US3742282A - Electrodes - Google Patents
Electrodes Download PDFInfo
- Publication number
- US3742282A US3742282A US00168748A US3742282DA US3742282A US 3742282 A US3742282 A US 3742282A US 00168748 A US00168748 A US 00168748A US 3742282D A US3742282D A US 3742282DA US 3742282 A US3742282 A US 3742282A
- Authority
- US
- United States
- Prior art keywords
- electrode
- electrodes
- electrode according
- base material
- covering layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims abstract description 42
- 150000004767 nitrides Chemical class 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 238000004544 sputter deposition Methods 0.000 claims abstract description 11
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 10
- 238000009834 vaporization Methods 0.000 claims abstract description 8
- 230000008016 vaporization Effects 0.000 claims abstract description 7
- 239000012298 atmosphere Substances 0.000 claims description 8
- 239000007772 electrode material Substances 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910000599 Cr alloy Inorganic materials 0.000 claims description 3
- 238000007750 plasma spraying Methods 0.000 claims description 2
- 229910000851 Alloy steel Inorganic materials 0.000 claims 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims 1
- 239000012535 impurity Substances 0.000 abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 abstract description 6
- 229910052735 hafnium Inorganic materials 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 15
- 238000005507 spraying Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 5
- 229910000833 kovar Inorganic materials 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MFYSUUPKMDJYPF-UHFFFAOYSA-N 2-[(4-methyl-2-nitrophenyl)diazenyl]-3-oxo-n-phenylbutanamide Chemical compound C=1C=CC=CC=1NC(=O)C(C(=O)C)N=NC1=CC=C(C)C=C1[N+]([O-])=O MFYSUUPKMDJYPF-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- -1 aluminum compound Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/20—Sparking plugs characterised by features of the electrodes or insulation
- H01T13/39—Selection of materials for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J17/00—Gas-filled discharge tubes with solid cathode
- H01J17/02—Details
- H01J17/04—Electrodes; Screens
Definitions
- the effective brightness of the apparatus is decreased and/or the resulting build-up of gas in the coating, the pressure and the composition of the filling gas and therewith the electrical values of the gap distance are altered.
- the wall coating is electrically conductive and if it has a higher dielectric constant than the actual wall material itself, there results because of the small distances between the electrode and the wall, a disturbance of the electrical field between the electrodes sufficient so that the firing voltage or ignition tension of the spark gap is lowered.
- electrodes of this type have been manufactured of metals, which metal electrodes, however, for all of the usual applications thereof do not have satisfactory properties.
- this type of electrode undergoes atomization in operation and/or react with the filling gases, withdrawing noble gases and hydrogen from the container so that they cannot always be satisfactorily used.
- These electrodes also have the disadvantage that on storage in air, as a rule, they immediately start to cover over with an oxide skin, membrane or film which on installation of the electrode, must be removed prior to use.
- electrodes are prepared of a core material which is composed of a difficultly meltable material and which is enclosed in a jacketing or covering formed of a compound such as tantalum carbide or nitride which undergoes melting only at very high temperatures and which above all, at the thermal light emitting temperatures which amount to more than 2000C only undergoes a slight degree of evaporation which property would not be the case if the core material were not protected.
- Still another object of the invention is to provide such electrodes which on the eventual taking up or emission of gases from the discharge space undergo no alteration in their electron discharge.
- the mechanical strength is relatively unimportant and the operating temperature of the completed electrode lies under 500C.
- the most suitable electrode material is one which contains the least possible amount of impurities. These impurities are particularly troublesome in that they sputter more readily or are vaporized more readily at the temperature of the spark starting points than the nitrides present in the electrode or they react chemically with the gases used in the discharger.
- Pencil-shaped electrodes having a diameter of 1,5 mm which in accordance with the invention are prepared from ZrN of a 99.5 percent purity were manufactured so that their oxygen content after their completion remained under 3 weight percent. With a spacing of the electrode points of about 5 mm and operating in a nitrogen atmosphere, only in some cases there was deposited on the glass wall spaced 1.5 mm away following in excess of 10" sparks (individual energy mJ, spark ignition voltage 15 kV), a thin whitish to blueish transparent coating, the ignition potential, however, remaining constant.
- the electrodes are not of the desired degree of purity, for instance, if the oxide or oxynitride content is too high, the deposit formed under the same experimental conditions will appear opaque, white and thick. The ignition voltage then as a result thereof falls off to 40 percent from the starting value.
- An essential advantage of the use of pure nitride as electrode materials is that on storage in dry air without any protective covering, only a just perceptible difference in the working function of the electrons is observed than in the underlying nitrides. Thereby there is avoided the necessity for special handling of the electrodes, as the required electrical stability properties are not interfered with even after installation of the electrodes.
- the electrode material in accordance with the invention can advantageously be used as electrodes in spark gap and other discharge installations such as incadescent, glow, and flash lamps as well as in pre-spark gap and ignition installations for combustion motors.
- the base materials no strong restrictions are made. These materials should withstand the mechanical and thermal treatment during fabrication of the electrodes, they should be able to be operative to endure the mechanical and thermal stresses during operation, and they should be sufficiently dense to avoid degassing when inserted into the gas filled spark gas container. in cases where the electrode material is plasma sprayed or soldered or welded onto the base material, it should have roughly the same thermal expansion coefficient.
- Base materials and alloys like Fe, Mo, Ta, W, Ni (Fe- Ni-Cr-and Fe-Ni-alloys like Kovar, Vacon, Vacovit), and steel are thus most favourable.
- Kovar or Vacon are well suited for plasma-sprayed ZrN-coatings.
- the base-material of the electrode is made from a wiretack out of a Fe-Ni-Cr-alloy (Kovar) with a diameter of 1 mm and a length of 30 mm. Only one end of the wire-tack has to be covered with the actual electrode materials. To enlarge the adhesion of that material on the base, the said end is sandblasted up to 3 mm from the end of the wire-tack, using grains of sand of about 0.2-0.5 mm diameter. After which the wire-tack is cleaned in running water and degassed in a wet H,-or H,-N,-stream at 850C for 15 min. The basematerial is now prepared to be covered with the sputtering and vaporisation resistant material.
- Kovar Fe-Ni-Cr-alloy
- This coating below the tip is necessary, otherwise the spark may start not on the coating, but on the base material which has a much higher sputtering yield than the coating.
- the spraying, time necessary is about s. After spraying both the electrode and the holder are covered with a layer of the sprayed material and the electrode has to be broken out of this coherent layer, which can easily be done.
- intense cooling is necessary by a gas stream from a nozzle using N or inert Ar. This does not reduce adhesion of the coating if the droplets of the powder reach the electrode in a molten state.
- the gases which flow through the burner should likewise be Ar and or N
- the spraying is done most favorably in a chamber with a N,-or Ar-atmosphere so as to avoid oxidation of the sprayed materials. But spraying in air is possible too.
- the unavoidable oxide content is reduced by heating the electrode using a radiant heater after spraying in an appropriate atmosphere N, of high pressure for nitrides like ZrN.
- ZrN-coatings are heated to about 750C and more in N, of a pressure of at least 1 bar for about 1 min to reduce the O-content by a factor of 2 to less than 3 weight percent.
- Electrode adapted for use in gas filled spark gap and discharge containers comprising a material resistant to sputtering and vaporization consisting of at least one nitride of a metal selected from the group consisting of Hf, Zr and Ta, said metal nitride having an 0, content bound as an oxide or oxynitride of less than about 5 weight percent and a content of other impurities of less than about 1.5 weight percent.
- Electrode according to claim 2 having an electrode base material selected from the group consisting of W, Mo, Ta, Ni, Fe-Ni-Cr-alloy, Fe -Ni alloy and steel and contains in part a covering layer of the same materials which form the actual electrode material for the sparks.
- Electrode according to claim 2 wherein said covering layer has a thickness of about 0.i-l mm.
- Electrode according to claim 2 wherein said metallic base material is at least in part provided with a covering layer of said materials by plasma-spraying and has an oxygen content of less than 5 weight percent.
Landscapes
- Spark Plugs (AREA)
- Gas-Filled Discharge Tubes (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE2038645A DE2038645C3 (de) | 1970-08-04 | 1970-08-04 | Verwendung von Hafnium-, Zirkonium- und oder Tantalnitrid als Werkstoff für Elektroden |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3742282A true US3742282A (en) | 1973-06-26 |
Family
ID=5778815
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00168748A Expired - Lifetime US3742282A (en) | 1970-08-04 | 1971-08-03 | Electrodes |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3742282A (enExample) |
| BR (1) | BR7104982D0 (enExample) |
| DE (1) | DE2038645C3 (enExample) |
| FR (1) | FR2103959A5 (enExample) |
| GB (1) | GB1306887A (enExample) |
| SE (1) | SE380930B (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3959683A (en) * | 1974-10-10 | 1976-05-25 | Panel Technology, Inc. | Gas discharge display panel device sputter resistant segmented electrodes |
| US4044276A (en) * | 1976-04-09 | 1977-08-23 | Gte Sylvania Incorporated | High pressure mercury vapor discharge lamp having improved electrodes |
| US4136227A (en) * | 1976-11-30 | 1979-01-23 | Mitsubishi Denki Kabushiki Kaisha | Electrode of discharge lamp |
| US4297613A (en) * | 1979-05-08 | 1981-10-27 | International Business Machines Corporation | D.C. Scan panel |
| US4890035A (en) * | 1986-11-18 | 1989-12-26 | Eltro Gmbh | Discharge electrode with microstructure surface |
-
1970
- 1970-08-04 DE DE2038645A patent/DE2038645C3/de not_active Expired
-
1971
- 1971-08-03 US US00168748A patent/US3742282A/en not_active Expired - Lifetime
- 1971-08-03 GB GB3647971A patent/GB1306887A/en not_active Expired
- 1971-08-03 SE SE7109919A patent/SE380930B/xx unknown
- 1971-08-04 BR BR4982/71A patent/BR7104982D0/pt unknown
- 1971-08-04 FR FR7128614A patent/FR2103959A5/fr not_active Expired
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3959683A (en) * | 1974-10-10 | 1976-05-25 | Panel Technology, Inc. | Gas discharge display panel device sputter resistant segmented electrodes |
| US4044276A (en) * | 1976-04-09 | 1977-08-23 | Gte Sylvania Incorporated | High pressure mercury vapor discharge lamp having improved electrodes |
| US4136227A (en) * | 1976-11-30 | 1979-01-23 | Mitsubishi Denki Kabushiki Kaisha | Electrode of discharge lamp |
| US4297613A (en) * | 1979-05-08 | 1981-10-27 | International Business Machines Corporation | D.C. Scan panel |
| US4890035A (en) * | 1986-11-18 | 1989-12-26 | Eltro Gmbh | Discharge electrode with microstructure surface |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1306887A (en) | 1973-02-14 |
| FR2103959A5 (enExample) | 1972-04-14 |
| DE2038645C3 (de) | 1974-03-21 |
| DE2038645B2 (de) | 1973-08-23 |
| BR7104982D0 (pt) | 1973-04-12 |
| DE2038645A1 (de) | 1972-02-24 |
| SE380930B (sv) | 1975-11-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3503787A (en) | Method of making refractory aluminum nitride coatings | |
| US3625848A (en) | Arc deposition process and apparatus | |
| US4723589A (en) | Method for making vacuum interrupter contacts by spray deposition | |
| JP3566974B2 (ja) | 高圧放電ランプ | |
| DE3016807A1 (de) | Verfahren zur herstellung von silizium | |
| US20080176479A1 (en) | Conductive element and method of making | |
| US3798492A (en) | Emissive electrode | |
| US2697183A (en) | High-pressure electric discharge lamp | |
| US3742282A (en) | Electrodes | |
| EP1149444A1 (en) | Gas discharge tube | |
| US3630872A (en) | Process for the manufacture of an electrical contact point | |
| US3159461A (en) | Thermionic cathode | |
| US3742280A (en) | Pre ignition gap for combustion engine ignition systems | |
| US2831784A (en) | Gastinger | |
| US2677623A (en) | Process for manufacturing electron emissive material and electrodes | |
| JP2004143591A (ja) | 窒化アルミニウム(AlN)基板の製造方法 | |
| US1566848A (en) | Incandescent lamp | |
| GB1115055A (en) | Film deposition in an evacuated chamber | |
| US1832009A (en) | Vapor discharge device | |
| JPS6439728A (en) | Manufacture of semiconductor by plasma reaction | |
| US2899299A (en) | Method of manufacturing sintered | |
| US3237043A (en) | Gas-filled electric incandescent lamp | |
| US2488727A (en) | Electrode for electric discharge devices | |
| US1803175A (en) | Electric-arc device | |
| JPS643350B2 (enExample) |