US3739260A - Method for operating a halogen detection diode and arrangement for carrying out the method - Google Patents

Method for operating a halogen detection diode and arrangement for carrying out the method Download PDF

Info

Publication number
US3739260A
US3739260A US00155901A US3739260DA US3739260A US 3739260 A US3739260 A US 3739260A US 00155901 A US00155901 A US 00155901A US 3739260D A US3739260D A US 3739260DA US 3739260 A US3739260 A US 3739260A
Authority
US
United States
Prior art keywords
diode
halogen
ion current
current
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00155901A
Inventor
W Schadler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers Patent und Beteiligungs AG
Original Assignee
Balzers Patent und Beteiligungs AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Balzers Patent und Beteiligungs AG filed Critical Balzers Patent und Beteiligungs AG
Application granted granted Critical
Publication of US3739260A publication Critical patent/US3739260A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/68Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas
    • G01N27/70Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas and measuring current or voltage

Definitions

  • the arrangement for effecting the method includes a mea- [52] U.S. Cl. 324/33, 73/26, 330/1 10, swing amplifier connected to the cathode of the demo 340/237 tion diode, an indicating meter and preferably an alarm [51] III. CI. G011!
  • Halogen detection diodes are used primarily for determining leakages in container walls wherein an atmosphere, containing an halogenous gas, is present on one side of the container wall to be checked while, on the other side, leakage of this gas through any leak in the wall is detected by means of a diode having a filamentheated anode and emitting ions in the presence of an halogenous gas.
  • a diode having a filamentheated anode and emitting ions in the presence of an halogenous gas Such diodes and their use are already known and are described, for example, in Swiss Pat. No. 269,214.
  • halogen detection diodes A very annoying disadvantage of the so-called halogen detection diodes is that the fundamental ion current, which is the ion current flowing, in operation, through the diode, is subject to great fluctuations if no halogen strikes the heated anode. For unknown reasons, the ion current can decrease practically to zero, despite an apparent constant anode temperature, or it can increase to a multiple of its original value. During the time in which either no ion current or only a small ion current flows, the diode is insensitive to halogen, but prolonged operation with a too high ion current leads to a considerable reduction of the service life of the detection diode.
  • halogenous gas gases and vapors which contain halogen atoms.
  • the object of the present invention is to reduce the above-described disadvantages and to provide a method for operating a halogen detection diode which, in particular, makes the frequent checking of the fundamental ion currents superfluous and which reduces substantially the so-called contamination". It has been found that even the extent of the halogen action can be determined more accurately and quantitatively, in accordance with the invention, than possible heretofore. In addition, it has been found that an increase of the service life of the detection diode, which is the ion source, can be attained with the invention method.
  • the invention is further directed to a device or circuit for carrying out the invention method.
  • a device or circuit for carrying out the invention method.
  • the halogen detection diode could be rinsed or flushed periodically with a halogen-free gas, for example, with fresh air.
  • the new fundamental ion current measured after rinsing then serves as a starting point for the following determination of an halogenous gas inflow.
  • arrangements also have been used for maintaining the filament heating current of the anode at a constant value.
  • the operation of a halogen detection arrangement is characterized in that the filament current, for heating the anode, is so regulated constantly by the diode, in accordance with the fundamental ion current, that all variations of the fundamental ion current are at least partly offset again.
  • the filament current is regulated constantly in a manner such that the fundamental ion current through the diode maintains a substantially constant value.
  • the filament current of the anode thus is reduced when the ion current, for example, increases when halogen acts on the anode, but is increased when the ion current diminishes. Due to this feature of the method, any variation of the ion current is more or less offset again within a short regulating period.
  • ion current peak which appears temporarily, until the above-described regulation becomes effective, when halogen acts on the anode of the detection diode.
  • the measuring amplifier can be provided with a discriminator so that the indicator responds only to the leak, and indicates a leak, when the above-mentioned ion current peak exceeds a preselected threshold value when an halogenous gas enters the diode space.
  • the variable itself, thus the ion current can also be used as a measuring quantity.
  • An object of the invention is to provide an improved method of operating a halogen detection diode.
  • Another object is to provide an improved arrangement for implementing the method.
  • a further object is to provide such a method and arrangement in which the ion current is constantly sensed for variations and the filament heating current is constantly regulated in accordance with the sensed ion current variations.
  • the signal current or ion current of a halogen detection diode 1 is amplified by the logarithmically or linearly working measuring amplifier 2, and the ion current is indicated on the indicator 3. Either in conjunction with indicator 3 or alternatively, the ion current may be used to activate an alarm or signal device 4, connected in parallel with indicator 3 to the output of amplifier 2.
  • the ion current or signal current at the output of halogen detection diode l is supplied to a variable gain amplifier 5 connected, in controlling relation, with setting means 6 for the filament heating current for the anode of diode 1.
  • Setting means 6 is supplied with filament heating current by a current supply unit 7.
  • Variable gain amplifier 5 controls setting means 6 in a manner such that the current, from supply unit 1, fed to the heating filament, is decreased or increased automatically when the ion current through diode l attains a value above or below, respectively, an adjustable nominal value.
  • variable gain amplifier 5 supplies a signal to setting means 6 to adjust the filament heating current in a direction to counteract the variation.
  • the time constant of the control circuit preferably is so selected that the ion current peak, occurring under the action of halogen during the regulation period, can be easily measured or recorded, while the relatively slow fluctuations of the fundamental ion current provide no measurable deflection of the indicating means 3.
  • the invention method can be used not only for locating leaks but also when halogenous gases or vapors have to be detected.
  • a halogen detection diode having a filament-heated anode, which emits ions when contacted by gas or vapors containing halogen, and a cathode, and having a fundamental ion current flowing therethrough
  • the improvement comprising constantly sensing the fundamental ion current of the diode to detect variations therein; and constantly regulating the filament-heating current in accordance with the sensed fundamental ion current variations to counteract the fundamental ion current variations in the diode.
  • the improvement claimed in claim 1 in which the filament heating current is constantly regulated to a value such that the fundamental ion current through the diode maintains a substantially constant value.
  • the improvement claimed in claim 1 including detecting the ion current peak which occurs responsive to contact of halogen containing vapor or gas with the anode of the detection diode; and utilizing such ion current peak as an indication of halogen action on the anode of the detection diode.
  • a halogen detection arrangement including a halogen detection diode, having a filament-heated anode, which emits ions when contacted by gases or vapors containing halogen, and a cathode, a measuring amplifier connected to the output of the diode, an indicator connected to the output of the measuring amplifier, and a current supply unit for supplying heating current to the filament of the diode, the improvement comprising, in combination, control means connected to the output of said detection diode and responsive to the fundamental ion current therethrough, and connected in controlling relation with the filament heating current supply to said diode; said control means automatically regulating the filament heating current in accordance with the fundamental ion current through said diode.
  • control means includes a filament heating current setting means connected between said current supply unit and said detection diode.
  • control means includes a variable gain amplifier connected to the output of said detection diode and to said setting means.
  • control means regulates the filament heating current to control the temperature of the anode of said detection diode in a direction to maintain the fundamental ion current through said detection diode at a substantially constant value.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

In a method of operating a halogen detection diode having a filament-heated anode, which emits ions when impacted by halogen gas, and a cathode, fundamental ion current variations of the diode are constantly sensed and the filament heating current is regulated in accordance with the sensed ion current variations to counteract the ion current variations to maintain the fundamental ion current substantially constant. The ion current peak, which occurs under the action of an halogenous gas on the anode of the diode, is measured and serves as an indication of the halogen action. The arrangement for effecting the method includes a measuring amplifier connected to the cathode of the detection diode, an indicating meter and preferably an alarm device connected to the output of the measuring amplifier, a current supply for the filament and an adjusting means connecting the current supply to the filament. A variable gain amplifier is connected to the cathode of the detection diode and to the setting means to regulate the filament heating current in a corrective sense in accordance with sensed fundamental ion current variations. The arrangement and method are used primarily for checking leakage of an atmosphere containing an halogenous gas.

Description

nited States atent 11 1 v Schadler Primary Examiner-:S ta nley T. Krawczewica Attorney-John J. McGlew and Alfred E. Page [75] Inventor: Walter Schadler, Triesen, [57] ABSTRACT Llechtenstem In a method of operating a halogen detection diode [73] Assignee: Balzers Patent-Und having a filament-heated anode, which emits ions when BeteiIigungs-Aktiengesellschaft, impacted by halogen gas, and a cathode, fundamental 13a1'z;g,'1 urst hmm, Liechtenstein ion current variations of the diode are constantly sensed and the filament heating current is regulated in [22] Flled' June 1971 accordance with the sensed ion current variations to [21] Appl. No.: 155,901 counteract the ion current variations to maintain the fundamental ion current substantially constant. The ion current eak, which occurs under the action of an ha- [301 Forelgn Appnfahon Priority Data logenou: gas on the anode of the diode, is measured June 30, 1970 Sw1tzerland 9943/70 and serves as an indication of the halogen action The arrangement for effecting the method includes a mea- [52] U.S. Cl. 324/33, 73/26, 330/1 10, swing amplifier connected to the cathode of the demo 340/237 tion diode, an indicating meter and preferably an alarm [51] III. CI. G011! 27/00 device connected to the output of the measuring ampli [5 8] Field of Search 324/33; 340/237; fier, a current Supply for the filament and an adjusting 330/110; 73/25 26 means connecting the current supply to the filament. A variable gain amplifier is connected to the cathode of [56] References C'ted the detection diode and to the setting means to regulate UNITED STATES PATENTS the filament heating current in a corrective sense in ac- 3,617,734 12/1971 Chaudet 324/33 cor nc i se ed fundamental n e t a- 3,076,139 1/1963 Roberts 324/33 tions. The arrangement and method are used primarily 3,292,090 12/1960 Waiters 2 /3 for checking leakage of an atmosphere containing an Bossert halogenous gas 3,160,809 12/1964 Vanderschmidt 324/33 7 Claims, 1 Drawing Figure INDICATOR DETECTION MEASURING DIODE AMPLIFIER l l CURRENT CURRENT 3 SUPPLY SETTING -5 VARIABLE GAlN AMPLIFIER METHOD FOR OPERATING A HALOGEN DETECTION DIODE AND ARRANGEMENT FOR CARRYING OUT THE METHOD FIELD OF THE INVENTION This invention relates to halogen detection methods and apparatus and, more particularly, to an improved method of operating a halogen detection diode by which the fundamental ion current through the diode is maintained substantially constant, and to an improved arrangement for carrying out the method.
BACKGROUND OF THE INVENTION Halogen detection diodes are used primarily for determining leakages in container walls wherein an atmosphere, containing an halogenous gas, is present on one side of the container wall to be checked while, on the other side, leakage of this gas through any leak in the wall is detected by means of a diode having a filamentheated anode and emitting ions in the presence of an halogenous gas. Such diodes and their use are already known and are described, for example, in Swiss Pat. No. 269,214.
A very annoying disadvantage of the so-called halogen detection diodes is that the fundamental ion current, which is the ion current flowing, in operation, through the diode, is subject to great fluctuations if no halogen strikes the heated anode. For unknown reasons, the ion current can decrease practically to zero, despite an apparent constant anode temperature, or it can increase to a multiple of its original value. During the time in which either no ion current or only a small ion current flows, the diode is insensitive to halogen, but prolonged operation with a too high ion current leads to a considerable reduction of the service life of the detection diode. It is thus necessary to check the fundamental ion current frequently, to ascertain that the diode is ready, that is, that it will respond to any incoming halogenous gas and will not be overloaded at the same time. By halogenous gas is understood gases and vapors which contain halogen atoms.
The greater the sensitivity of a halogen detection diode is, the more pronounced is the above-described disadvantage. This means that the effect is the more disturbing the smaller the gas inflow which is to be detected. In addition, not only does the fundamental ion current itself fluctuate, but the anode of the detection diode is contaminated for a certain time after the action of halogenous gas, that is, it responds to only a limited extent or not at all to any subsequent action of halogen. In order to eliminate this contamination, the detection diode had to be rinsed or flushed with halogen-free gas after each major halogen action, and this has been time-consuming and cumbersome.
SUMMARY OF THE INVENTION The object of the present invention is to reduce the above-described disadvantages and to provide a method for operating a halogen detection diode which, in particular, makes the frequent checking of the fundamental ion currents superfluous and which reduces substantially the so-called contamination". It has been found that even the extent of the halogen action can be determined more accurately and quantitatively, in accordance with the invention, than possible heretofore. In addition, it has been found that an increase of the service life of the detection diode, which is the ion source, can be attained with the invention method.
The invention is further directed to a device or circuit for carrying out the invention method. Prior to the present invention, there were frequently used arrangements, as mentioned above, with which the halogen detection diode could be rinsed or flushed periodically with a halogen-free gas, for example, with fresh air. The new fundamental ion current measured after rinsing then serves as a starting point for the following determination of an halogenous gas inflow. In order to obtain a constant fundamental ion current, arrangements also have been used for maintaining the filament heating current of the anode at a constant value. Arrangements wherein the temperature of the anode is constantly measured by means of temperature sensors, and where the filament current is then regulated correspondingly, in order to obtain a constant anode temperature and thus a constant fundamental ion current, have also been suggested. However, it was found that although a certain improvement could be attained, compared to the method of maintaining the filament heating current constant, a constant fundamental emission, or tube constancy, could not be attained over a long run.
In accordance with the new method embodying the invention, the operation of a halogen detection arrangement is characterized in that the filament current, for heating the anode, is so regulated constantly by the diode, in accordance with the fundamental ion current, that all variations of the fundamental ion current are at least partly offset again.
In particular, the filament current is regulated constantly in a manner such that the fundamental ion current through the diode maintains a substantially constant value. In accordance with the invention, the filament current of the anode thus is reduced when the ion current, for example, increases when halogen acts on the anode, but is increased when the ion current diminishes. Due to this feature of the method, any variation of the ion current is more or less offset again within a short regulating period.
For detecting halogenous gas, there is used preferably the ion current peak which appears temporarily, until the above-described regulation becomes effective, when halogen acts on the anode of the detection diode.
If it is necessary only to find out if a leak of a minimum size exists, as is frequently the case in locating a leak, the measuring amplifier can be provided with a discriminator so that the indicator responds only to the leak, and indicates a leak, when the above-mentioned ion current peak exceeds a preselected threshold value when an halogenous gas enters the diode space. The variable itself, thus the ion current, can also be used as a measuring quantity.
An object of the invention is to provide an improved method of operating a halogen detection diode.
Another object is to provide an improved arrangement for implementing the method.
A further object is to provide such a method and arrangement in which the ion current is constantly sensed for variations and the filament heating current is constantly regulated in accordance with the sensed ion current variations.
For an understanding of the principles of the inven- BRIEF DESCRIPTION OF THE DRAWING DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the drawing, the signal current or ion current of a halogen detection diode 1 is amplified by the logarithmically or linearly working measuring amplifier 2, and the ion current is indicated on the indicator 3. Either in conjunction with indicator 3 or alternatively, the ion current may be used to activate an alarm or signal device 4, connected in parallel with indicator 3 to the output of amplifier 2. I
In accordance with the invention, the ion current or signal current at the output of halogen detection diode l is supplied to a variable gain amplifier 5 connected, in controlling relation, with setting means 6 for the filament heating current for the anode of diode 1. Setting means 6 is supplied with filament heating current by a current supply unit 7. Variable gain amplifier 5 controls setting means 6 in a manner such that the current, from supply unit 1, fed to the heating filament, is decreased or increased automatically when the ion current through diode l attains a value above or below, respectively, an adjustable nominal value.
For example, a nominal value of 5 microamperes can be set. As soon as the ion current of diode l varies, due to a fluctuation or due to the action of halogen, variable gain amplifier 5 supplies a signal to setting means 6 to adjust the filament heating current in a direction to counteract the variation. The time constant of the control circuit preferably is so selected that the ion current peak, occurring under the action of halogen during the regulation period, can be easily measured or recorded, while the relatively slow fluctuations of the fundamental ion current provide no measurable deflection of the indicating means 3.
Experience has shown that the objectives of the invention can be fully attained by the invention method and the invention arrangement. The invention method can be used not only for locating leaks but also when halogenous gases or vapors have to be detected.
While a specific embodiment of the invention has been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
What is claimed is:
1. In a method of operating a halogen detection diode having a filament-heated anode, which emits ions when contacted by gas or vapors containing halogen, and a cathode, and having a fundamental ion current flowing therethrough, the improvement comprising constantly sensing the fundamental ion current of the diode to detect variations therein; and constantly regulating the filament-heating current in accordance with the sensed fundamental ion current variations to counteract the fundamental ion current variations in the diode.
2. In a method of operating a halogen detection diode, the improvement claimed in claim 1, in which the filament heating current is constantly regulated to a value such that the fundamental ion current through the diode maintains a substantially constant value.
3. In a method of operating a halogen detection diode, the improvement claimed in claim 1, including detecting the ion current peak which occurs responsive to contact of halogen containing vapor or gas with the anode of the detection diode; and utilizing such ion current peak as an indication of halogen action on the anode of the detection diode.
4. In a halogen detection arrangement including a halogen detection diode, having a filament-heated anode, which emits ions when contacted by gases or vapors containing halogen, and a cathode, a measuring amplifier connected to the output of the diode, an indicator connected to the output of the measuring amplifier, and a current supply unit for supplying heating current to the filament of the diode, the improvement comprising, in combination, control means connected to the output of said detection diode and responsive to the fundamental ion current therethrough, and connected in controlling relation with the filament heating current supply to said diode; said control means automatically regulating the filament heating current in accordance with the fundamental ion current through said diode.
5. In a halogen detection arrangement, the improvement claimed in claim 4, in which said control means includes a filament heating current setting means connected between said current supply unit and said detection diode.
6. In a halogen detection arrangement, the improvement claimed in claim 5, in which said control means includes a variable gain amplifier connected to the output of said detection diode and to said setting means.
7. In a halogen detection arrangement, the improvement claimed in claim 4, in which said control means regulates the filament heating current to control the temperature of the anode of said detection diode in a direction to maintain the fundamental ion current through said detection diode at a substantially constant value.

Claims (6)

  1. 2. In a method of operating a halogen detection diode, the improvement claimed in claim 1, in which the filament heating current is constantly regulated to a value such that the fundamental ion current through the diode maintains a substantially constant value.
  2. 3. In a method of operating a halogen detection diode, the improvement claimed in claim 1, including detecting the ion current peak which occurs responsive to contact of halogen containing vapor or gas with the Anode of the detection diode; and utilizing such ion current peak as an indication of halogen action on the anode of the detection diode.
  3. 4. In a halogen detection arrangement including a halogen detection diode, having a filament-heated anode, which emits ions when contacted by gases or vapors containing halogen, and a cathode, a measuring amplifier connected to the output of the diode, an indicator connected to the output of the measuring amplifier, and a current supply unit for supplying heating current to the filament of the diode, the improvement comprising, in combination, control means connected to the output of said detection diode and responsive to the fundamental ion current therethrough, and connected in controlling relation with the filament heating current supply to said diode; said control means automatically regulating the filament heating current in accordance with the fundamental ion current through said diode.
  4. 5. In a halogen detection arrangement, the improvement claimed in claim 4, in which said control means includes a filament heating current setting means connected between said current supply unit and said detection diode.
  5. 6. In a halogen detection arrangement, the improvement claimed in claim 5, in which said control means includes a variable gain amplifier connected to the output of said detection diode and to said setting means.
  6. 7. In a halogen detection arrangement, the improvement claimed in claim 4, in which said control means regulates the filament heating current to control the temperature of the anode of said detection diode in a direction to maintain the fundamental ion current through said detection diode at a substantially constant value.
US00155901A 1970-06-30 1971-06-23 Method for operating a halogen detection diode and arrangement for carrying out the method Expired - Lifetime US3739260A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH994370A CH506062A (en) 1970-06-30 1970-06-30 Method for operating a halogen detection diode and device for carrying out the method

Publications (1)

Publication Number Publication Date
US3739260A true US3739260A (en) 1973-06-12

Family

ID=4357362

Family Applications (1)

Application Number Title Priority Date Filing Date
US00155901A Expired - Lifetime US3739260A (en) 1970-06-30 1971-06-23 Method for operating a halogen detection diode and arrangement for carrying out the method

Country Status (7)

Country Link
US (1) US3739260A (en)
JP (1) JPS5531895B1 (en)
CH (1) CH506062A (en)
DE (1) DE2050653C3 (en)
FR (1) FR2096215A5 (en)
GB (1) GB1325242A (en)
NL (1) NL145678B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997837A (en) * 1974-02-21 1976-12-14 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Gas analysis device
US4366438A (en) * 1978-10-11 1982-12-28 Hitachi, Ltd. Sodium ionization detector
US4910463A (en) * 1987-12-17 1990-03-20 Sentech Corporation Halogen monitoring apparatus
US5198774A (en) * 1987-12-17 1993-03-30 Williams Ii William J Gas monitoring apparatus
US5444435A (en) * 1990-03-19 1995-08-22 Williams, Ii; William J. Halogen monitoring apparatus
US5448905A (en) * 1993-11-26 1995-09-12 Transducer Research, Inc. Solid-state chemical sensor apparatus and methods
EP0899560A1 (en) * 1996-07-26 1999-03-03 Valco Instruments Company, Inc. Detecting compounds using induced photoionization for electron capture detection
US6644098B2 (en) 2001-01-18 2003-11-11 Advanced Test Products, Inc. Heated electrode refrigerant detector utilizing one or more control loop
US6649876B2 (en) 2001-04-19 2003-11-18 Advanced Test Products, Inc. Methods and apparatuses for automatic process control for firing and biasing heated electrode refrigerant sensors
US6703840B2 (en) 2001-04-19 2004-03-09 Advanced Test Products, Inc. Methods and apparatuses for automatic process control for biasing and testing heated electrode refrigerant sensors
USRE42192E1 (en) * 2001-12-13 2011-03-01 The University Of Wyoming Research Corporation Volatile organic compound sensor system
US20110210744A1 (en) * 2010-03-01 2011-09-01 Woodward Governor Company Automatic Variable Gain Amplifier
US8779362B1 (en) 2012-04-16 2014-07-15 Ted J. Amundsen Infrared acid detector and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2186695B (en) * 1985-06-27 1989-07-12 Uk G P I Nii Kommunaln Halogen gas leak detector
US11046196B2 (en) 2018-07-26 2021-06-29 Ford Global Technologies, Llc Charge port covering assembly and method
CN111595926B (en) * 2020-05-18 2022-09-27 中国计量科学研究院 Online process mass spectrometer and online process mass spectrometer self-adjusting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3076139A (en) * 1961-01-03 1963-01-29 Gen Electric Leak detector
US3160809A (en) * 1963-08-06 1964-12-08 Lion Res Corp Current-source transducer high-voltage low-current power supply system
US3292090A (en) * 1964-07-01 1966-12-13 Gen Electric Ion gauge system having overload protection
US3438259A (en) * 1967-05-31 1969-04-15 Midwest Research Inst Vacuum system pressure change detection
US3617734A (en) * 1967-06-07 1971-11-02 Melpar Inc Detection system for monitoring gaseous components in air

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3076139A (en) * 1961-01-03 1963-01-29 Gen Electric Leak detector
US3160809A (en) * 1963-08-06 1964-12-08 Lion Res Corp Current-source transducer high-voltage low-current power supply system
US3292090A (en) * 1964-07-01 1966-12-13 Gen Electric Ion gauge system having overload protection
US3438259A (en) * 1967-05-31 1969-04-15 Midwest Research Inst Vacuum system pressure change detection
US3617734A (en) * 1967-06-07 1971-11-02 Melpar Inc Detection system for monitoring gaseous components in air

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997837A (en) * 1974-02-21 1976-12-14 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Gas analysis device
US4366438A (en) * 1978-10-11 1982-12-28 Hitachi, Ltd. Sodium ionization detector
US4910463A (en) * 1987-12-17 1990-03-20 Sentech Corporation Halogen monitoring apparatus
US5198774A (en) * 1987-12-17 1993-03-30 Williams Ii William J Gas monitoring apparatus
US5444435A (en) * 1990-03-19 1995-08-22 Williams, Ii; William J. Halogen monitoring apparatus
US5448905A (en) * 1993-11-26 1995-09-12 Transducer Research, Inc. Solid-state chemical sensor apparatus and methods
EP0899560A1 (en) * 1996-07-26 1999-03-03 Valco Instruments Company, Inc. Detecting compounds using induced photoionization for electron capture detection
US6644098B2 (en) 2001-01-18 2003-11-11 Advanced Test Products, Inc. Heated electrode refrigerant detector utilizing one or more control loop
US6649876B2 (en) 2001-04-19 2003-11-18 Advanced Test Products, Inc. Methods and apparatuses for automatic process control for firing and biasing heated electrode refrigerant sensors
US6703840B2 (en) 2001-04-19 2004-03-09 Advanced Test Products, Inc. Methods and apparatuses for automatic process control for biasing and testing heated electrode refrigerant sensors
USRE42192E1 (en) * 2001-12-13 2011-03-01 The University Of Wyoming Research Corporation Volatile organic compound sensor system
US20110210744A1 (en) * 2010-03-01 2011-09-01 Woodward Governor Company Automatic Variable Gain Amplifier
US8324905B2 (en) * 2010-03-01 2012-12-04 Woodward, Inc. Automatic variable gain amplifier
US8779362B1 (en) 2012-04-16 2014-07-15 Ted J. Amundsen Infrared acid detector and method

Also Published As

Publication number Publication date
FR2096215A5 (en) 1972-02-11
JPS5531895B1 (en) 1980-08-21
DE2050653B2 (en) 1974-03-07
GB1325242A (en) 1973-08-01
DE2050653C3 (en) 1974-10-03
DE2050653A1 (en) 1972-01-05
NL145678B (en) 1975-04-15
CH506062A (en) 1971-04-15
NL7012200A (en) 1972-01-03

Similar Documents

Publication Publication Date Title
US3739260A (en) Method for operating a halogen detection diode and arrangement for carrying out the method
US3340400A (en) Dual channel flaw detector having phase comparison feedback for automatic balancing
US4652742A (en) Arrangement for and method of determining two or more superimposed film sheets
KR890000998A (en) Coin Detection Device and Method
US2660704A (en) Seam depth indicator
US2983819A (en) Radiation gauge
US4955727A (en) Method and apparatus for a non-contact measuring of a temperature of a body
JPS5949524B2 (en) measurement system
US2441677A (en) Detecting and indicating system for explosive gases
GB1352397A (en) Automatic standardization of nucleonic gauges
US3144600A (en) Gas leak detector
US2964633A (en) Back scatter thickness gauge
US3832550A (en) Wide-range radiation gage for determining deviation of a material property with a controlled-gain detector in an interruptable self-balancing measuring loop
US2854625A (en) Method for determining argon
US4093913A (en) Vacuum measuring ionization apparatus control
US2862304A (en) Apparatus for defining the percentage of moisture contained in any material and for checking or controlling machines treating moist material
EP0206735A2 (en) Coating weight and thickness gauges
US3607701A (en) Electrochemical analyzer for measuring the oxygen content of hot gases
US2537775A (en) Ion vacuum gauge
US3102199A (en) Means for measuring air density and altitude at prevailing level of flight of an aircraft
US4268753A (en) Level detection device for enclosed tanks
US2933676A (en) Electronic manometer
US3229094A (en) Radiation thickness gauge using magnetic amplifiers and a constant reference source of voltage for comparison
JPH0878185A (en) Method for detecting replacing time of x-ray tube and device used therefor
US2928042A (en) High vacuum device