US3739797A - Control apparatus for exhaust gas recirculating system - Google Patents

Control apparatus for exhaust gas recirculating system Download PDF

Info

Publication number
US3739797A
US3739797A US3739797DA US3739797A US 3739797 A US3739797 A US 3739797A US 3739797D A US3739797D A US 3739797DA US 3739797 A US3739797 A US 3739797A
Authority
US
United States
Prior art keywords
vacuum
valve
diaphragm
chamber
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
R Caldwell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ranco Inc of Delaware
Robertshaw US Holding Corp
Original Assignee
Ranco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ranco Inc filed Critical Ranco Inc
Application granted granted Critical
Publication of US3739797A publication Critical patent/US3739797A/en
Assigned to RANCO INCORPORATED OF DELAWARE, AN OH CORP. reassignment RANCO INCORPORATED OF DELAWARE, AN OH CORP. MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE DATE: DECEMBER 31, 1987, OHIO Assignors: RANCO INCORPORATED, AN OH CORP.
Anticipated expiration legal-status Critical
Assigned to BANKERS TRUST COMPANY reassignment BANKERS TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RANCO INCORPORATED A CORP. OF DELAWARE
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S137/00Fluid handling
    • Y10S137/907Vacuum-actuated valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2278Pressure modulating relays or followers
    • Y10T137/2409With counter-balancing pressure feedback to the modulating device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86919Sequentially closing and opening alternately seating flow controllers

Abstract

Control apparatus for regulating the vacuum applied to control an exhaust gas recycling valve of an internal combustion engine comprises a body forming the housing for a vacuum regulator, a vacuum reservoir, a check valve between the reservoir and intake manifold connection of the engine and a relief valve for the reservoir. The construction of the body provides internal connections between the vacuum regulator, reservoir and the check and relief valves and provides readily accessible external vacuum connections to the venturi, intake manifold and recirculating valve.

Description

ited States Patent [191 Caldwell June 19, 1973 CONTROL APPARATUS FOR EXHAUST GAS RECIRCULATING SYSTEM [75] Inventor: Roland B. Caldwell, Columbus, Ohio [73] Assignee: Ranco Incorporated, Columbus,
Ohio
[22] Filed: Nov. 29, 1971 [21] Appl. No.: 202,783
[52] [1.8. CI. 137/85, 123/119 A, 137/627.5,
l37/DIG. 8 [51] Int. Cl. F02m 25/06 [58] Field of Search 137/85, 627.5, DIG. 8;
[56] References Cited UNITED STATES PATENTS Daly 137/1165 X 3,575,189 4/1971 Smith 137/85 Primary ExaminerRobert G. Nilson Att0rney-Roy E. Raney, Blythe D. Watts, James T.
Hoffman et a1.
[57] ABSTRACT Control apparatus for regulating the vacuum applied to control an exhaust gas recycling valve of an internal combustion engine comprises a body forming the housing for a vacuum regulator, a vacuum reservoir, a check valve between the reservoir and intake manifold connection of the engine and a relief valve for the reservoir. The construction of the body provides internal connections between the vacuum regulator, reservoir and the check and relief valves and provides readily accessible external vacuum connections to the venturi, intake manifold and recirculating valve.
6 Claims, 5 Drawing Figures Patented June 19, 1973 7 3,739,797
3 Sheets-Shoot l FIGI INVENTOR.
ROLAND B. CALDWELL ATTORNEYS Patented June 19, 1973 3,739,797
3 Sheets-Shut 2 INVENTOR.
ROLAND B. CALDWELL ATTORNEYS Patented June 19, 1973 3,739,797
3 Sheets-Shoot 1;;
' INVENTOR.
ROLAND B. GALDWELL ATTORNEYS CONTROL APPARATUS FOR EXHAUST GAS RECIRCULATING SYSTEM BACKGROUND OF THE INVENTION It is recognized that the emission of nitrous oxides by an internal combustion engine can be substantially reduced or eliminated by recirculating more or less of the exhaust gases back into the intake manifold of the engine. To maximize performance of the engine, however, it is desirable to recirculate a volume of exhaust gas proportional to the speed of the engine under average operating conditions and to close off the recirculation of exhaust gas during idling, severe loading and high speed operations of the engine. The following US. Pat. deal with recirculation of exhaust gases: Nos. 2,154,417; 2,419,747 and 3,507,260.
One system for controlling the recirculation of exhaust gases through an engine is disclosed in the present applicants U.S. Pat. application Ser. No. 168,595, filed Aug. 3, 1971. In the system disclosed in the application mentioned, a valve for controlling the exhaust gas flow into the intake manifold is actuated by vacuum derived from the intake manifold of the engine. The strength of the valve actuating vacuum, and consequently the extent of opening of the valve, is controlled by a vacuum regulator which has a vacuum output which is an amplification of the vacuum at the venturi of the engine carburetor. The venturi vacuum is directly proportional to the speed of the engine, whereas the vacuum in the intake manifold will vary widely according to engine speed, degree of throttle opening and load on the engine. When the engine is idling, the venturi vacuum is low and the vacuum output of the vacuum regulator is such that the recirculating valve is closed. When the engine is operating at normal engine speeds and under normal loads, the vacuum output of the regulator is such as to open the recirculating valve to a suitable volume delivery, according to the engine speed. When the throttle is depressed for acceleration, the intake manifold vacuum may decrease momentarily and to prevent closing of the gas recirculating valve a reservoir and check valve are provided in the vacuum line between the intake manifold and the vacuum regulator. The reservoir maintains a sufficient vacuum to the regulator and the recirculating valve to prevent closing of the latter during momentary acceleration of the engine. During high speed operation of the engine it is desirable to close the recirculating valve. In this situation the vacuum in the intake manifold is below the vacuum at the venturi. To effect opening of the recirculating valve, a relief valve responsive to the differential in the vacuum at the venturi and that in the intake manifold, bypasses the check valve and opens the reservoir to the intake manifold vacuum.
THE PRESENT INVENTION An object of the present invention is to provide a compact, easily'assembled apparatus for controlling a gas recirculating valve in the type of system mentioned and incorporating in a unitary body the vacuum regulator, reservoir, check and bypass valves, and arranged to provide internal fluid connections and a minimum number of external connections to the automotive engine and the recirculation control valve for the engine.
In carrying out the invention a body is provided comprising a tubular section which is divided by a transversely extending wall. The wall has a pair of recesses therein which form housings for the vacuum regulating mechanism and the check and bypass valves, respectively, and which likewise form the vacuum reservoir.
Preferably, the body is closed at its ends by covers, one of which forms a panel from which tube connectors extend for connecting the body with the carburetor venturi, the intake manifold and the vacuum operated recirculating valve.
Other objects and advantages of the invention will be apparent from the following description of a preferred form of the invention, reference being made to the accompanying drawings wherein:
FIG. 1 is a schematic showing, partly in section, of a system for controlling the recirculation of exhaust gases through an internal combustion engine;
FIG. 2 is a sectional view of control apparatus embodying the invention and utilized to effect the control system shown in FIG. 1, the sectional view being taken substantially along line 2-2 of FIG. 4 and on a larger scale;
FIG. 3 is an end view of a body of the apparatus shown in FIG. 2, the view being taken substantially along line 3-3 of FIG. 2, but on a smaller scale, and without the elements assembled therein which are shown in FIG. 2;
FIG. 4 is a view similar to that of FIG. 3, taken substantially along line 4-4 of FIG. 2; and
FIG. 5 is a plan view in elevation of a valve plate prior to assembly with the body.
Referring to FIG. 1 of the drawings, a control system is shown for controlling the recirculation of exhaust gases through an automotive internal combustion engine, only certain parts of which engine are shown. The engine includes a carburetor having an air intake 10 incorporating the usual venturi throat l1 and throttle plate 12. The engine also includes a conventional intake manifold 13 and an exhaust manifold 14. In the present instance an exhaust gas recirculation control valve 15 is arranged to control the flow of exhaust gas from the exhaust manifold into the intake manifold for recirculation through the engine so as to reduce or eliminate nitrous oxide emissions.
The valve 15 comprises a body 16 having an inlet port 17, leading from the exhaust manifold, and an outlet port 20 which discharges into the intake manifold. A valve seat 21 is formed about the inlet port 17 and is adapted to be opened and closed by a poppet type circular valve plate 22 shifted to and from the seat by a vacuum motor 23.
The motor 23 comprises a shell-like housing 24 hav ing a flexible diaphragm 25 extending transversely of the interior thereof. The diaphragm 25 is hermetically joined about its periphery to the walls of the housing and partitions the housing into an upper chamber 26 and a lower chamber 27. The chamber 26 is adapted to be connected with a vacuum source through an elbow tube connector 30. The chamber 27 is open to atmosphere through an opening 31 in the lower wall of the shank 37 is connected at one end to the plug 35 and is connected at the other end to the valve plate 22. The upper end of the plug 35 has a rigid back-up disc 40 attached thereto which lies on the diaphragm 25. A compression spring 41 is interposed between the disc 40 and the upper wall of the chamber 26 and urges the valve stem assembly downwardly to tend to close the valve plate 22 on the seat 21. When more or less vacuum is produced in the chamber 26 of the housing, the diaphragm 25 will be deflected upwardly by the atmospheric pressure in the chamber 27 and cause more or less opening the valve port 21.
The degree of vacuum present in the chamber 26 is controlled by apparatus comprised of a vacuum regulator 42 and a vacuum motor 43 for actuating the regulator 42. The vacuum source for the regulator 42 is obtained through an input connected to the intake manifold 13 and this vacuum source is regulated to provide a vacuum output which is connected with the motor 23 for operating the gas recirculating valve 15. The vacuum regulator is controlled according to the vacuum at the venturi 11 by the motor 43 so as to provide a vacuum output to the valve motor 23 which is an amplification of the venturi vacuum under generally normal running conditions of the engine. Thus, the degree of opening of the recirculating valve 15 will increase as the speed of the engine increases and produces a progressively greater vacuum at the venturi. However, should the throttle plate 12 be momentarily fully opened, the vacuum in the manifold 13 falls below the vacuum called for by the vacuum signal at the venturi and the valve 15 would tend to close. To prevent a sudden momentary drop in vacuum at the input of the regulator 42 a reservoir 44 and a check valve 45 are interposed between the intake manifold and the input of the regulator 42. Thus, a high vacuum in the reservoir provides a continuing source of high vacuum to the regulator 42 during short periods of reduced vacuum in the intake manifold, such as occurs during momentary relatively wide open throttle conditions.
When the throttle plate is positioned for high speed operation, the vacuum in the manifold will fall below the vacuum at the venturi. It is desirable that the valve 15 be closed under these engine operating conditions. Accordingly, the vacuum otherwise maintained by the reservoir 44 is dispersed by bypassing the check valve 45 through a relief valve 46. The relief valve 46 opens when the vacuum at the venturi exceeds the vacuum in the intake manifold which causes the reservoir 44 to be immediately reduced to the intake manifold, or dumped," and reduce the vacuum output of the regulator 42 thereby closing the recirculating valve 15.
According to the present invention, the vacuum regulator 42, its controlling motor 43, the reservoir 44, check valve 45 and the relief valve 46 are all combined in a compact, unitary structure 50 which may be readily installed in the engine compartment of an automobile. The unit 50 has relatively few parts of simple form which may be conveniently assembled with internal interconnecting vacuum passages. The unit 50 re quires external tube connections only to the venturi 11, valve motor 23 and the intake manifold 13.
Referring more particularly to FIGS. 2 to of the drawings, the unit 50 is shown in detail. The unit comprises a relatively short cylindrical tubular body 51 which is preferably formed of a single molded member. The opposite ends of the body 51 are closed by a conical shape cover 52 and a disclike cover 53, respectively. The covers 52,53 are tightly drawn to the end edges of the body by screws 54.
The body 51 has concentric outer and inner cylindrical walls 55, 56. The upper ends of the walls 55,56 as viewed in FIG. 2, are joined by an annular end wall 57. The annular base 60 of the conical cover 52 abuts the end wall 57, and a plurality of locating pins 61 are formed on the end wall and nest in corresponding recesses in thebase 60 to angularly locate the body and cover. Openings 62 through the wall 57 receive the assembly screws 54, the lower ends of which are received in threaded openings through the lower cover 53.
A transverse wall 63 substantially closes the area encompassed by the inner cylindrical wall 56 of the body 51. The wall 63 has an annular portion 64 recessed inwardly from the open end of the body 51 and the central portion of the wall has a cylindrical cavity 66 formed therein which provides a housing structure for the vacuum regulator 42.
The vacuum regulator 42 is similar to that disclosed in US. Pat. No. 3,125,111. Sufficeto say, the regulator 42 comprises the vacuum chamber 66 and a resilient flexible diaphragm 67 which extends across the chamber and has its peripheral edges sealingly engaging the walls of an annular shoulder 70 about the upper edge of the chamber. An annular convolution 71 is formed in the diaphragm 67 to facilitate lateral displacements of the diaphragm.
A boss is formed on the bottom wall of the chamber 66 and has an opening 72 therethrough through which a rigid tube 73 extends. The tube 73 is suitably secured in the boss with its upper end 74 terminating adjacent the diaphragm 67 and forming a valve port. The lower end of the tube 73 opens into a portion of the reservoir 44, the major volume of which is comprised of arcuate areas 75,76 defined by the cylindrical inner wall 56, end wall 57 and cover 53. A pad 77 is formed on the central portion of the diaphragm 70 and is adapted to close the port formed by the upper end of the tube 73. The pad 77 also tends to rest on a port or seat 80 formed on a relatively rigid backing member 81 which underlies the diaphragm 67. The port 80 of the member 81 is concentric with and spaced from the tube 73.
The member 81 is connected with an operating diaphragm 82 of the motor 43 by a pair of tongues 83 which project from the upper side of the member and extend through slots in the diaphragm 67. These slots also provide air passages through the central portion of the diaphragm 82. The tongues 83 are connected with a bracket 84 which is raised and lowered by the deflection of the diaphragm 82, as is described more fully hereinafter. A chamber 85 is formed by the diaphragm 82 and the recessed wall 63, and atmosphere is admitted to the chamber by way of an opening 86 in the cover 50. The opening 86 leads into a filter chamber 87 which is formed by cylindrical walls 90, the end wall 63 and the cover 53. A gasket 88 between the cover 53 and the end of wall 90 seal the chamber 87 from the reservoir sections 75,76. An opening 91 is formed through the wall 63 and interconnects the chamber 87 with the recess 85. A suitable air filter 92 is lodged in the chamber 87.
When the member 81 is raised by the diaphragm 82 from the position shown in FIG. 2, it lifts the pad 77 from the end 74 of the tube 73 thereby effecting communication of the chamber 66 with the vacuum reservoir 44. When the member 81 is lowered, the pad 77 first closes on the end 74 of tube 73, and further lowering of the member 81 removes the port 80 thereof from the pad 77 which opens the chamber 66 to the atmospheric pressure in the chamber 85 through the slots which receive the tongues 83. The reduction of the vacuum in the chamber 66 by this action tends to cause the diaphragm 67 and member 81 to be moved upwardly, thereby sequentially closing the port 80 on the flap 77 and then removing the flap from the end of tube 73 thereby connecting the chamber 66 with the vacuum reservoir 44. An equilibrium is established whereby a vacuum of a predetermined value is produced in the chamber 66 according to the upward force applied to the member 81 and diaphragm 67.
It will be seen that the vacuum output of the regulator 42 is established in the chamber 66. This output is utilized to control the vacuum motor 23 of the valve through a flexible hose 93, one end of which is attached to the elbow connector 30 of the motor 23 and the other end is attached to a nipple member 94. The member 94 comprises a stem having a flanged base 95 which is received in a recess formed in the underside of the bottom wall of the recess 66. The stem of member 94 projects downwardly through an opening through the bottom cover 53 and the base 95 is retained nested in the recess by the cover. The seal 88 prevents leakage between the stem 94 and the walls of the recess of the base 95. An opening 96 is formed in the bottom wall of the chamber 66 in registration with the opening through the member 94.
The vacuum regulator operating diaphragm 82 is preferably formed of a thin rubber-like disc having the peripheral edges compressed between the confronting surfaces of the body 51 and the cover 52. The diaphragm 82 and the interior of the conical cover 52 form a sealed chamber 97 over the diaphragm, which chamber is in communication with the venturi 11, as is explained hereinafter. A pair of rigid discs 100,101 are disposed on opposite sides of the diaphragm 82 and a stem 102 projects through a central opening through the diaphragm and discs. The lower end of the stern 102 is flared and engages the undersides of a yoke portion of the bracket 84 so as to exert a lifting force on the member 81. A flange 103 on the stem 102 is attached to the disc 101 and provides a seal between the stem and the sides of the opening through which the stern projects.
in the form of the invention shown, it is desirable that a vacuum be produced in the chamber 66 which is about 10 times the vacuum produced in the chamber 97, which corresponds to the venturi vacuum. This amplification of vacuum is achieved by forming the area of the diaphragm 82 considerably larger than the area.
of the diaphragm 67 and by mechanically biasing the diaphragm,82. This latter is accomplished by a tension spring 104 supported on its upper end by a bail 105 formed on a rotatable plug 106 seated in an opening through the cover 52. The lower end of the spring 104 is attached to a nut 107 threaded on the stem 102. The tension of the spring 104 can be adjusted by rotating the spring and nut 107 relative to the stem 102 by turning the plug 106. Suitable sealing material, not shown, is placed in the recessed opening through which the upper end of the plug 106 extends to seal the opening. Stops 110 are formed inside the cover 52 to limit upward movement of the diaphragm 82.
The chamber 97 is in communication with the vacuum produced at the venturi 11 through a port 111, valve assembly chamber 112, connector stem 113 and a tube 114. The chamber 112 is formed in the body 51 by a generally cylindrical wall structure 115 which intersects a portion of the inner wall 56. The opening 1 1 1 is formed through the portion of wall 57 at the upper end of the chamber 112 and opens into an offset recess 116 in the base flange of the cover 52. The stem 113 is an integral part of a valve assembly plate 117 which nests in the chamber 112. The plate 117 is retained in the chamber 112 by the cover 52, and the stem 113 extends through an opening through the cover.
The valve assembly plate 117 is preferably formed of a molded member generally disc shape with an axially extending end flange 120. A connector stem 121 projects from the underside of the plate 117 and through an opening through the cover 53. Spacer flanges 122 are formed about the stems 113, 121 and space the plate 117 from the cover 53 so as to form a portion 123 of the vacuum reservoir 44. The gasket 88 forms a seal to prevent leakage between the stems 113 and 121 and the cover 53. The lower edges of the cylindrical wall 115 are undercut at 124,125 which form passages to the respective sections 75,76 of the reservoir 44.
A stem 126 projects from the upper side of the plate or disc 117, as viewed in FIG. 2, and the upper end of the stem forms a valve seat. This seat is adapted to be closed by the central portion 127 of a diaphragm 130. The diaphragm 130 is of a rubber-like material having a bead 131 formed about the periphery. When the disc 117 is assembled in the chamber 112, the bead 131 of the diaphragm is compressed into a circular grooved channel 132 formed about the open side of the chamber 112 by the flange of the disc. An annular washer 134 overlies the central portion of the diaphragm and is retained in place by a button 135 formed on the diaphragm and projecting through the opening of the washer.
The recess 112 has an offset 136 which receives the upper end of the stem 113. The end wall of the offset 136 has a rectangular recess 137 and a groove 138 leads from the recess to the portion of the cavity 112 above the diaphragm 130. It will be seen that when the stem 113 is connected with the venturi 11 through the hose 114, the pressures above the diaphragm 130 and 82 will correspond to the venturi vacuum.
The check valve 45 is carried by the disc 117 and comprises four closely spaced openings 140 through the disc which are closed by a relatively flexible flat conical valve member 141. The valve member 141 is integral with a stem 142 secured in an opening through the disc 117 and overlies the openings 140. By this arrangement fluid can flow upwardly through the openings 140 and under the edges of the valve member 141; however, the valve member 141 prevents downward flow of fluid through the openings 140.
The stem 121 of the valve assembly is connected with the intake manifold through a hose 146 and when the engine is operating, a vacuum is induced beneath the diaphragm 130 which is equal to the vacuum in the intake manifold. At the same time, a vacuum is drawn above the diaphragm 130 corresponding to the vacuum at the venturi 11. As long as the manifold vacuum exceeds the venturi vacuum, the diaphragm 130 closes on the stem 126. Should the vacuum in the intake manifold drop below that of the venturi, the diaphragm 130 will be deflected upwardly by the differential air pressures between the chambers 112 and 123 and open the stem 126 which quickly equalizes the vacuum in the manifold and the vacuum reservoir 44.
The unit 50 can be conveniently attached to an engine or to a part of the automotive vehicle when the vehicle is assembled. It is then a simple operation to connect the tubes 93, 1 l4 and 146 to the valve 15, the venturi 11 and the intake manifold 13, respectively. All other connections for the components of the system are internal and require no assembly operation when installed.
I claim:
I. Control apparatus for a vacuum operated device comprising, a housing having a tubular section and first and second end covers substantially closing opposite ends of said section, a wall structure extending transversely of said tubular section and intermediate the ends thereof, said wall structure having a first recess, the open side of which faces said first end cover, a vacuum control valve means including a first flexible diaphragm extending transversely of said first recess, means forming a valve port in the closed end of said first recess, a valve member movable by deflections of said diaphragm and adapted to open and close said port, a second diaphragm extending transversely of said tubular section adjacent said first end cover and facing said first diaphragm, said second diaphragm cooperating with said first end cover to form a first vacuum chamber, means mechanically interconnecting said diaphragms, a second recess in said wall section and having the open side facing said second end cover, a third diaphragm extending transversely of said second recess and cooperating with the walls of said second recess to form a second vacuum chamber, a valve plate extending across said second recess and cooperating with said third diaphragm to form a third vacuum chamber, said valve plate and said second end cover cooperating to form a vacuum area, means carried by said valve plate forming a check valve to admit fluid from said vacuum area into said third vacuum chamber, means forming a valve port through said plate, a valve closure member operatively connected with said third diaphragm and adapted to open and close on the last mentioned valve port, and means forming a vacuum reservoir comprising substantial portions of said tubular section, said wall structure and said second end cover and including said vacuum area.
2. Control apparatus as defined in claim 1 further characterized by said tubular section and both said recesses being cylindrical.
3. Control apparatus as defined in claim 1 further characterized by means forming an air passage through said second end cover and into the space between the first and second diaphragms.
4. Control apparatus as defined in claim 3 further characterized by said air passage means comprising wall means forming an air flow chamber substantially closed at one end by said wall structure and substantially closed at the other end by said second cover, said wall structure and second cover having openings therethrough in communication with said interior of said flow chamber.
5. Control apparatus as defined in claim 3 further characterized by an air filter means in said air flow chamber.
6. Control apparatus as defined in claim 1 further characterized by means forming an air passage between said first and second vacuum chambers, means forming an air passage between said second vacuum chamber and the exterior of said housing, and means forming an air passage between said third vacuum chamber and the exterior of said housing.

Claims (6)

1. Control apparatus for a vacuum operated device comprising, a housing having a tubular section and first and second end covers substantially closing opposite ends of said section, a wall structure extending transversely of said tubular section and intermediate the ends thereof, said wall structure having a first recess, the open side of which faces said first end cover, a vacuum control valve means including a first flexible diaphragm extending transversely of said first recess, means forming a valve port in the closed end of said first recess, a valve member movable by deflections of said diaphragm and adapted to open and close said port, a second diaphragm extending transversely of said tubular section adjacent said first end cover and facing said first diaphragm, said second diaphragm cooperating with said first end cover to form a first vacuum chamber, means mechanically interconnecting said diaphragms, a second recess in said wall section and having the open side facing said second end cover, a third diaphragm extending transversely of said second recess and cooperating with the walls of said second recess to form a second vacuum chamber, a valve plate extending across said second recess and cooperating with said third diaphragm to form a third vacuum chamber, said valve plate and said second end cover cooperating to form a vacuum area, means carried by said valve plate forming a check valve to admit fluid from said vacuum area into said third vacuum chamber, means forming a valve port through said plate, a valve closure member operatively connected with said third diaphragm and adapted to open and close on the last mentioned valve port, and means forming a vacuum reservoir comPrising substantial portions of said tubular section, said wall structure and said second end cover and including said vacuum area.
2. Control apparatus as defined in claim 1 further characterized by said tubular section and both said recesses being cylindrical.
3. Control apparatus as defined in claim 1 further characterized by means forming an air passage through said second end cover and into the space between the first and second diaphragms.
4. Control apparatus as defined in claim 3 further characterized by said air passage means comprising wall means forming an air flow chamber substantially closed at one end by said wall structure and substantially closed at the other end by said second cover, said wall structure and second cover having openings therethrough in communication with said interior of said flow chamber.
5. Control apparatus as defined in claim 3 further characterized by an air filter means in said air flow chamber.
6. Control apparatus as defined in claim 1 further characterized by means forming an air passage between said first and second vacuum chambers, means forming an air passage between said second vacuum chamber and the exterior of said housing, and means forming an air passage between said third vacuum chamber and the exterior of said housing.
US3739797D 1971-08-03 1971-11-29 Control apparatus for exhaust gas recirculating system Expired - Lifetime US3739797A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16859571 US3884200A (en) 1971-08-03 1971-08-03 Exhaust gas recirculation control system for internal combustion engines
US20278371A 1971-11-29 1971-11-29

Publications (1)

Publication Number Publication Date
US3739797A true US3739797A (en) 1973-06-19

Family

ID=26864286

Family Applications (2)

Application Number Title Priority Date Filing Date
US16859571 Expired - Lifetime US3884200A (en) 1971-08-03 1971-08-03 Exhaust gas recirculation control system for internal combustion engines
US3739797D Expired - Lifetime US3739797A (en) 1971-08-03 1971-11-29 Control apparatus for exhaust gas recirculating system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16859571 Expired - Lifetime US3884200A (en) 1971-08-03 1971-08-03 Exhaust gas recirculation control system for internal combustion engines

Country Status (9)

Country Link
US (2) US3884200A (en)
JP (1) JPS5146211B1 (en)
AU (1) AU462247B2 (en)
CA (1) CA959360A (en)
DE (1) DE2221152C3 (en)
FR (1) FR2149736A5 (en)
GB (1) GB1401343A (en)
IT (1) IT962632B (en)
SE (1) SE386956B (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818880A (en) * 1972-08-02 1974-06-25 Chrysler Corp Exhaust gas recirculation control for internal combustion engines
US3835827A (en) * 1973-01-29 1974-09-17 Ford Motor Co Exhaust and gas recirculating system
US3877452A (en) * 1973-05-24 1975-04-15 Toyota Motor Co Ltd Exhaust gas recirculation system
US3878823A (en) * 1973-09-24 1975-04-22 Ford Motor Co Carburetor venturi vacuum and engine manifold vacuum controlled exhaust gas recirculating
DE2451148A1 (en) * 1973-11-05 1975-05-07 Ford Werke Ag EXHAUST GAS RECIRCULATION DEVICE FOR COMBUSTION ENGINES
US3888143A (en) * 1972-04-04 1975-06-10 Ford Motor Co Dual diaphragm actuator for a transmission throttle valve assembly
US3896777A (en) * 1972-08-31 1975-07-29 Nissan Motor Exhaust gas recirculation control device
US3901202A (en) * 1973-05-25 1975-08-26 Gen Motors Corp Vacuum bias regulator assembly
US3915136A (en) * 1974-02-25 1975-10-28 Ranco Inc Control system for exhaust gas recirculating valve
US3924589A (en) * 1973-03-17 1975-12-09 Toyota Motor Co Ltd Exhaust gas recirculating apparatus
US3926161A (en) * 1974-02-28 1975-12-16 Bendix Corp Exhaust gas recirculation flow control system
USB405899I5 (en) * 1973-10-12 1976-03-23
US3961608A (en) * 1972-11-11 1976-06-08 Robert Bosch G.M.B.H. Valve for controlling the flow of combustion gases in a combustion engine
US3964259A (en) * 1973-08-06 1976-06-22 Acf Industries, Incorporated Multi condition relief valve
US3970061A (en) * 1974-03-04 1976-07-20 Ranco Incorporated Control system for exhaust gas recirculating valve
US3977381A (en) * 1973-08-31 1976-08-31 Nissan Motor Co., Ltd. Exhaust gas recirculation system
US3981283A (en) * 1974-09-03 1976-09-21 Ford Motor Company Engine exhaust gas recirculating control
US3996905A (en) * 1974-11-25 1976-12-14 Chrysler Corporation Vacuum controls for internal combustion engines
US3998194A (en) * 1975-09-04 1976-12-21 Acf Industries, Incorporated System for control of exhaust gas recirculation
US4013052A (en) * 1972-08-31 1977-03-22 Nissan Motor Co., Ltd. Exhaust gas recirculation control device
US4022237A (en) * 1974-02-28 1977-05-10 The Bendix Corporation Exhaust gas recirculation flow control system
US4033309A (en) * 1974-06-24 1977-07-05 Nissan Motor Co., Ltd. Exhaust gas recirculation system with control apparatus for exhaust gas flow control valve
US4033308A (en) * 1974-06-24 1977-07-05 Nissan Motor Co., Ltd. Exhaust gas recirculation control system
US4040401A (en) * 1974-11-05 1977-08-09 Ethyl Corporation Spark vacuum advance control
US4041914A (en) * 1974-06-25 1977-08-16 Nissan Motor Company, Limited Exhaust gas recirculation system with control apparatus for exhaust gas flow control valve
US4047510A (en) * 1974-06-27 1977-09-13 Nissan Motor Company, Limited Exhaust gas recirculation system with control apparatus for exhaust gas flow control valve
US4066056A (en) * 1975-07-15 1978-01-03 Toyota Jidosha Kogyo Kabushiki Kaisha Exhaust gas recirculator
US4114576A (en) * 1976-06-09 1978-09-19 Toyota Jidosha Kogyo Kabushiki Kaisha Exhaust gas recirculating control system
US4117816A (en) * 1975-12-23 1978-10-03 Aisan Industry Co., Ltd. Exhaust gas recirculating system for use in internal combustion engine
US4137880A (en) * 1977-11-03 1979-02-06 Chrysler Corporation Time delay apparatus for an exhaust gas recirculation controller
US4186702A (en) * 1978-06-02 1980-02-05 General Motors Corporation Exhaust gas recirculation control
US4192262A (en) * 1977-01-08 1980-03-11 Nissan Motor Company, Limited Control system for varying the amount of scavenging air to be admitted to internal combustion engine
DE2952308A1 (en) * 1978-12-27 1980-07-03 Toyota Motor Co Ltd Torque monitor for road vehicle engine - has metered fuel pump linked to constant pressure fuel pipe
US4218040A (en) * 1978-09-12 1980-08-19 Robertshaw Controls Company Valve positioner and method of making same
US4218880A (en) * 1975-12-01 1980-08-26 Nissan Motor Company, Limited Spark-ignition internal combustion engine
US4235207A (en) * 1978-03-06 1980-11-25 Honda Giken Kogyo Kabushiki Kaisha Internal combustion engine
US4235208A (en) * 1978-06-16 1980-11-25 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas recirculation regulating system
US4242998A (en) * 1978-09-06 1981-01-06 Honda Giken Kogyo Kabushiki Kaisha Engine exhaust gas recirculation system
US4249505A (en) * 1978-06-12 1981-02-10 Honda Giken Kogyo Kabushiki Kaisha Compensation system for quantity of intake air for an internal combustion engine
US4249503A (en) * 1978-09-07 1981-02-10 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas recirculation for engine
US4249490A (en) * 1978-09-01 1981-02-10 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas recirculation for engine
US4249504A (en) * 1978-09-14 1981-02-10 Honda Giken Kogyo Kabushiki Kaisha Unitary assembly for control of EGR apparatus for engine
US4267855A (en) * 1980-01-17 1981-05-19 Eaton Corporation Pneumatic vacuum regulator
US4274384A (en) * 1978-09-12 1981-06-23 Honda Giken Kogyo Kabushiki Kaisha Engine exhaust gas recirculation system
US4291717A (en) * 1977-09-06 1981-09-29 Texas Instruments Incorporated Proportional stroke automatic temperature control system
US4308835A (en) * 1980-01-25 1982-01-05 Abbey Harold Closed-loop fluidic control system for internal combustion engines
EP0107309A1 (en) * 1982-09-27 1984-05-02 Borg-Warner Corporation Pressure control system
US4469127A (en) * 1981-03-27 1984-09-04 Aisin Seiki Kabushiki Kaisha Signal generating device in response to the degree of opening of a throttle valve
US4633845A (en) * 1984-08-31 1987-01-06 Schmelzer Corporation Vacuum control device
US6447491B1 (en) * 1999-06-18 2002-09-10 Genzyme Corporation Rolling seal suction pressure regulator, apparatus and system for draining a body cavity and methods related thereto

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783847A (en) * 1972-12-06 1974-01-08 Ford Motor Co Engine spark control and exhaust gas recirculation vacuum signal selector
US3930475A (en) * 1973-08-24 1976-01-06 Ford Motor Company Engine exhaust gas recirculating control
JPS514415A (en) * 1974-06-27 1976-01-14 Nissan Motor
JPS52102930A (en) * 1976-02-24 1977-08-29 Toyota Motor Corp Exhaust-gas-circulation control valve system for automobile
JPS5393222A (en) * 1977-01-26 1978-08-16 Nippon Soken Inc Exhaust emission recirculating device in internal engine
JPS6041227B2 (en) * 1977-07-11 1985-09-14 トヨタ自動車株式会社 Exhaust gas recirculation control device
JPS6041228B2 (en) * 1977-08-30 1985-09-14 トヨタ自動車株式会社 Engine exhaust gas recirculation control method and device
JPS5627056A (en) * 1979-08-11 1981-03-16 Honda Motor Co Ltd Exhaust gas recycling controller in engine
JPS5672250A (en) * 1979-11-15 1981-06-16 Honda Motor Co Ltd Controller for exhaust gas recirculation in engine
WO2015066672A1 (en) 2013-11-04 2015-05-07 Cummins Inc. Systems and methods for controlling egr flow during transients

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125111A (en) * 1964-03-17 Vacuum regulator
US3575189A (en) * 1969-02-03 1971-04-20 Robertshaw Controls Co Pneumatic control system and pneumatically operated reversing relay construction therefor or the like

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071116A (en) * 1935-04-10 1937-02-16 Int Harvester Co Charge forming device for internal combustion engines
US2722927A (en) * 1952-10-29 1955-11-08 George W Cornelius Apparatus for controlling internal combustion engine fuel mixtures
US3021827A (en) * 1957-10-23 1962-02-20 Gen Motors Corp Carburetor governor
JPS4112482Y1 (en) * 1964-05-20 1966-06-13
JPS4524650Y1 (en) * 1966-12-19 1970-09-28
US3507260A (en) * 1967-05-01 1970-04-21 Brooks Walker Exhaust recirculation control for an engine
US3500807A (en) * 1968-03-04 1970-03-17 Atlantic Richfield Co Exhaust recycle system
US3542004A (en) * 1968-08-09 1970-11-24 George W Cornelius Recycle apparatus
US3542003A (en) * 1969-03-17 1970-11-24 Chrystal Corp Engine exhaust recirculation
US3648672A (en) * 1969-08-10 1972-03-14 Toyo Kogyo Co Device for purifying the exhaust gas of an internal combustion engine to reduce the nitrogen oxide content
US3643425A (en) * 1970-02-12 1972-02-22 Exxon Research Engineering Co Low-polluting internal combustion engine wherein secondary air is injected into the exhaust ports
DE2011464C3 (en) * 1970-03-11 1976-01-08 Volkswagenwerk Ag, 3180 Wolfsburg Internal combustion engine with exhaust gas recirculation
US3621825A (en) * 1970-07-27 1971-11-23 Ford Motor Co Exhaust gas recirculation control valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125111A (en) * 1964-03-17 Vacuum regulator
US3575189A (en) * 1969-02-03 1971-04-20 Robertshaw Controls Co Pneumatic control system and pneumatically operated reversing relay construction therefor or the like

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888143A (en) * 1972-04-04 1975-06-10 Ford Motor Co Dual diaphragm actuator for a transmission throttle valve assembly
US3818880A (en) * 1972-08-02 1974-06-25 Chrysler Corp Exhaust gas recirculation control for internal combustion engines
US4013052A (en) * 1972-08-31 1977-03-22 Nissan Motor Co., Ltd. Exhaust gas recirculation control device
US3896777A (en) * 1972-08-31 1975-07-29 Nissan Motor Exhaust gas recirculation control device
US3961608A (en) * 1972-11-11 1976-06-08 Robert Bosch G.M.B.H. Valve for controlling the flow of combustion gases in a combustion engine
US3835827A (en) * 1973-01-29 1974-09-17 Ford Motor Co Exhaust and gas recirculating system
US3924589A (en) * 1973-03-17 1975-12-09 Toyota Motor Co Ltd Exhaust gas recirculating apparatus
US3877452A (en) * 1973-05-24 1975-04-15 Toyota Motor Co Ltd Exhaust gas recirculation system
US3901202A (en) * 1973-05-25 1975-08-26 Gen Motors Corp Vacuum bias regulator assembly
US3964259A (en) * 1973-08-06 1976-06-22 Acf Industries, Incorporated Multi condition relief valve
US3977381A (en) * 1973-08-31 1976-08-31 Nissan Motor Co., Ltd. Exhaust gas recirculation system
US3878823A (en) * 1973-09-24 1975-04-22 Ford Motor Co Carburetor venturi vacuum and engine manifold vacuum controlled exhaust gas recirculating
USB405899I5 (en) * 1973-10-12 1976-03-23
US4079710A (en) * 1973-10-12 1978-03-21 Hitachi, Ltd. Exhaust gas recirculation device
DE2451148A1 (en) * 1973-11-05 1975-05-07 Ford Werke Ag EXHAUST GAS RECIRCULATION DEVICE FOR COMBUSTION ENGINES
US3915136A (en) * 1974-02-25 1975-10-28 Ranco Inc Control system for exhaust gas recirculating valve
US3926161A (en) * 1974-02-28 1975-12-16 Bendix Corp Exhaust gas recirculation flow control system
US4022237A (en) * 1974-02-28 1977-05-10 The Bendix Corporation Exhaust gas recirculation flow control system
US3970061A (en) * 1974-03-04 1976-07-20 Ranco Incorporated Control system for exhaust gas recirculating valve
US4033308A (en) * 1974-06-24 1977-07-05 Nissan Motor Co., Ltd. Exhaust gas recirculation control system
US4033309A (en) * 1974-06-24 1977-07-05 Nissan Motor Co., Ltd. Exhaust gas recirculation system with control apparatus for exhaust gas flow control valve
US4041914A (en) * 1974-06-25 1977-08-16 Nissan Motor Company, Limited Exhaust gas recirculation system with control apparatus for exhaust gas flow control valve
US4047510A (en) * 1974-06-27 1977-09-13 Nissan Motor Company, Limited Exhaust gas recirculation system with control apparatus for exhaust gas flow control valve
US3981283A (en) * 1974-09-03 1976-09-21 Ford Motor Company Engine exhaust gas recirculating control
US4040401A (en) * 1974-11-05 1977-08-09 Ethyl Corporation Spark vacuum advance control
US3996905A (en) * 1974-11-25 1976-12-14 Chrysler Corporation Vacuum controls for internal combustion engines
US4066056A (en) * 1975-07-15 1978-01-03 Toyota Jidosha Kogyo Kabushiki Kaisha Exhaust gas recirculator
US3998194A (en) * 1975-09-04 1976-12-21 Acf Industries, Incorporated System for control of exhaust gas recirculation
US4218880A (en) * 1975-12-01 1980-08-26 Nissan Motor Company, Limited Spark-ignition internal combustion engine
US4117816A (en) * 1975-12-23 1978-10-03 Aisan Industry Co., Ltd. Exhaust gas recirculating system for use in internal combustion engine
US4114576A (en) * 1976-06-09 1978-09-19 Toyota Jidosha Kogyo Kabushiki Kaisha Exhaust gas recirculating control system
US4192262A (en) * 1977-01-08 1980-03-11 Nissan Motor Company, Limited Control system for varying the amount of scavenging air to be admitted to internal combustion engine
US4291717A (en) * 1977-09-06 1981-09-29 Texas Instruments Incorporated Proportional stroke automatic temperature control system
US4137880A (en) * 1977-11-03 1979-02-06 Chrysler Corporation Time delay apparatus for an exhaust gas recirculation controller
US4235207A (en) * 1978-03-06 1980-11-25 Honda Giken Kogyo Kabushiki Kaisha Internal combustion engine
US4186702A (en) * 1978-06-02 1980-02-05 General Motors Corporation Exhaust gas recirculation control
US4249505A (en) * 1978-06-12 1981-02-10 Honda Giken Kogyo Kabushiki Kaisha Compensation system for quantity of intake air for an internal combustion engine
US4235208A (en) * 1978-06-16 1980-11-25 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas recirculation regulating system
US4249490A (en) * 1978-09-01 1981-02-10 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas recirculation for engine
US4242998A (en) * 1978-09-06 1981-01-06 Honda Giken Kogyo Kabushiki Kaisha Engine exhaust gas recirculation system
US4249503A (en) * 1978-09-07 1981-02-10 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas recirculation for engine
US4274384A (en) * 1978-09-12 1981-06-23 Honda Giken Kogyo Kabushiki Kaisha Engine exhaust gas recirculation system
US4218040A (en) * 1978-09-12 1980-08-19 Robertshaw Controls Company Valve positioner and method of making same
US4249504A (en) * 1978-09-14 1981-02-10 Honda Giken Kogyo Kabushiki Kaisha Unitary assembly for control of EGR apparatus for engine
DE2952308A1 (en) * 1978-12-27 1980-07-03 Toyota Motor Co Ltd Torque monitor for road vehicle engine - has metered fuel pump linked to constant pressure fuel pipe
US4267855A (en) * 1980-01-17 1981-05-19 Eaton Corporation Pneumatic vacuum regulator
US4308835A (en) * 1980-01-25 1982-01-05 Abbey Harold Closed-loop fluidic control system for internal combustion engines
US4469127A (en) * 1981-03-27 1984-09-04 Aisin Seiki Kabushiki Kaisha Signal generating device in response to the degree of opening of a throttle valve
EP0107309A1 (en) * 1982-09-27 1984-05-02 Borg-Warner Corporation Pressure control system
US4633845A (en) * 1984-08-31 1987-01-06 Schmelzer Corporation Vacuum control device
US6447491B1 (en) * 1999-06-18 2002-09-10 Genzyme Corporation Rolling seal suction pressure regulator, apparatus and system for draining a body cavity and methods related thereto
US6749592B2 (en) 1999-06-18 2004-06-15 Kevin M. Lord Suction pressure regulator for use with a chest drainage

Also Published As

Publication number Publication date
DE2221152B2 (en) 1974-01-10
US3884200A (en) 1975-05-20
CA959360A (en) 1974-12-17
JPS5146211B1 (en) 1976-12-08
SE386956B (en) 1976-08-23
GB1401343A (en) 1975-07-16
DE2221152C3 (en) 1974-08-01
FR2149736A5 (en) 1973-03-30
DE2221152A1 (en) 1973-02-22
AU4138772A (en) 1973-10-25
AU462247B2 (en) 1975-06-19
IT962632B (en) 1973-12-31

Similar Documents

Publication Publication Date Title
US3739797A (en) Control apparatus for exhaust gas recirculating system
EP0398379B1 (en) Supercharged pressure control valve apparatus
US4517803A (en) Turbocharger compressor valve
US3915136A (en) Control system for exhaust gas recirculating valve
US3954091A (en) System for detoxicating exhaust gases
GB1480682A (en) Internal combustion engine fuel control systems
GB1314121A (en) Check valves especially intended for use in a power braking system
US4373499A (en) Ventilation check valve for internal combustion engines
US3901202A (en) Vacuum bias regulator assembly
CA2079520A1 (en) Apparatus for the temporary storage and controlled feeding of volatile fuel components into the intake manifold of an internal combustion engine
US4499916A (en) Vacuum check valve
US4094284A (en) Emission control system
US3888222A (en) Exhaust gas recirculation
US4116182A (en) Variable percentage exhaust gas recirculation valve
US4111172A (en) System to feed exhaust gas into the induction passage of an internal combustion engine
US4373335A (en) Supercharge system of an internal combustion engine
US4531498A (en) Exhaust gas recirculation control and subassemblies therefor
US4044739A (en) Exhaust gas control valve
US4170971A (en) Pneumatic pressure control valve assembly
US4484445A (en) Arrangement for controlling exhaust gas recirculation in a supercharged internal combustion engine
US4763636A (en) Mechanical supercharger
US4365608A (en) Controlling engine exhaust gas recirculation and vacuum inverter
US4124008A (en) Integrated fuel supply system for an internal combustion engine including filter, valve, and pump
GB1483355A (en) Internal combustion engine having an exhaust gas recirculating system
US4181110A (en) Exhaust gas recirculation system for internal combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: RANCO INCORPORATED OF DELAWARE, AN OH CORP.

Free format text: MERGER;ASSIGNOR:RANCO INCORPORATED, AN OH CORP.;REEL/FRAME:004926/0923

Effective date: 19880714

AS Assignment

Owner name: BANKERS TRUST COMPANY, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:RANCO INCORPORATED A CORP. OF DELAWARE;REEL/FRAME:005758/0180

Effective date: 19900730