US3739926A - Grain drying and storage apparatus - Google Patents

Grain drying and storage apparatus Download PDF

Info

Publication number
US3739926A
US3739926A US00145494A US3739926DA US3739926A US 3739926 A US3739926 A US 3739926A US 00145494 A US00145494 A US 00145494A US 3739926D A US3739926D A US 3739926DA US 3739926 A US3739926 A US 3739926A
Authority
US
United States
Prior art keywords
tube
grain
auger
closure
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00145494A
Inventor
H Easton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3739926A publication Critical patent/US3739926A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/001Handling, e.g. loading or unloading arrangements
    • F26B25/002Handling, e.g. loading or unloading arrangements for bulk goods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G69/00Auxiliary measures taken, or devices used, in connection with loading or unloading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G69/00Auxiliary measures taken, or devices used, in connection with loading or unloading
    • B65G69/04Spreading out the materials conveyed over the whole surface to be loaded; Trimming heaps of loose materials
    • B65G69/0433Spreading out the materials conveyed over the whole surface to be loaded; Trimming heaps of loose materials with screw conveyors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/001Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement the material moving down superimposed floors
    • F26B17/002Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement the material moving down superimposed floors with floors which may rotate and turn over as a whole or in part, e.g. around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/06Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in stationary drums or chambers
    • F26B9/063Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in stationary drums or chambers for drying granular material in bulk, e.g. grain bins or silos with false floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2814/00Indexing codes relating to loading or unloading articles or bulk materials
    • B65G2814/02Auxiliary devices or arrangements
    • B65G2814/0241Auxiliary devices or arrangements for spreading out the material over the whole surface to be loaded
    • B65G2814/0247Auxiliary devices or arrangements for spreading out the material over the whole surface to be loaded by displacement of the feeding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2814/00Indexing codes relating to loading or unloading articles or bulk materials
    • B65G2814/02Auxiliary devices or arrangements
    • B65G2814/0241Auxiliary devices or arrangements for spreading out the material over the whole surface to be loaded
    • B65G2814/0264Auxiliary devices or arrangements for spreading out the material over the whole surface to be loaded using screw conveyors

Definitions

  • ABSTRACT 214/17 214/17 CB A grain drying and storage bin is disclosed that receives Int. Cl. and evenly distributes grain over an upper floor Field 0f Search 17 17 where the grain is heated and dried. After drying is 198/64 completed, the grain is transferred to a lower cooling floor by actuation of a linkage mechanism that simulta- References Cited neously opens a plurality of openings in the upper grid.
  • the invention is related generally to the field of storage bins that include apparatus for drying grain and similar materials, and transferring the dried grain to a storage portion in the bin.
  • One desirable method of drying grain involves distributing a predetermined quantity of grain on an upper floor grid and forcing warmed air up through the grain. After drying, the grain is transferred to a lower floor for cooling and storage. Air-circulating fans may be used with the lower floor to effect cooling and proper ventilation of the dried grain.
  • My invention consists of including in the floor grid a plurality of apertures and apparatus associated therewith for simultaneously opening and closing the apertures. Because it forms part of the upper floor, the grain transferring apparatus does not occupy any of the storage space. It is easily operated by a single person, and requires no auxiliary power equipment. Lastly, the invention enables the grain to be transferred evenly to the lower floor in a minimum amount of time.
  • FIG. 1 is a side view in partial section of a grain drying and storage bin embodying the inventive principle.
  • FIG. 2 is a bottom view of the grain drying and storage bin of FIG. 1 taken along the line 2-2, showing in particular an upper floor grid and the apparatus associated therewith for transferring dried grain to a lower floor.
  • FIG. 3 is a side view of the upper floor grid and grain transferring apparatus of FIG. 2, taken along the line
  • FIG. 4 is a front view of a mechanism for receiving and evenly distributing grain over the upper floor grid.
  • FIG. 5 is a side view of the grain distributingdevice of FIG. 4 in cross-section, taken along the line 5-5.
  • FIG. 6 is a top cross-sectional view of the grain distributing device of FIG. 4 in part, taken along'the line 6-6.
  • FIG. 7 is an alternative embodiment of the upper floor grid and grain transferring apparatus.
  • FIG. 8 is a side cross-sectional view of the upper floor grid and grain transferring apparatus of FIG. 7, taken along the line 8-8.
  • FIG. 9 is a front cross-sectional view of the upper floor grid and grain transferring apparatus of FIG. 7, taken along the line 9-9.
  • FIG. 1 discloses a grain drying and storage apparatus represented generally by the numeral 11, which ineludes an upper floor grid 12 and a lower floor grid 13. Both floor grids 12 and 13 have a. grid structure small enough to prevent grain and other such materials from falling therethrough, but large enough to permit adequate airflow to pass through and reach the grain.
  • Distributing apparatus 14 receives grain through an opening 15 located at the top of bin 11, and evenly distributes grain to a predetermined depth over upper floor grid 12, as shown at 16.
  • the grain depth is controlled in part by a switch 20 that responds to a predetermined grain level by turning off the grain distributing device 14.
  • a grain heating apparatus Operating in association with upper floor grid 12 is a grain heating apparatus, which consists of a blower 17, a heating unit 18 and a duct 19 which communicates warm air to the inside of bin 11 through an opening 21. Blower l7 and heating unit 18 are held in place by a support 22.
  • a grain-transferring mechanism 31 which will be described in detail below, forms part of the upper floor grid 12 and is actuated by a handle 32 disposed outside bin 11.
  • a cooling and ventilating blower 23 which also rests on support 22, and a duct 24 that conducts air through an opening 25 in bin 11 to a plenum 26 disposed below lower floor grid 13.
  • FIGS. 2 and 3 disclose the upper floor grid l2 and grain-transferring mechanism 31 in detail.
  • Formed in grid 12 are aplurality of openings or apertures 33 arranged in rows, each row having a rod 34 is rotatably attached to grid 12 by means of brackets 30.
  • Associated with each of the openings 33 is a closure member 35 that is firmly attached to the appropriate rod 34. All of the closure members 35 are connected to their respective rods 34 in the same position so that rotation of a rod 34 causes simultaneous opening and closing of the closure members 35 with respect to the openings 33.
  • first extension mem ber 36 Also attached to each rod 34 is a first extension mem ber 36, all such members 36 being aligned as shown in FIG. 2.
  • a bar 37 Pivotally connected to each of the extension members 36 is a bar 37, which extends outside bin 11 for operation by handle 32 (FIG. 1)..
  • the closure members 35 can open and close apertures 33 by movement of handle 32.
  • Each of the rods 34 also has firmly attached to it a second shorter extension member 38which is used in combination with a coil spring 39 which biases arow of closure members35 to a closed position. This is done by connecting spring 39 in tension between extension 38 and a connecting member 40 that is attached to floor grid 12.
  • FIGS. 4, 5 and 6 disclose the grain-distributingapparatus 14 in detail.
  • the grain-carrying portions of mechanism 14 include a grain-receiving tube 41 and a graindistributing tube 42 which are joined to form a right an gle.
  • Tube 41 is rotatable about its longitudinal axis by virtue of a support 43 at the. top of bin 11 (FIG. 1), while the outer end of tube 42 is supported by a track 58, which extends around the periphery of bin 11.
  • an auger 44 is employed to advance grain through tube 42, the outer end of which is open.
  • Auger 44 is rotatably supported by bearing sup ports 45, 46, located in the opposite ends of tube 42, and is powered at its inner end by an electric motor 47, mounted on tube 41 by means of a bracket 48, coupled with pulleys 49, 50 and a drive belt 51.
  • auger 44 extends through bearing support 46 at the outer end of tube 42 and terminates within a carriage frame 52.
  • a central gear 53 which is driven by auger 44, two outer gears 54, 55 and two pulleys 56, 57, all of which are carried by frame 52 and driven by central gear 53.
  • Pulleys 56, 57 ride on the track 58 which lies at the periphery of bin 11 and enables tube 42 to be carried around over the entire surface of upper floor grid 12.
  • a plurality of openings 61 Longitudinally spaced along the front side of tube 42 are a plurality of openings 61 through which grain may pass after being advanced by auger 44. As shown in FIG. 4, the relative position of holes 61 progresses toward the outer end of tube 42 in a gradual spiral to compensate for uneven distribution caused by the different circumferential travel of the holes 61.
  • closure member 62 which is pivotally connected to tube 42 as shown at 63.
  • Closure member 62 is biased to a normally open position by a coil spring 64 connected in tension to member 62 and a rail 65 which is disposed above and supported by tube 42.
  • a limit stop is provided consisting of a leg member 66 which is mounted on member 62 and abuts rail 65 when the limit position is reached.
  • each of the closure members 62 has an extended portion 67 which engages grain that has reached a predetermined level along the annular area over which it passes. Upon engagement of the grain by extension member 67, closure member 62 is closed against its associated opening 61 to prevent further distribution of grain over that particular annular area.
  • the spiral arrangement of holes 61 along tube 42 establishes the volume of grain passing through a hole as a direct function of its distance from the center. This compensates for the circumferential distance traveled by a hole, which also varies as a function of the distance from center.
  • distribution of grain on upper floor grid 12 progresses evenly until all openings 61 are closed by their respective closure members 62, at which time all of the grain passes through the outer open end of tube 42.
  • switch 20 is actuated and the grain-distributing mechanism is stopped.
  • FIGS. 7, 8 and 9 An alternative grain-transferring mechanism associated with upper floor grid 12 is disclosed in FIGS. 7, 8 and 9.
  • a plurality of openings 71 are formed in rows in the upper floor grid 12, each of which has a sliding closure member 72.
  • FIG. 9 shows that the closure members 72 are mounted for sliding movement between an angle bracket 73 connected to floor grid 12 and flanges 74 and 75 that extend from floor grid 12 and form a groove in which closure member 72 can slide. All of the closure members 72 in a single row are joined by a rail 76, thus enabling the connected closure member 72 to be moved simultaneously.
  • the underside of floor grid 12 includes supporting cross members 81, 82 that provide rigidity and stability.
  • a rod 77 extending diametrically across floor grid 12 is connected to the center support 81 (see also FIG. 8).
  • An extended leg member 79 is connected to rod 77 for each of the rows, and a pivotal linkage member 80 joins the leg member 79 with its respective rail 76.
  • the blower 23 can then be activated to provide cooling and ventilating air to the stored grain through the duct 24, plenum 26 and floor grid 13.
  • Apparatus for evenly distributing granular material to a given depth over a surface of predetermined size comprising:
  • a conveyor tube having first and second ends, the first end being disposed at the approximate center of the surface;
  • closure means associated with each opening and movable between open and closed positions, the closure means having a downwardly extending portion for engaging the granular material as it reaches the given depth;
  • the openings are disposed on the front side of the tube
  • closure means comprises a closure member pivotally mounted on the tube above its associated openings;
  • the biasing means comprises a spring operatively connected between the closure member and the conveyor tube.
  • the means for advancing granular material comprises an auger disposed in the conveyor tube, and means for actuating the auger.
  • the means for actuatint auger comprises an electric motor operably connected to the auger;
  • the means for rotating the tube about the pivotal support means comprises 1. a track-following wheeled carriage assembly
  • the track-following wheeled carriage assembly comprises 1. a central gear
  • first and second track following pulleys rotatable with the first and second outer gears, respectively;
  • the drive means comprises a. a portion of the auger extending through the open second end, the central gear mounted on the extended portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

A grain drying and storage bin is disclosed that receives and evenly distributes grain over an upper floor grid where the grain is heated and dried. After drying is completed, the grain is transferred to a lower cooling floor by actuation of a linkage mechanism that simultaneously opens a plurality of openings in the upper grid.

Description

Q United States Patent 1 [111 3,739,926 Easton June 19, 1973 GRAIN DRYING AND STORAGE 3,031,064 4/1962 Kline 198/64 X APPARATUS 2,981,402 4/1961 Cleaveland... 214/17 CA X 3,265,225 8/1966 Louks 214/17 CB Inventor: Harlan J- Easton, Route 3-BOX 607, 3,487,961 1/1970 Neunschwander 214 17 CB Blooming Prairie, Minn.
[22] Filed: May 1971 Primary Examiner-Robert G. Sheridan [21] Appl. No.: 145,494 Attorn eyMerchant & Gould Related US. Application Data [62] Division of Ser. No. 849,941, Aug. 12, 1969, Pat. No
3,624,921. 57] ABSTRACT 214/17 214/17 CB A grain drying and storage bin is disclosed that receives Int. Cl. and evenly distributes grain over an upper floor Field 0f Search 17 17 where the grain is heated and dried. After drying is 198/64 completed, the grain is transferred to a lower cooling floor by actuation of a linkage mechanism that simulta- References Cited neously opens a plurality of openings in the upper grid.
UNITED STATES PATENTS 565,068 8/1896 Domfeld 214/17 CB 11 Claims, 9 Drawing Figures nigai g iwg i .926 PAINTED- 3,739
Maui;
I I2. I 2i 3 PATENTED JUN I smsora .vw w vm mw w m L P 1 GRAIN DRYING AND STORAGE APPARATUS This application is a division of my co-pending application entitled Grain Drying and Storage Apparatus, filed Aug. 12, 1969, 1971Ser. No. 849,941, now U.S. Pat. No. 3,624,921.
The invention is related generally to the field of storage bins that include apparatus for drying grain and similar materials, and transferring the dried grain to a storage portion in the bin.
One desirable method of drying grain involves distributing a predetermined quantity of grain on an upper floor grid and forcing warmed air up through the grain. After drying, the grain is transferred to a lower floor for cooling and storage. Air-circulating fans may be used with the lower floor to effect cooling and proper ventilation of the dried grain.
Obviously, it is advantageous to dry as much grain as possible in a day, while maintaining relatively uniform drying throughout. A large upper floor grid can be used to achieve this, but the problem arises of transferring the vast quantity of dried grain to the cooling floor below with the least amount of time and difficulty. To my knowledge, existing apparatus for performing this function are cumbersome, expensive and require considerable time for the entire transfer.
My invention consists of including in the floor grid a plurality of apertures and apparatus associated therewith for simultaneously opening and closing the apertures. Because it forms part of the upper floor, the grain transferring apparatus does not occupy any of the storage space. It is easily operated by a single person, and requires no auxiliary power equipment. Lastly, the invention enables the grain to be transferred evenly to the lower floor in a minimum amount of time.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view in partial section of a grain drying and storage bin embodying the inventive principle.
FIG. 2 is a bottom view of the grain drying and storage bin of FIG. 1 taken along the line 2-2, showing in particular an upper floor grid and the apparatus associated therewith for transferring dried grain to a lower floor.
FIG. 3 is a side view of the upper floor grid and grain transferring apparatus of FIG. 2, taken along the line FIG. 4 is a front view of a mechanism for receiving and evenly distributing grain over the upper floor grid.
FIG. 5 is a side view of the grain distributingdevice of FIG. 4 in cross-section, taken along the line 5-5.
FIG. 6 isa top cross-sectional view of the grain distributing device of FIG. 4 in part, taken along'the line 6-6.
FIG. 7 is an alternative embodiment of the upper floor grid and grain transferring apparatus.
FIG. 8 is a side cross-sectional view of the upper floor grid and grain transferring apparatus of FIG. 7, taken along the line 8-8. I
FIG. 9 is a front cross-sectional view of the upper floor grid and grain transferring apparatus of FIG. 7, taken along the line 9-9.
DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 discloses a grain drying and storage apparatus represented generally by the numeral 11, which ineludes an upper floor grid 12 and a lower floor grid 13. Both floor grids 12 and 13 have a. grid structure small enough to prevent grain and other such materials from falling therethrough, but large enough to permit adequate airflow to pass through and reach the grain.
Disposed above upper floor grid 12 is a grainreceiving and distributing apparatus shown generally at 14, which will be described in detail below. Distributing apparatus 14 receives grain through an opening 15 located at the top of bin 11, and evenly distributes grain to a predetermined depth over upper floor grid 12, as shown at 16. The grain depth is controlled in part by a switch 20 that responds to a predetermined grain level by turning off the grain distributing device 14.
Operating in association with upper floor grid 12 is a grain heating apparatus, which consists of a blower 17, a heating unit 18 and a duct 19 which communicates warm air to the inside of bin 11 through an opening 21. Blower l7 and heating unit 18 are held in place by a support 22.
A grain-transferring mechanism 31, which will be described in detail below, forms part of the upper floor grid 12 and is actuated by a handle 32 disposed outside bin 11.
Operating in association with lower floor grid 13 is a cooling and ventilating blower 23, which also rests on support 22, and a duct 24 that conducts air through an opening 25 in bin 11 to a plenum 26 disposed below lower floor grid 13.
FIGS. 2 and 3 disclose the upper floor grid l2 and grain-transferring mechanism 31 in detail. Formed in grid 12 are aplurality of openings or apertures 33 arranged in rows, each row having a rod 34 is rotatably attached to grid 12 by means of brackets 30. Associated with each of the openings 33 is a closure member 35 that is firmly attached to the appropriate rod 34. All of the closure members 35 are connected to their respective rods 34 in the same position so that rotation of a rod 34 causes simultaneous opening and closing of the closure members 35 with respect to the openings 33.
Also attached to each rod 34 is a first extension mem ber 36, all such members 36 being aligned as shown in FIG. 2. Pivotally connected to each of the extension members 36 is a bar 37, which extends outside bin 11 for operation by handle 32 (FIG. 1).. Thus, by means of bar 37, extension members 36 and rods 34, the closure members 35 can open and close apertures 33 by movement of handle 32.
Each of the rods 34 also has firmly attached to it a second shorter extension member 38which is used in combination with a coil spring 39 which biases arow of closure members35 to a closed position. This is done by connecting spring 39 in tension between extension 38 and a connecting member 40 that is attached to floor grid 12.
FIGS. 4, 5 and 6 disclose the grain-distributingapparatus 14 in detail. The grain-carrying portions of mechanism 14 include a grain-receiving tube 41 and a graindistributing tube 42 which are joined to form a right an gle. Tube 41 is rotatable about its longitudinal axis by virtue of a support 43 at the. top of bin 11 (FIG. 1), while the outer end of tube 42 is supported by a track 58, which extends around the periphery of bin 11.
As shown in FIG. 4, an auger 44 is employed to advance grain through tube 42, the outer end of which is open. Auger 44 is rotatably supported by bearing sup ports 45, 46, located in the opposite ends of tube 42, and is powered at its inner end by an electric motor 47, mounted on tube 41 by means of a bracket 48, coupled with pulleys 49, 50 and a drive belt 51.
As best seen in FIG. 6, auger 44 extends through bearing support 46 at the outer end of tube 42 and terminates within a carriage frame 52. Forming a part of the carriage frame assembly are a central gear 53, which is driven by auger 44, two outer gears 54, 55 and two pulleys 56, 57, all of which are carried by frame 52 and driven by central gear 53. Pulleys 56, 57 ride on the track 58 which lies at the periphery of bin 11 and enables tube 42 to be carried around over the entire surface of upper floor grid 12.
Longitudinally spaced along the front side of tube 42 are a plurality of openings 61 through which grain may pass after being advanced by auger 44. As shown in FIG. 4, the relative position of holes 61 progresses toward the outer end of tube 42 in a gradual spiral to compensate for uneven distribution caused by the different circumferential travel of the holes 61.
Referring now to FIG. 5, there is associated with each of the openings 61 a closure member 62 which is pivotally connected to tube 42 as shown at 63. Closure member 62 is biased to a normally open position by a coil spring 64 connected in tension to member 62 and a rail 65 which is disposed above and supported by tube 42. In order to limit the upward movement of each closure member 62, a limit stop is provided consisting of a leg member 66 which is mounted on member 62 and abuts rail 65 when the limit position is reached.
As shown in FIGS. 4, 5, each of the closure members 62 has an extended portion 67 which engages grain that has reached a predetermined level along the annular area over which it passes. Upon engagement of the grain by extension member 67, closure member 62 is closed against its associated opening 61 to prevent further distribution of grain over that particular annular area.
The spiral arrangement of holes 61 along tube 42 establishes the volume of grain passing through a hole as a direct function of its distance from the center. This compensates for the circumferential distance traveled by a hole, which also varies as a function of the distance from center. Thus, distribution of grain on upper floor grid 12 progresses evenly until all openings 61 are closed by their respective closure members 62, at which time all of the grain passes through the outer open end of tube 42. When the predetermined level is reached at the outer edge of floor grid 12, switch 20 is actuated and the grain-distributing mechanism is stopped.
An alternative grain-transferring mechanism associated with upper floor grid 12 is disclosed in FIGS. 7, 8 and 9. In this embodiment, a plurality of openings 71 are formed in rows in the upper floor grid 12, each of which has a sliding closure member 72. FIG. 9 shows that the closure members 72 are mounted for sliding movement between an angle bracket 73 connected to floor grid 12 and flanges 74 and 75 that extend from floor grid 12 and form a groove in which closure member 72 can slide. All of the closure members 72 in a single row are joined by a rail 76, thus enabling the connected closure member 72 to be moved simultaneously.
As best shown in FIG. 7, the underside of floor grid 12 includes supporting cross members 81, 82 that provide rigidity and stability. By means of a plurality of brackets 78, a rod 77 extending diametrically across floor grid 12 is connected to the center support 81 (see also FIG. 8). An extended leg member 79 is connected to rod 77 for each of the rows, and a pivotal linkage member 80 joins the leg member 79 with its respective rail 76. Thus, upon rotation of rod 77 by an outside handle not shown, all of the sliding closure members can be simultaneously actuated to open or close openings 71.
In operation, grain entering opening 15 at the top of bin 11 is evenly distributed over upper floor grid 12 by the distributing mechanism 14 until a level is reached at the outer edge that actuates switch 20 to stop the process. The blower 17 and heating unit 18 are then activated to provide hot air to bin 11 through duct 19, and the grain is thus dried by the flow of such air through the upper floor grid 12 and the grain. Upon completion of the drying process, the openings in upper floor grid 12 are uncovered by either of the graintransferring mechanisms described above, thus allowing the grain to fall to the lower floor grid 13 at a rate that is sufirciently fast but controlled to the extent that floor grid 13 is not damaged by excessive falling weight. The plurality of openings inupper floor grid 12, of course, enable the grain to remain evenly distributed as it falls to the lower floor grid 13.
The blower 23 can then be activated to provide cooling and ventilating air to the stored grain through the duct 24, plenum 26 and floor grid 13. I
What is claimed is:
1. Apparatus for evenly distributing granular material to a given depth over a surface of predetermined size, comprising:
a. a conveyor tube having first and second ends, the first end being disposed at the approximate center of the surface;
b. means for pivotally supporting the tube at the first end;
0. means for rotating the tube about the pivotal support means;
(1. means for advancing granular material through the conveyor tube toward the second end;
e. a plurality of openings spaced longitudinally along the tube through which the granular material can pass for distribution onto the surface;
f. closure means associated with each opening and movable between open and closed positions, the closure means having a downwardly extending portion for engaging the granular material as it reaches the given depth;
g. and means for biasing the closure means to a normally open position, the closure means being movable against the biasing means upon engagement with the granular material.
2. The apparatus defined by claim 1, wherein:
a. the openings are disposed on the front side of the tube;
b. the closure means comprises a closure member pivotally mounted on the tube above its associated openings;
c. and the biasing means comprises a spring operatively connected between the closure member and the conveyor tube.
3. The apparatus as defined by claim 2 and further comprising abutment means limiting upward rotation of the closure member.
4. The apparatus defined by claim 1, wherein the sec ond end of the conveyor tube is open.
5. The apparatus defined by. claim 1, wherein the means for advancing granular material comprises an auger disposed in the conveyor tube, and means for actuating the auger.
6. The apparatus defined by claim 5, and further comprising track means disposed along the periphery of the surface for supporting and guiding the second end of the tube.
7. The apparatus as definec by claim 6, wherein:
a. the means for actuatint auger comprises an electric motor operably connected to the auger;
b. and the means for rotating the tube about the pivotal support means comprises 1. a track-following wheeled carriage assembly;
2. and drive means operatively connecting the auger with the/track-following wheeled carriage assembly in driving relation.
8. The apparatus as defined by claim 7, wherein:
a. the track-following wheeled carriage assembly comprises 1. a central gear;
2. first and second outer gears driven by the central gear;
3. first and second track following pulleys rotatable with the first and second outer gears, respectively;
4. and a carriage frame housing the central gear,
the first and second outer gears and the first and second track-following pulleys; 5. and the drive means comprises a. a portion of the auger extending through the open second end, the central gear mounted on the extended portion.
9. The apparatus as defined by claim 7, and further comprising switch means for stopping the electric motor when the grain has reached the given depth over the entire surface.
10. The apparatus as defined by claim 1, wherein the means for pivotally supporting the first tube comprises:
a. a second tube having first and second ends, the respective first ends of the first and second tubes joined so that the first and second tubes form a right angle, the second end of the second tube extending upwardly:
b. and means for rotationally supporting the second end of the second tube.
11. The apparatus as defined by claim 1, wherein the openings are spirally arranged along the tube.

Claims (16)

1. Apparatus for evenly distributing granular material to a given depth over a surface of predetermined size, comprising: a. a conveyor tube having first and second ends, the first end being disposed at the approximate center of the surface; b. means for pivotally supporting the tube at the first end; c. means for rotating the tube about the pivotal support means; d. means for advancing granular material through the conveyor tube toward the second end; e. a plurality of openings spaced longitudinally along the tube through which the granular material can pass for distribution onto the surface; f. closure means associated with each opening and movable between open and closed positions, the closure means having a downwardly extending portion for engaging the granular material as it reaches the given depth; g. and means for biasing the closure means to a normally open position, the closure means being movable against the biasing means upon engagement with the granular material.
2. first and second outer gears driven by the central gear;
2. The apparatus defined by claim 1, wherein: a. the openings are disposed on the front side of the tube; b. the closure means comprises a closure member pivotally mounted on the tube above its associated openings; c. and the biasing means comprises a spring operatively connected between the closure member and the conveyor tube.
2. and drive means operatively connecting the auger with the track-following wheeled carriage assembly in driving relation.
3. first and second track following pulleys rotatable with the first and second outer gears, respectively;
3. The apparatus as defined by claim 2 and further comprising abutment means limiting upward rotation of the closure member.
4. The apparatus defined by claim 1, wherein the second end of the conveyor tube is open.
4. and a carriage frame housing the central gear, the first and second outer gears and the first and second track-following pulleys;
5. and the drive means comprises a. a portion of the auger extending through the open second end, the central gear mounted on the extended portion.
5. The apparatus defined by claim 1, wherein the means for advancing granular material comprises an auger disposed in the conveyor tube, and means for actuating the auger.
6. The apparatus defined by claim 5, and further comprising track means disposed along the periphery of the surface for supporting and guiding the second end of the tube.
7. The apparatus as definec by claim 6, wherein: a. the means for actuatint auger comprises an electric motor operably connected to the auger; b. and the means for rotating the tube about the pivotal support means comprises
8. The apparatus as defined by claim 7, wherein: a. the track-following wheeled carriage assembly comprises
9. The apparatus as defined by claim 7, and further comprising switch means for stopping the electric motor when the grain has reached the given depth over the entire surface.
10. The apparatus as defined by claim 1, wherein the means for pivotally supporting the first tube comprises: a. a second tube having first and second ends, the respective first ends of the first and second tubes joined so that the first and second tubes form a right angle, the second end of the second tube extending upwardly: b. and means for rotationally suppoRting the second end of the second tube.
11. The apparatus as defined by claim 1, wherein the openings are spirally arranged along the tube.
US00145494A 1969-08-12 1971-05-20 Grain drying and storage apparatus Expired - Lifetime US3739926A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84994169A 1969-08-12 1969-08-12
US14549471A 1971-05-20 1971-05-20

Publications (1)

Publication Number Publication Date
US3739926A true US3739926A (en) 1973-06-19

Family

ID=26843043

Family Applications (1)

Application Number Title Priority Date Filing Date
US00145494A Expired - Lifetime US3739926A (en) 1969-08-12 1971-05-20 Grain drying and storage apparatus

Country Status (1)

Country Link
US (1) US3739926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324159A (en) * 1992-10-02 1994-06-28 Praxair Technology, Inc. Particle loader
US20090223078A1 (en) * 2008-03-07 2009-09-10 Randall Glenn Penner Stored grain cooling system
CN105020996A (en) * 2015-08-13 2015-11-04 天津市博爱制药有限公司 Continuous drying device for Chinese herbal medicines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US565068A (en) * 1896-08-04 Conveyer and distributer
US2981402A (en) * 1956-05-21 1961-04-25 Vandale Corp Automatic feeding apparatus
US3031064A (en) * 1959-11-02 1962-04-24 Sperry Rand Corp Conveyor construction
US3265225A (en) * 1964-03-27 1966-08-09 Robert A Louks Apparatus for level piling of granular material
US3487961A (en) * 1968-07-26 1970-01-06 Charles D Neuenschwander Grain handling apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US565068A (en) * 1896-08-04 Conveyer and distributer
US2981402A (en) * 1956-05-21 1961-04-25 Vandale Corp Automatic feeding apparatus
US3031064A (en) * 1959-11-02 1962-04-24 Sperry Rand Corp Conveyor construction
US3265225A (en) * 1964-03-27 1966-08-09 Robert A Louks Apparatus for level piling of granular material
US3487961A (en) * 1968-07-26 1970-01-06 Charles D Neuenschwander Grain handling apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324159A (en) * 1992-10-02 1994-06-28 Praxair Technology, Inc. Particle loader
US20090223078A1 (en) * 2008-03-07 2009-09-10 Randall Glenn Penner Stored grain cooling system
CN105020996A (en) * 2015-08-13 2015-11-04 天津市博爱制药有限公司 Continuous drying device for Chinese herbal medicines
CN105020996B (en) * 2015-08-13 2017-07-07 天津市博爱制药有限公司 A kind of Chinese herbal medicine continuous drying apparatus

Similar Documents

Publication Publication Date Title
US2591609A (en) Poultry feeding apparatus
US2184473A (en) Drier
US3739926A (en) Grain drying and storage apparatus
US2930310A (en) Device for the production of smoked meat and sausages
US3899836A (en) Modular tobacco handling and curing system and method
US2501537A (en) Drying machine
US3624921A (en) Grain drying and storage apparatus
US3572663A (en) Crop driers
US620139A (en) Thirds to s
US1822313A (en) Machine for drying and curing macaroni and other products made from a paste of flour and water
US2529263A (en) Unloading, curing, storing, and reloading plant
US2656783A (en) Mow hay drier
US1339092A (en) Method of and apparatus for drying fruits, vegetables, and other substances
US2715781A (en) Grain drier
US3000107A (en) Agricultural machine for transporting, drying and mixing granular material
US1788099A (en) Apparatus for artificially curing hay
US3426442A (en) Drying apparatus for cereals
US2497703A (en) Grain drying and treating apparatus of the treated material vibrating type
US3238640A (en) Grain dryer
US2297318A (en) Drying machine
US300995A (en) Fruit-drier
US3837088A (en) Sequence batch dryer
US1831122A (en) Exhaust box
DE558545C (en) Device for drying labeled bottles
US3299532A (en) Mobile dehydrator