US3735294A - Multi-contact terminal support assembly for an electromagnetic relay - Google Patents

Multi-contact terminal support assembly for an electromagnetic relay Download PDF

Info

Publication number
US3735294A
US3735294A US00175650A US3735294DA US3735294A US 3735294 A US3735294 A US 3735294A US 00175650 A US00175650 A US 00175650A US 3735294D A US3735294D A US 3735294DA US 3735294 A US3735294 A US 3735294A
Authority
US
United States
Prior art keywords
printed circuit
circuit board
conductors
relay
movable contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00175650A
Inventor
J Altmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telephon und Telegraphen Fabriks AG Kapsch und Soehne
Original Assignee
Telephon und Telegraphen Fabriks AG Kapsch und Soehne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT782170A external-priority patent/AT315285B/en
Application filed by Telephon und Telegraphen Fabriks AG Kapsch und Soehne filed Critical Telephon und Telegraphen Fabriks AG Kapsch und Soehne
Application granted granted Critical
Publication of US3735294A publication Critical patent/US3735294A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H67/00Electrically-operated selector switches
    • H01H67/22Switches without multi-position wipers
    • H01H67/26Co-ordinate-type selector switches not having relays at cross-points but involving mechanical movement, e.g. cross-bar switch, code-bar switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/24Contacts characterised by the manner in which co-operating contacts engage by abutting with resilient mounting
    • H01H1/245Spring wire contacts

Definitions

  • ABSTRACT Disclosed is a switching assembly including a plurality of relay elements arranged on a printed circuit board.
  • Each relay element has a plurality of movable contacts with anchored ends projecting through the circuit board, and anarray of parallel wires supported between the movable contacts to form fixed contacts of the relay element, The free ends of the wires are bent towards and projecting through the circuit board to be soldered together with the projecting ends of the movable contacts, to assigned strip conductors of the printed circuit.
  • MULTI-CONTACT TERMINAL SUPPORT ASSEMBLY FOR AN ELECTROMAGNETIC RELAY This invention relates to a multi-contact terminal support assembly for an electromagnetic relay.
  • the assembly may form part of a coupling panel on a printed circuit board.
  • Coupling panels are used, for example, in telephone technology for interconnecting voice paths and control paths.
  • each set of contacts is actuated by an individual relay.
  • These relays are known to be effective and reliable. After each relay has been mounted on the printed circuit board its contact terminals, including the coil terminals, are connected to the printed circuit conductors on the printed circuit board.
  • One alternative construction uses a co-ordinate system with multiple switches known as mini-switches. These devices have movable wire contacts permanently bonded to the printed circuit conductors. Fixed contacts are in the form of an array of conductor wires, which are also connected to the printed circuit conductors. lnterconnections are obtained by means of transverse, relay actuated co-ordinate system selector bars which selectively engage the movable contacts with the conductor wires of the array.
  • each relay must have all the necessary fixed and movable contacts, each of which must be individually bonded to the printed circuit board. This involves the use of comparatively costly relays, which consume a great deal of space. The wiring process is tedious and time consuming.
  • mini-switches has the advantage that only the movable contacts need to be bonded individually to the printed circuit. Each conductor in the array of fixed conductor wires will be common to each of the switches in a row and it is therefore only necessary to bond each conductor to the printed circuit.
  • mini-switches have the disadvantage that the selection of each individual coupling contact requires two selection processes. This involves movements of comparatively large masses, that is to say the co-ordinate system selector bars themselves together with all the engaged contacts. Consequently the switching is relatively slow.
  • a further disadvantage of the mini-switches is that each mini-switch is constructed for a coupling panel of the specified size. It is not possible to adapt the size of the coupling panel to suit varying requirements.
  • a multicontact terminal support assembly for an electromagnetic relay includes an insulating support bracket having a pair of substantially perpendicular arms, a plurality of resiliently movable contacts anchored in a first arm of the bracket with the anchored end projecting through the bracket such that the movable contact terminals are formed beneath the bracket, the second arm of the bracket including a series of notches along its outer edge so arranged that an array of parallel conductors may be supported in the said notches to form fixed contacts for each of the said resiliently movable contacts.
  • the movable contacts are linked by an actuator responsive to energization of the relay coil to bring the movable contacts into engagement with the array of parallel conductors when the conductors are supported in the notches.
  • the required number of support brackets are placed side by side on a printed circuit board with the second arm substantially perpendicular to the planeof the board, and the array of conductor wires is then extended over and along the resulting row of brackets.
  • the necessary connections to the printed circuit conductors are then made by soldering the contact terminals to the printed circuit conductors.
  • the ends of the movable contacts projecting through the first arm of the bracket also project through the printed circuit board before being soldered on the other side of the board to the strip conductors of the printed circuit.
  • Each wire in the array of conductor wires will be common to all the sets of contacts in a complete row so that the fixed contacts need not be individually soldered to the printed circuit board.
  • Several rows of the support brackets may be mounted parallel to each other so that the movable resilient contacts may be connected together in lines by strip conductors printed .on the printed circuit board.
  • FIG. 1 is a three-dimensional view of an electromagnetic relay.
  • FIG. 2 is a longitudinal section through the relay shown in FIG. 1.
  • FIG. 3 shows diagrammatically a part of a coupling panel, showing two rows of relays mounted parallel to each other on a printed-circuit board.
  • the relay shown in FIG. 1 and 2 is mounted on a printed-circuit board 1.
  • the relay consists of a magnet 2, with a relay coil 3 and a relay armature 4, the armature acting on an actuator bar 5 which itself actuates a number of spring contacts 7.
  • the other end of the actuator bar 5 is acted on by a return spring 6.
  • the entire magnet system is mounted on an insulating L-shaped bracket 8 having a horizontal base 8a which rests in contact with the printed circuit board 1.
  • the ends of the spring contacts 7 penetrate through the base 8a and have solder contact terminals 7a projecting from the lower surface of the printed circuit board 1, where they are soldered to strip conductors 9 of the printedcircuit.
  • the terminal ends 3a of the relay coil 3 project below the printed-circuit board 1, where they are soldered to the strip conductors 10 which carry the energizing current for the relay coil 3.
  • the vertical support 8b of the L-shaped bracket 8 has a number of notches l 1 in its upper edge for supporting an array of conductor wires 12 which act as fixed counter contacts for the spring contacts 7.
  • the spring contacts 7 are held by the return spring 6 away from the array of conductor wires 12, that is to say the multiple contacts are all held open.
  • the relay armature 4 rotates, closing the air gap between the armature and the magnet and pushing the actuator bar 5 against the influence of the return spring 6, so that all the spring contacts 7 are brought into contact with the array of conductor wires 12.
  • the ends 12a of the conductor wires 12 are bent downwards and penetrate through the printed-circuit board 1. Each end is then soldered to the appropriate printed strip conductor of the printed circuit. Assuming that there are several parallel rows of relays the spring contacts are conveniently connected together in lines by printed strip conductors.
  • the printed circuit board is preferably doubly printed.
  • a coupling panel comprising:
  • each bracket having a pair of substantially perpendicular arms, a first of the said arms of each bracket resting on the printed circuit board a plurality of resiliently movable contacts anchored in each of said first arms with the anchored ends projecting through said arm and through said printed circuit board and being bonded to strip conductors of the printed circuit,
  • each bracket including a series of notches along its outer edge, an array of parallel conductors supported in the said notches to form fixed contacts for each of the said resiliently movable contacts, and having free ends thereof directed to and projecting through said printed circuit board and being bonded to strip conductors of the printed circuit.
  • a coupling panel according to claim 1 including several parallel rows of the said brackets, the movable contacts of adjacent brackets in different rows being arranged in line with one another such that the movable contact terminals may be interconnected by transverse rows of strip conductors on the printed circuit board.
  • a multi-contact switching assembly comprising in combination,
  • At least one electromagnetic relay element including an insulating support including two angularly off-set interconnected arms one of said arms resting on said printed circuit board,
  • a plurality of resiliently movable contacts each having an end portion anchored in said one arm, the ends of said anchored end portions projecting through said one arm and through said board forming a corresponding plurality of contact terminals below said board,
  • the other arm including supporting means operable to support said conductors substantially parallel and spaced above said board,
  • said conductors forming fixed contacts engageable with respective of said resiliently movable contacts and including ends projecting through said board forming a corresponding array of contact terminals below said board,
  • said contact terminals being electrically interconnected to said printed circuit.
  • a switching assembly further comprising; an electromagnetic relay coil supported on said bracket, the terminals of the relay coil projecting through said first arm in line with said movable contact terminals,
  • an actuator linking said movable contacts the actuator being linked to the armature of the said relay such that, with the array of conductors supported in the said notches, the movable contacts engage a respective conductor in response to energization of the relay coil.
  • a coupling device including a row of electromagnetic relay elements and a printed circuit board
  • each of said mounting members supporting all active parts of a relay element such as a relay coil, a relay armature, movable contacts with their actuator bars and biasing means, said active parts including electrical terminals projecting through said mounting member and through said printed circuit board and being bonded to assigned printed conductors of said printed circuit board,
  • each angular arm a series of recesses defined in an edge portion of each angular arm, said recesses in one relay element being in alignment with corresponding recesses in the remaining relay elements in said row,

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)
  • Switch Cases, Indication, And Locking (AREA)
  • Structure Of Telephone Exchanges (AREA)

Abstract

Disclosed is a switching assembly including a plurality of relay elements arranged on a printed circuit board. Each relay element has a plurality of movable contacts with anchored ends projecting through the circuit board, and an array of parallel wires supported between the movable contacts to form fixed contacts of the relay element. The free ends of the wires are bent towards and projecting through the circuit board to be soldered together with the projecting ends of the movable contacts, to assigned strip conductors of the printed circuit.

Description

Unite States Patent [191 Altmann 1 MULTl-CONTACT TERMINAL SUPPORT ASSEMBLY FOR AN ELECTROMAGNETIC RELAY [75] Inventor: Josef Altrnann, Wien-Atzgersdorf,
Austria [73] Assignee: Telephon-und Telegraphen-Fabriks- Aktiengesellschaft-Kapsch & Sohne,
Wien, Austria [22] Filed: Aug. 27, 1971 [21] Appl. No.: 175,650
[30] Foreign Application Priority Data Aug. 28, 1970 Austria ..A 7821/70 [52] US. Cl ..335/134, 335/129 [51] Int. Cl. ..HOlh 63/02 [58] Field of Search ..335/134, 135, 112,
335/106,107,108,l09,l10,l11,l13,114, l15,1l6,117,162,129, 202; 200/166 J; 317/122 I May 22, 1973 [56] References Cited UNITED STATES PATENTS 3,053,952 9/1962 Kohler ..335/179 3,083,280 3/1963 Ungar ..335/162 2,550,241 4/1951 Graybill.... ..335/162 3,555,228 l/l97l Ohno ..200/166 J Primary Examiner1-1arold Broome Attorney-Emest F. Marmorek [5 7] ABSTRACT Disclosed is a switching assembly including a plurality of relay elements arranged on a printed circuit board. Each relay element has a plurality of movable contacts with anchored ends projecting through the circuit board, and anarray of parallel wires supported between the movable contacts to form fixed contacts of the relay element, The free ends of the wires are bent towards and projecting through the circuit board to be soldered together with the projecting ends of the movable contacts, to assigned strip conductors of the printed circuit.
7 Claims, 3 Drawing Figures Patented May 22, 1973 3,135,294
2 Sheets-Sheet 1 Patented May 22, 1973 3,735,294
2 Sheets-Sheet 2 v FIG. 3
MULTI-CONTACT TERMINAL SUPPORT ASSEMBLY FOR AN ELECTROMAGNETIC RELAY This invention relates to a multi-contact terminal support assembly for an electromagnetic relay. In particular the assembly may form part of a coupling panel on a printed circuit board. Coupling panels are used, for example, in telephone technology for interconnecting voice paths and control paths.
In one known coupling panel each set of contacts is actuated by an individual relay. These relays are known to be effective and reliable. After each relay has been mounted on the printed circuit board its contact terminals, including the coil terminals, are connected to the printed circuit conductors on the printed circuit board. One alternative construction uses a co-ordinate system with multiple switches known as mini-switches. These devices have movable wire contacts permanently bonded to the printed circuit conductors. Fixed contacts are in the form of an array of conductor wires, which are also connected to the printed circuit conductors. lnterconnections are obtained by means of transverse, relay actuated co-ordinate system selector bars which selectively engage the movable contacts with the conductor wires of the array.
lf individual relays are used, each relay must have all the necessary fixed and movable contacts, each of which must be individually bonded to the printed circuit board. This involves the use of comparatively costly relays, which consume a great deal of space. The wiring process is tedious and time consuming.
The use of mini-switches has the advantage that only the movable contacts need to be bonded individually to the printed circuit. Each conductor in the array of fixed conductor wires will be common to each of the switches in a row and it is therefore only necessary to bond each conductor to the printed circuit. However the mini-switches have the disadvantage that the selection of each individual coupling contact requires two selection processes. This involves movements of comparatively large masses, that is to say the co-ordinate system selector bars themselves together with all the engaged contacts. Consequently the switching is relatively slow. A further disadvantage of the mini-switches is that each mini-switch is constructed for a coupling panel of the specified size. It is not possible to adapt the size of the coupling panel to suit varying requirements.
In accordance with the present invention a multicontact terminal support assembly for an electromagnetic relay includes an insulating support bracket having a pair of substantially perpendicular arms, a plurality of resiliently movable contacts anchored in a first arm of the bracket with the anchored end projecting through the bracket such that the movable contact terminals are formed beneath the bracket, the second arm of the bracket including a series of notches along its outer edge so arranged that an array of parallel conductors may be supported in the said notches to form fixed contacts for each of the said resiliently movable contacts. In an electromagnetic relay embodying the invention, the movable contacts are linked by an actuator responsive to energization of the relay coil to bring the movable contacts into engagement with the array of parallel conductors when the conductors are supported in the notches.
To construct a coupling panel of any desired size the required number of support brackets are placed side by side on a printed circuit board with the second arm substantially perpendicular to the planeof the board, and the array of conductor wires is then extended over and along the resulting row of brackets. The necessary connections to the printed circuit conductors are then made by soldering the contact terminals to the printed circuit conductors. Preferably the ends of the movable contacts projecting through the first arm of the bracket also project through the printed circuit board before being soldered on the other side of the board to the strip conductors of the printed circuit. Each wire in the array of conductor wires will be common to all the sets of contacts in a complete row so that the fixed contacts need not be individually soldered to the printed circuit board.
Several rows of the support brackets may be mounted parallel to each other so that the movable resilient contacts may be connected together in lines by strip conductors printed .on the printed circuit board.
One example will now be described with reference to the accompanying drawings in which:
FIG. 1 is a three-dimensional view of an electromagnetic relay.
FIG. 2 is a longitudinal section through the relay shown in FIG. 1.
FIG. 3 shows diagrammatically a part of a coupling panel, showing two rows of relays mounted parallel to each other on a printed-circuit board.
The relay shown in FIG. 1 and 2 is mounted on a printed-circuit board 1. The relay consists of a magnet 2, with a relay coil 3 and a relay armature 4, the armature acting on an actuator bar 5 which itself actuates a number of spring contacts 7. The other end of the actuator bar 5 is acted on by a return spring 6. The entire magnet system is mounted on an insulating L-shaped bracket 8 having a horizontal base 8a which rests in contact with the printed circuit board 1. The ends of the spring contacts 7 penetrate through the base 8a and have solder contact terminals 7a projecting from the lower surface of the printed circuit board 1, where they are soldered to strip conductors 9 of the printedcircuit. Similarly, the terminal ends 3a of the relay coil 3 project below the printed-circuit board 1, where they are soldered to the strip conductors 10 which carry the energizing current for the relay coil 3.
The vertical support 8b of the L-shaped bracket 8 has a number of notches l 1 in its upper edge for supporting an array of conductor wires 12 which act as fixed counter contacts for the spring contacts 7.
When the relay is de-energized, the spring contacts 7 are held by the return spring 6 away from the array of conductor wires 12, that is to say the multiple contacts are all held open. As soon as current flows through the relay coil 3 the relay armature 4 rotates, closing the air gap between the armature and the magnet and pushing the actuator bar 5 against the influence of the return spring 6, so that all the spring contacts 7 are brought into contact with the array of conductor wires 12.
In the coupling panel illustrated in FIG. 3 several rows of relays are mounted on a printed-circuit board 1. The contact terminals of the spring contacts and the terminal leads of the relay coils project downwards through the printed-circuit board (as shown in FIG. 2) and are soldered to the strip conductors of the printedcircuit. The several arrays of stationary conductor wires 12 rest in the notches 1 1 in the upper edges of the vertical supports 8b of the L-shaped brackets, the
notches 11 being in line with each other so that the conductor wires 12 form parallel straight lines. The ends 12a of the conductor wires 12 are bent downwards and penetrate through the printed-circuit board 1. Each end is then soldered to the appropriate printed strip conductor of the printed circuit. Assuming that there are several parallel rows of relays the spring contacts are conveniently connected together in lines by printed strip conductors. The printed circuit board is preferably doubly printed.
I claim:
1. A coupling panel comprising:
a plurality of insulating support brackets placed side by side on a printed circuit board, each bracket having a pair of substantially perpendicular arms, a first of the said arms of each bracket resting on the printed circuit board a plurality of resiliently movable contacts anchored in each of said first arms with the anchored ends projecting through said arm and through said printed circuit board and being bonded to strip conductors of the printed circuit,
the second arm of each bracket including a series of notches along its outer edge, an array of parallel conductors supported in the said notches to form fixed contacts for each of the said resiliently movable contacts, and having free ends thereof directed to and projecting through said printed circuit board and being bonded to strip conductors of the printed circuit.
2. A coupling panel according to claim 1 including several parallel rows of the said brackets, the movable contacts of adjacent brackets in different rows being arranged in line with one another such that the movable contact terminals may be interconnected by transverse rows of strip conductors on the printed circuit board.
3. A multi-contact switching assembly comprising in combination,
a board including a printed electric circuit,
at least one electromagnetic relay element including an insulating support including two angularly off-set interconnected arms one of said arms resting on said printed circuit board,
a plurality of resiliently movable contacts each having an end portion anchored in said one arm, the ends of said anchored end portions projecting through said one arm and through said board forming a corresponding plurality of contact terminals below said board,
an array of conductors,
the other arm including supporting means operable to support said conductors substantially parallel and spaced above said board,
said conductors forming fixed contacts engageable with respective of said resiliently movable contacts and including ends projecting through said board forming a corresponding array of contact terminals below said board,
said contact terminals being electrically interconnected to said printed circuit.
4. The assembly according to claim 3, wherein said supporting means is a series of notches arranged along the outer edge of said second arm.
5. A switching assembly according to claim 4 further comprising; an electromagnetic relay coil supported on said bracket, the terminals of the relay coil projecting through said first arm in line with said movable contact terminals,
an actuator linking said movable contacts, the actuator being linked to the armature of the said relay such that, with the array of conductors supported in the said notches, the movable contacts engage a respective conductor in response to energization of the relay coil.
6. A coupling device including a row of electromagnetic relay elements and a printed circuit board,
comprising in combination, insulating mounting members resting on said printed circuit board, each of said mounting members supporting all active parts of a relay element such as a relay coil, a relay armature, movable contacts with their actuator bars and biasing means, said active parts including electrical terminals projecting through said mounting member and through said printed circuit board and being bonded to assigned printed conductors of said printed circuit board,
insulating angular arms associated with respective mounting members and each extending at sides of individual relay elements,
a series of recesses defined in an edge portion of each angular arm, said recesses in one relay element being in alignment with corresponding recesses in the remaining relay elements in said row,
an array of transverse wires inserted into said recesses, respectively, the intermediate portion of each wire forming thereby fixed contacts for said movable contacts in respective relay elements and the free end portions of said wires being directed to and projecting through said printed circuit board and being bonded to assigned printed conductors on said board.
7. The coupling device according to claim 6, wherein several rows of said electromagnetic relay elements are arranged parallel to one another on said printed circuit board, whereby electrical terminals of corresponding movable contacts in respective rows are connected by linear printed conductors on said printed circuit board. a:

Claims (7)

1. A coupling panel comprising: a plurality of insulating support brackets placed side by side on a printed circuit board, each bracket having a pair of substantially perpendicular arms, a first of the said arms of each bracket resting on the printed circuit board a plurality of resiliently movable contacts anchored in each of said first arms with the anchored ends projecting through said arm and through said printed circuit board and being bonded to strip conductors of the printed circuit, the second arm of each bracket including a series of notches along its outer edge, an array of parallel conductors supported in the said notches to form fixed contacts for each of the said resiliently movable contacts, and having free ends thereof directed to and projecting through said printed circuit board and being bonded to strip conductors of the printed circuit.
2. A coupling panel according to claim 1 including several parallel rows of the said brackets, the movable contacts of adjacent brackets in different rows being arranged in line with one another such that the movable contact terminals may be interconnected by transverse rows of strip conductors on the printed circuit board.
3. A multi-contact switching assembly comprising in combination, a board including a printed electric circuit, at least one electromagnetic relay element including an insulating support including two angularly off-set interconnected arms one of said arms resting on said printed circuit board, a plurality of resiliently movable contacts each having an end portion anchored in said one arm, the ends of said anchored end portions projecting through said one arm and through said board forming a corresponding plurality of contact terminals below said board, an array of conductors, the other arm including supporting means operable to support said conductors substantially parallel and spaced above said board, said conductors forming fixed contacts engageable with respective of said resiliently movable contacts and including ends projecting through said board forming a corresponding array of contact terminals below said board, said contact terminals being electrically interconnected to said printed circuit.
4. The assembly according to claim 3, wherein said supporting means is a series of notches arranged along the outer edge of said second arm.
5. A switching assembly according to claim 4 further comprising; an electromagnetic relay coil supported on said bracket, the terminals of the relay coil projecting through said first arm in line with said movable contact terminals, an actuator linking said movable contacts, the actuator being linked to the armature of the said relay such that, with the array of conductors supported in the said notches, the movable contacts engage a respective conductor in response to energization of the relay coil.
6. A coupling device including a row of electromagnetic relay elements and a printed circuit board, comprising in combination, insulating mounting members resting on said printed circuit board, each of said mounting members supporting all active parts of a relay element such as a relay coil, a relay armature, movable contacts with their actuator bars and biasing means, said active parts including electrical terminals projecting tHrough said mounting member and through said printed circuit board and being bonded to assigned printed conductors of said printed circuit board, insulating angular arms associated with respective mounting members and each extending at sides of individual relay elements, a series of recesses defined in an edge portion of each angular arm, said recesses in one relay element being in alignment with corresponding recesses in the remaining relay elements in said row, an array of transverse wires inserted into said recesses, respectively, the intermediate portion of each wire forming thereby fixed contacts for said movable contacts in respective relay elements and the free end portions of said wires being directed to and projecting through said printed circuit board and being bonded to assigned printed conductors on said board.
7. The coupling device according to claim 6, wherein several rows of said electromagnetic relay elements are arranged parallel to one another on said printed circuit board, whereby electrical terminals of corresponding movable contacts in respective rows are connected by linear printed conductors on said printed circuit board.
US00175650A 1970-08-28 1971-08-27 Multi-contact terminal support assembly for an electromagnetic relay Expired - Lifetime US3735294A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT782170A AT315285B (en) 1970-08-28 1970-08-28 Electromagnetic relay element for setting up a coupling field on a circuit board as well as a coupling field built up with it

Publications (1)

Publication Number Publication Date
US3735294A true US3735294A (en) 1973-05-22

Family

ID=3599784

Family Applications (1)

Application Number Title Priority Date Filing Date
US00175650A Expired - Lifetime US3735294A (en) 1970-08-28 1971-08-27 Multi-contact terminal support assembly for an electromagnetic relay

Country Status (6)

Country Link
US (1) US3735294A (en)
BE (1) BE771668A (en)
CH (1) CH542508A (en)
DE (1) DE2140777C3 (en)
FR (1) FR2104889B1 (en)
GB (1) GB1314757A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549108B2 (en) * 2000-04-03 2003-04-15 Elesta Relays Gmbh Relay
US20100109821A1 (en) * 2008-11-04 2010-05-06 Fujitsu Component Limited Assembly of electromagnetic relay and circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2550241A (en) * 1945-06-29 1951-04-24 Automatic Elect Lab Crossbar switching device
US3053952A (en) * 1959-11-07 1962-09-11 Telefunken Gmbh Switching device
US3083280A (en) * 1957-11-16 1963-03-26 Industriselskabet Kristian Kir Teletechnical circuit comprising relays or relay selectors
US3555228A (en) * 1968-04-13 1971-01-12 Nippon Musical Instruments Mfg Contact spring synchronizing switch assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2550241A (en) * 1945-06-29 1951-04-24 Automatic Elect Lab Crossbar switching device
US3083280A (en) * 1957-11-16 1963-03-26 Industriselskabet Kristian Kir Teletechnical circuit comprising relays or relay selectors
US3053952A (en) * 1959-11-07 1962-09-11 Telefunken Gmbh Switching device
US3555228A (en) * 1968-04-13 1971-01-12 Nippon Musical Instruments Mfg Contact spring synchronizing switch assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549108B2 (en) * 2000-04-03 2003-04-15 Elesta Relays Gmbh Relay
US20100109821A1 (en) * 2008-11-04 2010-05-06 Fujitsu Component Limited Assembly of electromagnetic relay and circuit board
US8228143B2 (en) * 2008-11-04 2012-07-24 Fujitsu Component Limited Assembly of electromagnetic relay and circuit board

Also Published As

Publication number Publication date
GB1314757A (en) 1973-04-26
BE771668A (en) 1971-12-31
DE2140777A1 (en) 1972-03-02
FR2104889A1 (en) 1972-04-21
FR2104889B1 (en) 1976-09-03
DE2140777C3 (en) 1973-11-08
CH542508A (en) 1973-09-30
DE2140777B2 (en) 1973-04-12

Similar Documents

Publication Publication Date Title
US3240885A (en) Multiple switching apparatus
US2963626A (en) Control systems and apparatus
US3157751A (en) Sliding switch construction
US3811102A (en) Relay
US3735294A (en) Multi-contact terminal support assembly for an electromagnetic relay
US2447010A (en) Crossbar switch
US2516772A (en) Cross-wire switch
US2341029A (en) Switching mechanism
US3059153A (en) Printed circuit board restraining means
US2137514A (en) Switching apparatus
US2137503A (en) Switching apparatus
US2965739A (en) Contact spring set
US2853578A (en) Electric contact-making devices
US2790875A (en) Relay incorporating printed circuit
US2729706A (en) Cross-bar switch
US3376526A (en) Electrical relay and contact arrangement therefor
US2550241A (en) Crossbar switching device
US3523262A (en) Relay arrangements with reed contacts
US3239639A (en) Ribbon harness type contact spring assembly for relays
US2606958A (en) Multicontact relays
US2816173A (en) Device of open-wire multiple conductors
US2917587A (en) Crossbar switch
US5920049A (en) Crosspoint matrix switch with ball actuating members for contact mechanisms
US3297850A (en) Electrical contact assembly
US1515631A (en) Switching device