US3737931A - Honeycomb uncapping machine - Google Patents
Honeycomb uncapping machine Download PDFInfo
- Publication number
- US3737931A US3737931A US00213288A US3737931DA US3737931A US 3737931 A US3737931 A US 3737931A US 00213288 A US00213288 A US 00213288A US 3737931D A US3737931D A US 3737931DA US 3737931 A US3737931 A US 3737931A
- Authority
- US
- United States
- Prior art keywords
- discs
- framework
- honeycomb
- frame
- arbor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000007723 transport mechanism Effects 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 235000012907 honey Nutrition 0.000 description 6
- 235000013871 bee wax Nutrition 0.000 description 5
- 239000012166 beeswax Substances 0.000 description 5
- 239000002023 wood Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 241000257303 Hymenoptera Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K59/00—Honey collection
- A01K59/02—Devices for uncapping honeycombs
Definitions
- Each arbor carries a plurality of canted discs UNITED STATES PATENTS arranged with random circumferential location of maximum cant.
- FIG. 1 is a top plan view of a machine embodying my invention
- FIG. 2 is a side elevational view of the machine
- FIG. 3 is a view to an enlarged scale of the operational part of one arbor removed from the machine
- FIG. 4 is a detailed view to an enlarged scale of a pressure adjustment device used to control the arbors.
- FIG. 5 is an elevational view of a holding cart for catching the cut off material and waste honey released during uncapping.
- my invention comprises a machine having a transport device to carry honeycomb frames between two unique driven arbors.
- Each arbor includes a shaft having a plurality of canted discs adapted to engage and cut off the beeswax cap from the comb in the frame.
- my machine is mounted on a frame having legs 11 to support it.
- a pair of endless belts or chains 12 carrying transverse flighting members 13 is carried by a pair of shafts 14 and is entrained over pulleys or sprockets 15 on the shaft.
- Slides or guide rails 16 are provided on the frame. These slides are spaced apart laterally so that they will support the edges of a standard size frame as it slides longitudinally of the frame.
- the chains 12 also slide along these members as they are driven by a motor 17 through the shaft 14. Thus, a frame placed on the slide 16 will be caught by a flighting member 13 and be carried from one end of the frame to the other.
- the lower arbor is permanently mounted on the framework 10 in a position to engage the lower surface of the honeycomb in its frame as it is carried along by the transport mechanism.
- the upper arbor is mounted in an adjustable mechanism including a pair of brackets 20. Arms 21 are pivoted on the brackets 20 and in turn carry the arbor shaft 22 rotatably mounted thereon.
- the weight of the arbor tends to carry this upper arbor downward towards the lower one so there is always a tendency for the arbors to come together.
- force of the spring 24 may be adjusted by adjusting the position of a stop nut 26 on the spindle 25.
- the arbor 18, as best shown in FIG. 3, is unique in its formation. Essentially it consists of a shaft 22 on which are mounted a series of discs 28. These discs are not mounted perpendicularly to the axis of the shaft, but are canted relative thereto.
- the angle of cant may be similar, but the direction of the cant is varied sothat there is no uniform spiral effect. This direction may be random or may be systematic so long as the point of maximum deviation measured on a given axial line and deviating from a perpendicular 29 varies from one side of the perpendicular to the other so that in a sense, the spiral action of at least some of the discs is opposite to that of others.
- the outer surface of all the discs 28 is machined after mounting so as to be a part ofa cylinder having the axis of the central shaft 22 as its axis. Thus, all points on the cutting surfaces are equidistant from the rotative axis and the cutting will be uniform. This machining is accomplished simply by mounting the discs 28 on the shaft 22 and then using the shaft 22 as a rotating center, either grinding the edges of the discs or otherwise machining those edges to provide the proper form.
- a frame of honeycomb is placed on the slides 16 at one end of the machine (the right hand end in FIGS. 1 and 2). It is then engaged by a flighting member 13 and is pulled to the left as the members 13 are carried by the chains 12 in that direction.
- This cart includes the hopper 34 mounted on wheels 35 and propelled manually through a handle 36.
- Posts 37 provide stability for the cart while it is standing.
- a honeycomb uncapping machine comprising a framework, transporting mechanism adapted to move a honeycomb frame on said framework, rotating arbor means on said framework carrying cutting means, said arbor means being positioned to engage opposite sides of said honeycomb frame, said cutting means including a plurality of canted disks adapted to engage the honeycomb frame.
- the transport mechanism includes. driven chains connected by flighting members, said flighting members being adapted to engage the honeycomb frame to move'it on the frame work.
- said movable mounting includes adjustable spring means engaged between said framework and said mounting to provide for an adjustable bias between said arbors.
- An arbor for use in a honeycomb uncapping machine comprising a shaft, a plurality of discs mounted on said shaft, said discs being canted from a perpendicular to the axis of said shaft.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Belt Conveyors (AREA)
Abstract
A honeycomb uncapping device having a pair of unique arbors arranged to uncap both sides of the comb and a conveyor to carry the comb between the arbors. Each arbor carries a plurality of canted discs arranged with random circumferential location of maximum cant.
Description
United States Patent 11 1 Hodgson June 12, 1973 HONEYCOMB UNCAPPING MACHINE 3,290,705 l2/l966 Harrison 6/12 A [76] Inventor: Roger R- nodgson 13 8 A enue My 3,095,584 7/1963 Cusdcn 6/12 A Hawarden Iowa 51023 Primary ExaminerLouis (1. Mancene [22] Filed: Dec. 29, 1971 1 Assistant ExaminerD. L. Weinhold [21]- p No 213 288 Attrney-Lucas J. De Kostcr 52 0.5.01 6/12 A [57] F T A 4 51.1 1111. c1 A0lk 51 00 A honeycomb uflcappmg device havmg a p 58 Field 01 Search 6/12 A unique arbors arranged to n both Sides of the I comb and a conveyor to carry the comb between the [56] References Cited arbors. Each arbor carries a plurality of canted discs UNITED STATES PATENTS arranged with random circumferential location of maximum cant. 3,388,409 6/1968 Hettrick 6/12 A 2,807,034 9/1957 Fox 6/12 A 9 Claims, Drawing Figures y 30 l 1 2| 0 I2 I; l 1 7 l l n l lg 1 l 14 l I y 11 4/13 14 l8 l ls l l r 1 l K 2| I 1 l|| l2 I7 I l PATENTEDJun 1 H973 SHEET 1 BF 2 I III I I l PATENILD 3.737. 931
SHEET 2 0F 2 INVENT Roger Hod BY 4 His Mfy.
1 HONEYCOMB UNCAPPING MACHINE BACKGROUND AND SUMMARY OF THE INVENTION In order to extract honey from the honeycomb, one of the necessary operations is to remove the wax cap from each cell of the honeycomb. The comb is formed within each frame and when each cell is filled by the bees, a beeswax cap seals the cell. Extraction of the honey then requires that the cell be opened or unsealed by the removal of the cap.
Previous devices for the removal of the beeswax cap have included machines having rotating knives against which a frame could be pressed so that the knives cut the cap off. If the edge knife lies along a line axial of the drum holding it, this produces a vibrating effect which is undesirable. If the knife is spiral on the drum, it tends to move the frame axially of the drum so that added restraints are necessary to hold the frame against the knife. Further, this type of device also will cut the frame holding the comb so that care must be taken that the depth of cut is precise so as not to destroy the honey in the comb.
Transversely vibrating knives have also been used,
but the same disadvantage of vibration, lateral movement of the frame and need for precise setting prevail. By my invention I provide a device which avoids those disadvantages. There is little or no vibration; the arbors will not cut into the wood frame so that the depth of cut is set by the width of the edge of the frame, and the random positions of the cutting discs provide for a nullifying action towards lateral motion. All of these features make possible a two-arbor machine which can uncap both ends of the frame at the same operation.
FIGURES FIG. 1 is a top plan view of a machine embodying my invention,
FIG. 2 is a side elevational view of the machine,
FIG. 3 is a view to an enlarged scale of the operational part of one arbor removed from the machine,
FIG. 4 is a detailed view to an enlarged scale of a pressure adjustment device used to control the arbors, and
FIG. 5 is an elevational view of a holding cart for catching the cut off material and waste honey released during uncapping.
DESCRIPTION Briefly my invention comprises a machine having a transport device to carry honeycomb frames between two unique driven arbors. Each arbor includes a shaft having a plurality of canted discs adapted to engage and cut off the beeswax cap from the comb in the frame.
More specifically and referring to the drawings, my machine is mounted on a frame having legs 11 to support it. A pair of endless belts or chains 12 carrying transverse flighting members 13 is carried by a pair of shafts 14 and is entrained over pulleys or sprockets 15 on the shaft.
Slides or guide rails 16 are provided on the frame. These slides are spaced apart laterally so that they will support the edges of a standard size frame as it slides longitudinally of the frame. The chains 12 also slide along these members as they are driven by a motor 17 through the shaft 14. Thus, a frame placed on the slide 16 will be caught by a flighting member 13 and be carried from one end of the frame to the other.
About midway of the frame, I provide two unique driven arbors 18 positioned one above the other. Both arbors are similar, but they are mounted somewhat differently.
The lower arbor is permanently mounted on the framework 10 in a position to engage the lower surface of the honeycomb in its frame as it is carried along by the transport mechanism. The upper arbor is mounted in an adjustable mechanism including a pair of brackets 20. Arms 21 are pivoted on the brackets 20 and in turn carry the arbor shaft 22 rotatably mounted thereon.
The weight of the arbor tends to carry this upper arbor downward towards the lower one so there is always a tendency for the arbors to come together. In order to limit this movement, I provide an adjustable stop 23 mounted on the arm 21 and adapted to engage the framework 10. I also provide some adjustment of the pressure drawing the two arbors together. It has been my experience that the weight of the arbor provides more pressure than may be desirable, so I provide a compression spring 24 on a threaded spindle 25 engaged between the framework 10 and the arm 21 to provide a force counter to the weight of the arbor. The
force of the spring 24 may be adjusted by adjusting the position of a stop nut 26 on the spindle 25.
The arbor 18, as best shown in FIG. 3, is unique in its formation. Essentially it consists of a shaft 22 on which are mounted a series of discs 28. These discs are not mounted perpendicularly to the axis of the shaft, but are canted relative thereto. The angle of cant may be similar, but the direction of the cant is varied sothat there is no uniform spiral effect. This direction may be random or may be systematic so long as the point of maximum deviation measured on a given axial line and deviating from a perpendicular 29 varies from one side of the perpendicular to the other so that in a sense, the spiral action of at least some of the discs is opposite to that of others. By this construction, it may be ensured that there is no uniform force tending to move the comb frame in one direction, but instead, the forces on the comb frame will be in both lateral directions and therefore essentially nullified.
The outer surface of all the discs 28 is machined after mounting so as to be a part ofa cylinder having the axis of the central shaft 22 as its axis. Thus, all points on the cutting surfaces are equidistant from the rotative axis and the cutting will be uniform. This machining is accomplished simply by mounting the discs 28 on the shaft 22 and then using the shaft 22 as a rotating center, either grinding the edges of the discs or otherwise machining those edges to provide the proper form.
In my device I have used separate motors 30 to drive the separate arbors 18. It will be obvious that by proper gearing, or by belt and pulley, or chain and sprocket arrangements, a single motor could provide power not only for both main arbors 18 but also for the transport mechanism.
I also have illustrated a third arbor 18 mounted on brackets 32 on the main framework 10. This arbor might be used for manual trimming if desired. However, in my experience, I have found it to be unnecessary.
In use, a frame of honeycomb is placed on the slides 16 at one end of the machine (the right hand end in FIGS. 1 and 2). It is then engaged by a flighting member 13 and is pulled to the left as the members 13 are carried by the chains 12 in that direction.
As the frame engages the outer surfaces of the discs 28 forming the arbors 18,-the upper arbor is moved slightly upward but is positioned by the engagement of the end discs on each arbor with the wood on the frame. Because of the cylindrical form of the outer surface of the disc there is no cutting of the wood, but the discs do remove any beeswax extending beyond the wood frame. This effectively uncaps the cells of honey and as the comb frame moves between the arbors it can then be removed and placed in the extractor for further processing.
Because the beeswax and any waste honey which drops during the uncapping process may have value, I provide a portable cart including a hopper 34. This cart includes the hopper 34 mounted on wheels 35 and propelled manually through a handle 36. Posts 37 provide stability for the cart while it is standing.
I claim: cm 1. A honeycomb uncapping machine comprising a framework, transporting mechanism adapted to move a honeycomb frame on said framework, rotating arbor means on said framework carrying cutting means, said arbor means being positioned to engage opposite sides of said honeycomb frame, said cutting means including a plurality of canted disks adapted to engage the honeycomb frame.
2. The device of claim 1 in which the transport mechanism includes. driven chains connected by flighting members, said flighting members being adapted to engage the honeycomb frame to move'it on the frame work.
3. The device of claim 1 in which said discs are canted such that the points of maximum deviation from the perpendicular are distributed around the circumference.
4. The device of claim 1 in which said discs have a cylindrical outer surface.
5. The device of claim 2 in which at least one of said arbors is movably mounted on said framework.
6. The device of claim 5 in which said movable mounting includes adjustable spring means engaged between said framework and said mounting to provide for an adjustable bias between said arbors.
7. An arbor for use in a honeycomb uncapping machine comprising a shaft, a plurality of discs mounted on said shaft, said discs being canted from a perpendicular to the axis of said shaft.
8. The device of claim 5 in which said canting is such that the deviation from perpendicular is such that direction of cant is opposite for some discs than for others.
9. The device of claim 6 in which the peripheral surface of said discs is of uniform cylindrical diameter.
Claims (9)
1. A honeycomb uncapping machine comprising a framework, transporting mechanism adapted to move a honeycomb frame on said framework, rotating arbor means on said framework carrying cutting means, said arbor means being positioned to engage opposite sides of said honeycomb frame, said cutting means including a plurality of canted disks adapted to engage the honeycomb frame.
2. The device of claim 1 in which the transport mechanism includes driven chains connected by flighting members, said flighting members being adapted to engage the honeycomb frame to move it on the framework.
3. The device of claim 1 in which said discs are canted such that the points of maximum deviation from the perpendicular are distributed around the circumference.
4. The device of claim 1 in which said discs have a cylindrical outer surface.
5. The device of claim 2 in which at least one of said arbors is movably mounted on said framework.
6. The device of claim 5 in which said movable mounting includes adjustable spring means engaged between said framework and said mounting to provide for an adjustable bias between said arbors.
7. An arbor for use in a honeycomb uncapping machine comprising a shaft, a plurality of discs mounted on said shaft, said discs being canted from a perpendicular to the axis of said shaft.
8. The device of claim 5 in which said canting is such that the deviation from perpendicular is such that direction of cant is opposite for some discs than for others.
9. The device of claim 6 in which the peripheral surface of said discs is of uniform cylindrical diameter.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21328871A | 1971-12-29 | 1971-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3737931A true US3737931A (en) | 1973-06-12 |
Family
ID=22794488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00213288A Expired - Lifetime US3737931A (en) | 1971-12-29 | 1971-12-29 | Honeycomb uncapping machine |
Country Status (1)
Country | Link |
---|---|
US (1) | US3737931A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4765008A (en) * | 1987-08-26 | 1988-08-23 | Donald Gunness | Flail-type honeycomb decapper and method |
US5695324A (en) * | 1995-03-06 | 1997-12-09 | The Procter & Gamble Company | Body conforming compound sanitary napkin |
US6193583B1 (en) * | 1999-08-05 | 2001-02-27 | Donald B. Gunness | Flail-type honeycomb decapper |
US9625377B2 (en) | 2011-04-06 | 2017-04-18 | Klein Medical Limited | Spectroscopic analysis |
US9968075B2 (en) | 2013-03-04 | 2018-05-15 | Revolutionary Beekeeping Limited | Honeycomb cutting apparatus and honey collection system |
US20220046903A1 (en) * | 2015-03-15 | 2022-02-17 | Jason Gouedy | Honeycomb uncapping device and methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2807034A (en) * | 1956-01-13 | 1957-09-24 | Fox Lloyd | Honeycomb uncapping machine |
US3095584A (en) * | 1961-05-19 | 1963-07-02 | Earl R J Cusden | Honeycomb uncapping machine |
US3290705A (en) * | 1964-11-02 | 1966-12-13 | Arthur S Harrison | Machine for uncapping honeycombs |
US3388409A (en) * | 1966-02-11 | 1968-06-18 | William R. Hettrick | Honeycomb uncapping machine |
-
1971
- 1971-12-29 US US00213288A patent/US3737931A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2807034A (en) * | 1956-01-13 | 1957-09-24 | Fox Lloyd | Honeycomb uncapping machine |
US3095584A (en) * | 1961-05-19 | 1963-07-02 | Earl R J Cusden | Honeycomb uncapping machine |
US3290705A (en) * | 1964-11-02 | 1966-12-13 | Arthur S Harrison | Machine for uncapping honeycombs |
US3388409A (en) * | 1966-02-11 | 1968-06-18 | William R. Hettrick | Honeycomb uncapping machine |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4765008A (en) * | 1987-08-26 | 1988-08-23 | Donald Gunness | Flail-type honeycomb decapper and method |
US5695324A (en) * | 1995-03-06 | 1997-12-09 | The Procter & Gamble Company | Body conforming compound sanitary napkin |
US6193583B1 (en) * | 1999-08-05 | 2001-02-27 | Donald B. Gunness | Flail-type honeycomb decapper |
US9625377B2 (en) | 2011-04-06 | 2017-04-18 | Klein Medical Limited | Spectroscopic analysis |
US10241039B2 (en) | 2011-04-06 | 2019-03-26 | Klein Medical Limited | Spectroscopic analyser |
US9968075B2 (en) | 2013-03-04 | 2018-05-15 | Revolutionary Beekeeping Limited | Honeycomb cutting apparatus and honey collection system |
US20220046903A1 (en) * | 2015-03-15 | 2022-02-17 | Jason Gouedy | Honeycomb uncapping device and methods |
US20230389527A1 (en) * | 2015-03-15 | 2023-12-07 | Jason Gouedy | Honeycomb uncapping device and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3737931A (en) | Honeycomb uncapping machine | |
US4831925A (en) | Automatic trimming machine, particularly for horticultural products | |
CN111185955A (en) | Slicing device | |
US3596691A (en) | Apparatus for manufacturing wood fencing material | |
US3286745A (en) | Machines for producing wood shavings | |
US2722256A (en) | Quartering machine for potatoes and the like | |
US2518772A (en) | Fish filleting machine | |
US3096801A (en) | Seed potato cutter | |
CN206520070U (en) | A kind of log auto peeling machine | |
DE2218026A1 (en) | DEVICE FOR AUTOMATIC EMPTYING OF BAGS | |
CN210910127U (en) | Chinese-medicinal material section device | |
US6193583B1 (en) | Flail-type honeycomb decapper | |
CN213563091U (en) | Full-automatic single-chip longitudinal sawing machine | |
SE437129B (en) | MACHINE FOR MATERIAL WORKING WORKING OF WOODEN STOCK | |
US2794465A (en) | Slab-barking machine having swingably mounted and pneumatically biased brush and rotary cutters | |
CN212736089U (en) | Small-size turnip slitting equipment | |
US2726691A (en) | Debarking machine having underlying bark-stripping helical rollers and an overlying adjustable pressure roller | |
US3400740A (en) | Vegetable trimming apparatus | |
US2733742A (en) | bedard | |
US2960719A (en) | Shrimp sorting, deveining and splitting machine | |
US3212506A (en) | Brussels sprouts stripping machine | |
KR101475517B1 (en) | Farm-product peeling apparatus | |
US3609780A (en) | Honeycomb decapping apparatus | |
CN207044231U (en) | A kind of saw cutting device of plastic products | |
US2498962A (en) | Nut conveying and hold-down means for nut halving machines |