetime US3746173A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15576771A 1971-06-23 1971-06-23

Publications (1)

Publication Number Publication Date
US3746173A true US3746173A (en) 1973-07-17

Family

ID=22556709

Family Applications (1)

Application Number Title Priority Date Filing Date
US00155767A Expired - Lifetime US3746173A (en) 1971-06-23 1971-06-23 Liquid separator

Country Status (1)

Country Link
US (1) US3746173A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2513534A1 (en) * 1981-09-30 1983-04-01 Inst Francais Du Petrole DEVICE FOR SEPARATING NON-MISCIBLE FLUIDS OF DIFFERENT DENSITY
US4563123A (en) * 1983-09-12 1986-01-07 Conoco Inc. Direct coupling of a vortex injector to a centrifugal pump
US4594153A (en) * 1985-02-21 1986-06-10 Smith & Loveless, Inc. Sewage pumping station
GB2210297A (en) * 1987-09-26 1989-06-07 Mervyn Joseph Duggan Centrifuge-pump
EP3067103A1 (en) * 2015-03-11 2016-09-14 Juan Maria Altarriba Checa System for the recovery of hydrocarbons spilled into water
EP3241597A1 (en) * 2016-05-03 2017-11-08 Plan Optik AG Phase separation chamber and method for separating two phases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE707767C (en) * 1939-10-18 1941-07-03 Arno Poenitz Suction fan
US3261297A (en) * 1965-05-24 1966-07-19 William H Daniel Pump
US3347371A (en) * 1964-03-09 1967-10-17 Unitec Sa Apparatus for the separation of materials of different densities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE707767C (en) * 1939-10-18 1941-07-03 Arno Poenitz Suction fan
US3347371A (en) * 1964-03-09 1967-10-17 Unitec Sa Apparatus for the separation of materials of different densities
US3261297A (en) * 1965-05-24 1966-07-19 William H Daniel Pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2513534A1 (en) * 1981-09-30 1983-04-01 Inst Francais Du Petrole DEVICE FOR SEPARATING NON-MISCIBLE FLUIDS OF DIFFERENT DENSITY
US4478712A (en) * 1981-09-30 1984-10-23 Institut Francais Du Petrole Device for separating immiscible fluids of different specific gravities
US4533474A (en) * 1981-09-30 1985-08-06 Institut Francais Du Petrole Method for separating immiscible fluids of different specific gravities
US4563123A (en) * 1983-09-12 1986-01-07 Conoco Inc. Direct coupling of a vortex injector to a centrifugal pump
US4594153A (en) * 1985-02-21 1986-06-10 Smith & Loveless, Inc. Sewage pumping station
GB2210297A (en) * 1987-09-26 1989-06-07 Mervyn Joseph Duggan Centrifuge-pump
EP3067103A1 (en) * 2015-03-11 2016-09-14 Juan Maria Altarriba Checa System for the recovery of hydrocarbons spilled into water
EP3241597A1 (en) * 2016-05-03 2017-11-08 Plan Optik AG Phase separation chamber and method for separating two phases

Similar Documents

Publication Publication Date Title
US2967013A (en) Diffuser
US4976748A (en) Vortex tube separating device
US3191364A (en) Centrifugal dust separator
US3073516A (en) Centrifuges
US5053126A (en) Apparatus for gas liquid separation
EP0262161A1 (en) Continuous flow centrifugal separation
US2143144A (en) Vacuum cleaner
US4350305A (en) Micro-mill-mixer
US2209607A (en) Blade tip for rotary dust separators
US2996187A (en) payne
US5104541A (en) Oil-water separator
US3746173A (en) Liquid separator
US5137424A (en) Pump unit
US4441262A (en) Drier, particularly for plastic material
SE467014B (en) CENTRIFUGAL PUMP SPECIFICALLY LOADED TO PUMP FLUIDS WITH A HIGH GAS INHAL
JPH07155638A (en) Method and device for separating finely divided solid into two particle group
US2571331A (en) Apparatus for separating solid particles from gases
US1747155A (en) Separating apparatus and method
GB1239956A (en) Improved method of and apparatus for treating a mixture of materials
CN106660057B (en) Centrifugal removing separator
US3484040A (en) Multiple chamber centrifuge
SE470507B (en) Pump housing for centrifugal pump, which pump housing is provided with an axially directed partition, which wall is slotted in its longitudinal direction
GB1352655A (en) Centrifugal pump having a contamination separator
US2767841A (en) Centrifugal separator
US1900394A (en) Centrifugal thickener