US3729317A - Photographic film with magnetic recording layer - Google Patents

Photographic film with magnetic recording layer Download PDF

Info

Publication number
US3729317A
US3729317A US00246013A US3729317DA US3729317A US 3729317 A US3729317 A US 3729317A US 00246013 A US00246013 A US 00246013A US 3729317D A US3729317D A US 3729317DA US 3729317 A US3729317 A US 3729317A
Authority
US
United States
Prior art keywords
binder
web
poly
cellulose nitrate
ethylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00246013A
Inventor
R Stimson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of US3729317A publication Critical patent/US3729317A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/22Subtractive cinematographic processes; Materials therefor; Preparing or processing such materials
    • G03C7/24Subtractive cinematographic processes; Materials therefor; Preparing or processing such materials combined with sound-recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum

Definitions

  • a magnetic recording member such as tape or striped motion picture film wherein a layer of ferromagnetic particles is bound on a synthetic resin web by a binder consisting essentially of cellulose nitrate in intimate mixture with a polymeric composition consisting essentially of, by weight, 50-80% vinylidene chloride, 230% acrylonitrile, and 060% of methyl methacrylate or acrylate or hydroxy propyl methacrylate.
  • This binder is especially good for poly(ethylene terephthalate) webs. Best adherence to a web is secured when the ferromagnetic particles and the above binder are deposited from an organic solvent wherein at least 8% of the solvent is N,N- dimethyl formamide or acetamide.
  • the present invention relates to applying a tightly adherent coating to a web of synthetic resin, particularly to a polymeric linear terephthalate ester film such as poly (ethylene terephthalate). More particularly, the invention is concerned with applying a tightly adherent coating of a magnetic recording composition to such a web in the form of photographic motion picture film or magnetic recording tape, and with the resulting product. Additionally, the invention relates to novel compositions that can be used for binding a magnetic material to such a web; and to a novel composition that can be used successfully for binding a magnetic material to both poly(ethylene terephthalate) webs and to cellulose ester webs.
  • Prior art Magnetic stripes have been successfully applied to photographic film having a cellulose ester base by employing the compositions described in U.S. Pat. No. 3,220,843. These compositions are particularly advantageous because they will strike through the antihalation layer normally present on photographic film and will adhere directly to the cellulose ester web rather than the antihalation layer itself. This is essential because the antihalation layer is normally dissolved off the web during the developing of the photographic film in alkaline solutions.
  • the removable antihalation and antistatic layer to which the magnetic striping is applied are those customarily used on polyester photographic films, which are removed from the film during processing in alkaline solutions. Such layers are disclosed in U.S. 2,976,168. Some polyester films carry a non-removable antistatic layer such as that disclosed in U.S. 3,437,484.
  • the magnetic striping composition must strike through either of these layers to 3,729,317 Patented Apr. 24, 1973 the base to obtain good adhesion. Sometimes the magnetic stripes are applied to the emulsion side of the film.
  • a magnetic recording composition to a poly(ethylene terephthalate) base, such as photographic film or a magnetic tape, is accomplished by applying the magnetic composition as a dispersion of ferromagnetic particles in a solvent-binder composition comprising in percents by weight:
  • a solvent phase comprising one or more vaporizable organic solvents, at least 8% of which is a lower N,N-dialkylamide of a lower aliphatic acid such as N,N- dimethyl formamide or N,N-dimethyl acetamide.
  • the polymeric composition When none of the acrylic or methacrylic ester is used, the polymeric composition is known as a copolymer; and when acrylic or methacrylic ester is used, the polymeric composition is known as a terpolymer.
  • the resinous binder phase (A) constitutes 5 to 40%; and the solvent phase (B) constitutes 60 to of the solvent-binder composition.
  • Preferred ranges within the broad operable ranges set forth above for the resinous binder phase are 50 to 70% of cellulose nitrate and 50 to 30% of the polymeric composition. In general the best results are secured when using a 1:1 ratio of cellulose nitrate to the polymeric composition in the resin phase; and when using at least about 30% of N,N-dimethyl formamide in the solvent phase.
  • Suitable essential organic solvents are a lower N,N-dialkyl amide of a lower aliphatic acid, for example, N.N-dimethyl formamide with or without N,N-dimethyl acetamide, which can be combined with other solvents such as 2-ethoxy ethanol, 2-butoxyethanol, methyl ethyl ketone, n-butanol or amyl acetate.
  • solvents such as 2-ethoxy ethanol, 2-butoxyethanol, methyl ethyl ketone, n-butanol or amyl acetate.
  • the small quantities of p-butanol in the examples accompany the cellulose nitrate as purchased, but this solvent is not essential to operability.
  • compositions can be used in the compositions to provide some desirable effects, without modifying the essential activity of the'principal ingredients.
  • surfactants and plasticizers can be included Without materially affecting adherence of the stripes.
  • the web of poly(ethylene terephthalate) is passed through a drying zone wherein the solvents evaporate, leaving on the web a layer of ferromagnetic particles embedded in a resinous binder mixture consisting essentially of cellulose nitrate, (advantageously 20 to 80%) and the polymeric composition (advantageously 80 to 20%) consisting essentially of 50 to 80% of vinylidene chloride, 2 to 30% of acrylonitrile, and 0 to 60% of lower alkyl unsubstituted or hydroxy substituted acrylic or methacrylic ester, all percents being by weight.
  • a resinous binder mixture consisting essentially of cellulose nitrate, (advantageously 20 to 80%) and the polymeric composition (advantageously 80 to 20%) consisting essentially of 50 to 80% of vinylidene chloride, 2 to 30% of acrylonitrile, and 0 to 60% of lower alkyl unsubstituted or hydroxy substituted acrylic or methacrylic ester, all percents
  • the finished stripes generally are about 0.4 mil thick and may be 12, 30, or 100 mils wide, whereas the film is much wider, e.g. 8 or 16 mm.
  • the aforementioned acrylic ester-containing terpolymers may be prepared by known methods such as emulsion polymerization or the like.
  • Especially useful terpolymers are those comprising vinylidene chloride, acrylonitrile, and unsubstituted or hydroxy substituted lower alkyl acrylic esters.
  • Particularly useful terpolymers have from about 50-80% vinylidene chloride, about 230% acrylonitrile and about l60% unsubstituted lower alkyl acrylic ester, especially wherein the lower alkyl acrylic ester may be a lower alkyl acrylate residue wherein the lower alkyl has 1-4 carbon atoms, e.g. methyl acrylate, ethyl acrylate, etc.
  • alk-prefix in alkacryla'te represents an alkyl group of 1-4 carbon atoms, e.g. methyl methacrylate, ethyl methacrylate, butyl methacrylate.
  • terpolymers are those containing an hydroxy substituted lower alkyl acrylic ester.
  • these hydroxy substituted lower alkyl acrylic esters are hydroxypropyl acrylate and hydroxypropyl methacrylate.
  • a particularly useful range is from about 5080% vinylidene chloride, about 230% acrylonitrile and about 160% hydroxy substituted lower alkyl acrylic ester.
  • the molecular weight of the resulting polymer may also be varied, but an especially useful molecular weight range is characterized by an inherent viscosity of from about 0.10 to 0.65, particularly from about 0.15 to 0.25 deciliter/ gram in N,N- dimethyl formamide.
  • the magnetic materials of the striping composition can vary in magnetic properties, such as permeability and coercivity. Ferromagnetic materials of well known types such as acicular magnetic iron oxide (gamma ferric oxide) can be used. Desirable properties can be obtained by varying the ingredients of magnetic compositions. Thus magnetizable alloys are useful, for instance, alloys with iron or copper, aluminum, nickel, cobalt, and carbon, one component thereof being non-magnetic in most cases.
  • the magnetic materials may be prepared as finely divided particles by various methods including the thermal decomposition of the corresponding metal carbonyls.
  • Iron prepared from iron carbonyl may be employed, but iron alloys prepared from mixtures of metal carbonyls may also be used as, for example, iron alloys with nickel, cobalt, chromium, tungsten, or molybdenum.
  • the methods of US. Pat. No. 2,694,656 may, for example, be used for preparing suitable ferromagnetic materials.
  • the IRN magnetic iron oxides manufactured by the C. K. Williams Co., 640 N. St. . Easton, Pa., are very useful, e.g. MO- 4030 magnetic iron oxide or MO-2035 magnetic iron oxide having higher coercivity.
  • the proportions of binder to magnetic oxide or its equivalent in the final dried coating may vary from about 1:1 to 1:5 by weight.
  • Example 6 Dispersion: Percent Gamma ferric oxide 30.5 Copolymer* 6.5
  • This dispersion would be useful for striping motion picture film subsequent to development; and would provide exceptional operating flexibility because it can be applied to both acetate and polyester films without requiring that the film types be sequestered before striping.
  • Example 10 Dispersion: Percent Gamma ferric oxide 23.6 T erpolymefi 5.2 40-60 sec. SS cellulose nitrate 2.6 300-500 sec. SS cellulose nitrate 2.6 Sorbitan tristearate 2.4 2-butoxyethanol 12.8 Methyl ethyl ketone 12.8 N,N-dimethylformamide 27.0 N,N-dimethylacetamide 9.0 n-B utyl alcohol 2.0
  • Example 12 Dispersion: Percent Gamma ferric oxide 25.1 Terpolymer 5.4 4060 sec. cellulose nitrate 5.4 Sorbitan tristearate 2.5 Methyl ethyl ketone 11.9 2-butoxyethanol 11.9 N,N-dimethylforrnamide 29.4 N,N-dimethylacetamide 6.6 n-butyl alcohol 1.8
  • dispersions wherein 40-60 second SS cellulose nitrate alone is the binder do not adhere to unsubbed polyester, or polyester having antihalation or antistatic coatings; and A second SS cellulose nitrate alone provides poor adherence to unsubbed polyester, and polyester having an antistatic coating.
  • compositions of the present inventions are the only ones which provide good adherence to all three types of polyester webs so that one dispersion formulation suffices for striping of the commonly produced types of polyester motion picture films.
  • a photographic film comprising a web of poly- (ethylene terephthalate) synthetic resin having photographic emulsion on a first surface, and having a magnetic recording layer in the form of at least one thin stripe adhering to a surface thereof, said layer comprising ferromagnetic particles in a binder,
  • binder comprising cellulose nitrate in intimate miX- ture with a polymeric composition comprising 50 to of vinylidene chloride, 2 to 30% of acrylonitrile, and 0 to 60% of an unsubstituted or hydroxy substituted lower alkyl acrylic or methacrylic ester, all percentages being by weight.
  • a photographic film in accordance with claim 4 wherein said layer is in the form of two thin stripes extending along said first surface adjacent both edges thereof.
  • a method for applying a magnetic stripe to a photographic film comprising a web of poly(ethylene terephthalate) synthetic resin having photographic emulsion on a first surface, said method comprising depositing such a stripe on a surface of said film from an organic solvent solution comprising ferromagnetic particles; and a solvent-binder composition comprising a resinous binder phase comprising 20 to 80% of cellulose nitrate, 80 to 20% of a polymeric composition comprising 50 to 80% of vinylidene chloride, 2 to 30% of acrylonitrile, and 0 to 60% of a lower alkyl unsubstituted or hydroxy substituted acrylic ester or methacrylic ester, and an organic solvent phase at least 8% of which is a lower N,N-dialkylamide of a lower aliphatic acid; and allowing said solvent phase to evaporate.
  • said web being a photographic film having emulsion on a first surface thereof, said stripe being deposited on said first surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

A MAGNETIC RECORDING MEMBER SUCH AS TAPE OTR STRIPED MOTION PICTURE FILM WHEREIN A LAYER OF FERROMAGNETIC PARTICLES IS BOUND ON A SYNTHETIC RESIN WEB BY A BINDER CONSISTING ESSENTIALLY OF CELLULOSE NITRATE IN INTIMATE MIXTURE WITH A POLYMERIC COMPOSITION CONSISTING ESSENTIALLY OF, BY WEIGHT, 50-80% VINYLIDENE CHLORIDE, 2-30% ACRYLONITRILE, AND 0-60% OF METHYL METHACRYLATE OR ACRYLATE OR HYDROXY PROPYL METHACRYLATE. THIS BINDER IS ESPECIALLY GOOD FOR POLY(ETHYLENE TEREPHTHALATE) WEBS. BEST ADHERENCE TO A WEB IS SECURED WHEN THE FERROMAGNETIC PARTICLES AND THE ABOVE BINDER ARE DEPOSITED FROM AN ORGANIC SOLVENT WHEREIN AT LEAST 8% OF THE SOLVENT IS N,NDIMETHYL FORMAMIDE OR ACETAMIDE.

Description

United States Patent i Int. Cl. G03c 1/84 U.S. C]. 96-84 R I 12 Claims ABSTRACT OF THE DISCLOSURE A magnetic recording member such as tape or striped motion picture film wherein a layer of ferromagnetic particles is bound on a synthetic resin web by a binder consisting essentially of cellulose nitrate in intimate mixture with a polymeric composition consisting essentially of, by weight, 50-80% vinylidene chloride, 230% acrylonitrile, and 060% of methyl methacrylate or acrylate or hydroxy propyl methacrylate. This binder is especially good for poly(ethylene terephthalate) webs. Best adherence to a web is secured when the ferromagnetic particles and the above binder are deposited from an organic solvent wherein at least 8% of the solvent is N,N- dimethyl formamide or acetamide.
BACKGROUND OF THE INVENTION Field of the invention The present invention relates to applying a tightly adherent coating to a web of synthetic resin, particularly to a polymeric linear terephthalate ester film such as poly (ethylene terephthalate). More particularly, the invention is concerned with applying a tightly adherent coating of a magnetic recording composition to such a web in the form of photographic motion picture film or magnetic recording tape, and with the resulting product. Additionally, the invention relates to novel compositions that can be used for binding a magnetic material to such a web; and to a novel composition that can be used successfully for binding a magnetic material to both poly(ethylene terephthalate) webs and to cellulose ester webs.
Prior art Magnetic stripes have been successfully applied to photographic film having a cellulose ester base by employing the compositions described in U.S. Pat. No. 3,220,843. These compositions are particularly advantageous because they will strike through the antihalation layer normally present on photographic film and will adhere directly to the cellulose ester web rather than the antihalation layer itself. This is essential because the antihalation layer is normally dissolved off the web during the developing of the photographic film in alkaline solutions.
When the web is poly(ethylene terephthalate), with or without an antihalation, layer or an antistaticlayer on the back of the film, I have found that the compositions of Pat. No. 3,220,843 do not adhere tightly, apparently because poly(ethylene terephthalate) is much more inert than cellulose esters.
The removable antihalation and antistatic layer to which the magnetic striping is applied are those customarily used on polyester photographic films, which are removed from the film during processing in alkaline solutions. Such layers are disclosed in U.S. 2,976,168. Some polyester films carry a non-removable antistatic layer such as that disclosed in U.S. 3,437,484. The magnetic striping composition must strike through either of these layers to 3,729,317 Patented Apr. 24, 1973 the base to obtain good adhesion. Sometimes the magnetic stripes are applied to the emulsion side of the film.
SUMMARY OF THE INVENTION In accordance with the present invention the tight adherence of a magnetic recording composition to a poly(ethylene terephthalate) base, such as photographic film or a magnetic tape, is accomplished by applying the magnetic composition as a dispersion of ferromagnetic particles in a solvent-binder composition comprising in percents by weight:
(A) a resinous binder phase which consists essentially of 20 to of low or high viscosity cellulose nitrate, in intimate mixture with 80 to 20% of a polymeric composition consisting essentially of 50 to 80% of vinylidene chloride, 2 to 30% of acrylonitrile, and 0 to 60% of a lower alkyl unsubstituted or hydroxy substituted acrylic or methacrylic ester, and
(B) A solvent phase comprising one or more vaporizable organic solvents, at least 8% of which is a lower N,N-dialkylamide of a lower aliphatic acid such as N,N- dimethyl formamide or N,N-dimethyl acetamide.
When none of the acrylic or methacrylic ester is used, the polymeric composition is known as a copolymer; and when acrylic or methacrylic ester is used, the polymeric composition is known as a terpolymer.
Advantageously, the resinous binder phase (A) constitutes 5 to 40%; and the solvent phase (B) constitutes 60 to of the solvent-binder composition.
Preferred ranges within the broad operable ranges set forth above for the resinous binder phase are 50 to 70% of cellulose nitrate and 50 to 30% of the polymeric composition. In general the best results are secured when using a 1:1 ratio of cellulose nitrate to the polymeric composition in the resin phase; and when using at least about 30% of N,N-dimethyl formamide in the solvent phase.
I have found that magnetic stripes or layers adhere with remarkable strength to a poly(ethylene terephthalate) web when my novel binder compositions are employed. I have found it particularly advantageous, when depositing one or more magnetic stripes on a poly-ethylene terephthalate) film base having an antihalation layer, for the binder materials and ferromagnetic particles to be dispersed in an easily vaporizable organic solvent or mixture of solvents which cause the composition to strike through the antihalation layer and adhere tightly to the poly(ethylene terephthalate) base material. Suitable essential organic solvents are a lower N,N-dialkyl amide of a lower aliphatic acid, for example, N.N-dimethyl formamide with or without N,N-dimethyl acetamide, which can be combined with other solvents such as 2-ethoxy ethanol, 2-butoxyethanol, methyl ethyl ketone, n-butanol or amyl acetate. The small quantities of p-butanol in the examples accompany the cellulose nitrate as purchased, but this solvent is not essential to operability.
Other materials can be used in the compositions to provide some desirable effects, without modifying the essential activity of the'principal ingredients. For example, surfactants and plasticizers can be included Without materially affecting adherence of the stripes.
After deposition of the magnetic compositions described above, the web of poly(ethylene terephthalate) is passed through a drying zone wherein the solvents evaporate, leaving on the web a layer of ferromagnetic particles embedded in a resinous binder mixture consisting essentially of cellulose nitrate, (advantageously 20 to 80%) and the polymeric composition (advantageously 80 to 20%) consisting essentially of 50 to 80% of vinylidene chloride, 2 to 30% of acrylonitrile, and 0 to 60% of lower alkyl unsubstituted or hydroxy substituted acrylic or methacrylic ester, all percents being by weight.
On striped motion picture film the finished stripes generally are about 0.4 mil thick and may be 12, 30, or 100 mils wide, whereas the film is much wider, e.g. 8 or 16 mm.
The aforementioned acrylic ester-containing terpolymers may be prepared by known methods such as emulsion polymerization or the like. Especially useful terpolymers are those comprising vinylidene chloride, acrylonitrile, and unsubstituted or hydroxy substituted lower alkyl acrylic esters. Particularly useful terpolymers have from about 50-80% vinylidene chloride, about 230% acrylonitrile and about l60% unsubstituted lower alkyl acrylic ester, especially wherein the lower alkyl acrylic ester may be a lower alkyl acrylate residue wherein the lower alkyl has 1-4 carbon atoms, e.g. methyl acrylate, ethyl acrylate, etc. or a lower alkyl alkacrylate, wherein the lower alkyl has l-4 carbon atoms, and where the alk-prefix in alkacryla'te represents an alkyl group of 1-4 carbon atoms, e.g. methyl methacrylate, ethyl methacrylate, butyl methacrylate.
Other especially useful terpolymers are those containing an hydroxy substituted lower alkyl acrylic ester. Examples of these hydroxy substituted lower alkyl acrylic esters are hydroxypropyl acrylate and hydroxypropyl methacrylate. A particularly useful range is from about 5080% vinylidene chloride, about 230% acrylonitrile and about 160% hydroxy substituted lower alkyl acrylic ester.
With respect to the above-described substituted and unsubstituted acrylic ester-containing terpolymers it will be appreciated that other ratios of the monomeric substituents may be used providing the products are sufiiciently soluble in the solvent stage. The molecular weight of the resulting polymer may also be varied, but an especially useful molecular weight range is characterized by an inherent viscosity of from about 0.10 to 0.65, particularly from about 0.15 to 0.25 deciliter/ gram in N,N- dimethyl formamide.
When using a copolymer instead of the terpolymer, the same technique is followed but the acrylic ester is omitted.
The magnetic materials of the striping composition can vary in magnetic properties, such as permeability and coercivity. Ferromagnetic materials of well known types such as acicular magnetic iron oxide (gamma ferric oxide) can be used. Desirable properties can be obtained by varying the ingredients of magnetic compositions. Thus magnetizable alloys are useful, for instance, alloys with iron or copper, aluminum, nickel, cobalt, and carbon, one component thereof being non-magnetic in most cases. The magnetic materials may be prepared as finely divided particles by various methods including the thermal decomposition of the corresponding metal carbonyls. Iron prepared from iron carbonyl may be employed, but iron alloys prepared from mixtures of metal carbonyls may also be used as, for example, iron alloys with nickel, cobalt, chromium, tungsten, or molybdenum. The methods of US. Pat. No. 2,694,656 may, for example, be used for preparing suitable ferromagnetic materials. The IRN magnetic iron oxides manufactured by the C. K. Williams Co., 640 N. St. .Easton, Pa., are very useful, e.g. MO- 4030 magnetic iron oxide or MO-2035 magnetic iron oxide having higher coercivity.
The proportions of binder to magnetic oxide or its equivalent in the final dried coating may vary from about 1:1 to 1:5 by weight.
PREFERRED EMBODIMENTS The following examples illustrate the principles of the invention in greater detail. In all of the examples the dispersions are ball-milled for 6 or 7 days or until the particle size of the magnetic iron oxide (7 ferric oxide in every example) is judged to be satisfactory. The dispersions are then coated on the antihalation coating of poly(ethylene terephthalate) motion picture film to form a narrow stripe adjacent to each edge of the film, the
solvents are allowed to evaporate, and the adhesion of the stripes is tested by (a) dry stripping wherein a sticky tape such as Scotch brand tape of the 3M Company is applied to the stripe and then pulled off; and (b) a caustic dip adhesion test wherein sample lengths of striped film are placed in aqueous NaOH solutions (.1 N and 2.5 N) and subjected to 1 minute of ultrasonic vibration. The samples are then washed and dried, and then subjected to the dry stripping test described in (a) above.
Example 1 Dispersion: Percent Gamma ferric oxide 31.5 Terpolymer (IV=;20, .54 and .68) 6.7
sec. SS cellulose nitrate (30% wet with alcohol) 6.7 2-ethoxyethanol 21.0 N,N-dimethylformamide 34.1
=*Methyl methacrylate 20%, vinylidene chloride 60%, acrylonitrile 207 Percent Binder of FinaLcoating final coating Terpolymer 15. 6 59 Cellulose acetate 10. 9 41 Gamma ferric oxide 73. 5
Good adherence to poly(ethylene terephthalate) web having a resin base antihalation layer.
Good adherence to poly(ethylene terephthalate) web having a resin base antihalation layer.
Example 3 Dispersion: Percent Gamma ferric oxide 31.0 Terpolymer (IV=.2O) 9.9
sec. SS cellulose nitrate (30% wet with alcohol) 4.8 2-ethoxyethanol 20.6 N,N-dimethylformamide 33.7
Same as Example 1.
Percent Binder of FinaLcoating final coating Cellulose nitrate 7. 7 25 Terpolymer 22. 3 75 Gamma ferric oxid 70.0
Good adherence to poly(ethylene terephthalate) Web having a resin base antihalation layer.
Good adherence to unsubbed poly(ethylene tereph thalate) web.
Example 4 Dispersion: Percent Gamma ferric oxide 31.3 Terpolymer* (IV=.20) 3.4
N,N-dimethylformamide 29.4
--'30% methyl acrylate, 66.5% vinylidene chloride, 3.5% acrylonitrile.
Percent Binder of FinaLcoating final coating Cellulose nitrate 15. 50 Terpolymer 15.0 50 Gamma ferric oxide 70.0
Good adherence to poly(ethylene terephthalate) web having resin base antihalation layer, to unsubbed poly (ethylene terephthalate) Web.
Example 6 Dispersion: Percent Gamma ferric oxide 30.5 Copolymer* 6.5
4 sec. SS cellulose nitrate (30% wet with alcohol) 9.3 2-ethoxyethanol 20.4 N,N-dimethylformamide 33.3
--75% vinylidene chloride, 25% acrylonitrile.
Percent Binder of Final coating final coating Cellulose nitrate-.. 15.0 50 Copolymer 15. 0 50 Gamma ferric oxid 70. O
Adherence same as in Example 5.
Example 7 Dispersion: Percent Gamma ferric oxide 26.1 Terpolymer (IV=.20) 5.7 40-60 sec. SS cellulose nitrate 5.7 2-ethoxyethanol 20:0 iN,N-dirnethylformamide 33.9 N,N-dimethylacetarnide 6.9 n-Butyl alcohol 1.7
*Same as Example '1.
Percent Binder of Final coating final coating Cellulose nitrate 15.2 60 Terpolymer 15. 2 50 Gamma ferric oxide 69. 6
Adherence same as in Example 5.
Example 8 Dispersion: Percent Gamma ferric oxide 24.0 Terpolymer* (IV=. 68) 6.0 40-60 sec. SS cellulose nitrate 6 .0 2-ethoxyethanol 12.0 Methyl ethyl ketone 12.0 N,N-dirnethylformamide 30.8 'N,N-dimethylacetamide 7.3 n-Butyl alcohol 1.9
*Same as Example 1.
Percent Binder of FinaLcoating final coating Cellulose nitrate 16. 7 50 Terpolymer 16. 7 50 Gamma ferric oxide 66. 6
Good adherence to poly(ethylene terephthalate) web having resin base antihalation layer or an antistatic layer.
Good adherence to poly(ethylene terephthalate) web having a resin base antihalation layer.
Good adherence to emulsion side of poly(ethylene terephthalate) web.
Good adherence also would be expected on cellulose triacetate film without excessive curl occurring, whereas more than 14% of N,N-dimethylformamide causes too much curl.
This dispersion would be useful for striping motion picture film subsequent to development; and would provide exceptional operating flexibility because it can be applied to both acetate and polyester films without requiring that the film types be sequestered before striping.
Example 10 Dispersion: Percent Gamma ferric oxide 23.6 T erpolymefi 5.2 40-60 sec. SS cellulose nitrate 2.6 300-500 sec. SS cellulose nitrate 2.6 Sorbitan tristearate 2.4 2-butoxyethanol 12.8 Methyl ethyl ketone 12.8 N,N-dimethylformamide 27.0 N,N-dimethylacetamide 9.0 n-B utyl alcohol 2.0
*Same as Example 1.
Percent Binder of FinaLcoating final coating 40-60 sec. SS cellulose nitrate 7. 6 25 300-500 sec. SS cellulose nitrate 7. 6 25 Terpolymer 16. 3 50 Gamma ferric oxide 69. 5
Good adherence to unsubbed, resin jet backed, and 10 antistatic backed poly(ethylene terephthalate).
Good adherence to emulsion side of poly(ethylene terephthalate) web.
Example 11 Dispersion: Percent 15 Gamma ferric Oxide 23.7
Terpolymer 4.1 300-500 sec. SS cellulose nitrate 6.2 Sorbitan tristearate 2.4 2-butoxyethano1 9.2 Methyl ethyl ketone 9.2 N,N-dimethylformamide 28.6 N,N-dimethylacetamide 14.0 n-butyl alcohol 2.6
*Same as Example 1.
Percent Binder 0 Final coating final coating Cellulose nitrate 18. 4 60 Terpolymer 12. 1 40 Gamma ferric oxide 69. 5
Good adherence to unsubbed, resin jet, and antistatic backed poly(ethylene terephthalate) web.
Good adherence to emulsion side of poly(ethylene terephthalate) web.
'Example 12 Dispersion: Percent Gamma ferric oxide 25.1 Terpolymer 5.4 4060 sec. cellulose nitrate 5.4 Sorbitan tristearate 2.5 Methyl ethyl ketone 11.9 2-butoxyethanol 11.9 N,N-dimethylforrnamide 29.4 N,N-dimethylacetamide 6.6 n-butyl alcohol 1.8
*Hydroxy propyl methacrylate 10%, vinylidene chloride 67.5% acrylonitrile 22.5%
Percent Binder of FinaLcoating final coating Terpolymer 15 60 Cellulose nitrate.. 15 50 Gamma. ferric oxid 70 Adherence is also good on poly(ethylene terephthalate) film base having an antistatic layer with the compositions of Examples 5, 6, 7, 8, 10, 11 and 12. Adherence is fair with the compositions of Examples 1, 2 and 4; and was not tested for Examples 3 and 9.
In contrast, when using similar copolymer and terpolymer compositions without cellulose nitrate, adherence to polyester film is not satisfactory.
On the other hand, dispersions wherein 40-60 second SS cellulose nitrate alone is the binder do not adhere to unsubbed polyester, or polyester having antihalation or antistatic coatings; and A second SS cellulose nitrate alone provides poor adherence to unsubbed polyester, and polyester having an antistatic coating.
Thus, it is evident that the compositions of the present inventions are the only ones which provide good adherence to all three types of polyester webs so that one dispersion formulation suffices for striping of the commonly produced types of polyester motion picture films.
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
I claim:
1. A photographic film comprising a web of poly- (ethylene terephthalate) synthetic resin having photographic emulsion on a first surface, and having a magnetic recording layer in the form of at least one thin stripe adhering to a surface thereof, said layer comprising ferromagnetic particles in a binder,
said binder comprising cellulose nitrate in intimate miX- ture with a polymeric composition comprising 50 to of vinylidene chloride, 2 to 30% of acrylonitrile, and 0 to 60% of an unsubstituted or hydroxy substituted lower alkyl acrylic or methacrylic ester, all percentages being by weight.
2. A photographic film in accordance with claim 1 wherein said at least one thin stripe extends along a second surface of said film opposite said first surface adjacent an edge thereof.
3. A photographic film in accordance with claim 2 wherein said layer is in the form of two thin stripes extending along said second surface adjacent both edges thereof.
4. A photographic film in accordance with claim 3 wherein said acrylic or methacryiic ester is present in an amount between 1 and 60%.
5. A photographic film in accordance with claim 4 wherein said layer is in the form of two thin stripes extending along said first surface adjacent both edges thereof.
6. A photographic film in accordance with claim 1 wherein said layer is in the form of at least one thin stripe on said first surface adjacent an edge thereof.
7. A photographic film in accordance with claim 1 wherein said binder consists essentially of 20 to 80% 0f cellulose nitrate and 80 to 20% of said polymeric composition.
8. A photographic film in accordance with claim 1 wherein said binder consists essentially of 50 to 70% of cellulose nitrate and 50 to 30% of said polymeric composition.
9. A photographic film in accordance with claim 1 wherein said acrylic or methacrylic ester is present in an amount between 1 and 60%.
10. A method for applying a magnetic stripe to a photographic film comprising a web of poly(ethylene terephthalate) synthetic resin having photographic emulsion on a first surface, said method comprising depositing such a stripe on a surface of said film from an organic solvent solution comprising ferromagnetic particles; and a solvent-binder composition comprising a resinous binder phase comprising 20 to 80% of cellulose nitrate, 80 to 20% of a polymeric composition comprising 50 to 80% of vinylidene chloride, 2 to 30% of acrylonitrile, and 0 to 60% of a lower alkyl unsubstituted or hydroxy substituted acrylic ester or methacrylic ester, and an organic solvent phase at least 8% of which is a lower N,N-dialkylamide of a lower aliphatic acid; and allowing said solvent phase to evaporate.
11. In a method in accordance with claim 10, depositing said stripe on a web of photographic film having photographic emulsion on a first surface, and a polymeric antihalation layer on the opposite surface thereof, said stripe being deposited on said opposite surface.
12. In a method in accordance with claim 10, said web being a photographic film having emulsion on a first surface thereof, said stripe being deposited on said first surface.
10 References Cited UNITED STATES PATENTS 3,220,843 11/1965 Lovick et a1. 96-84 5 3,470,021 9/1969 Hendricx et a1. l17235 3,554,794 1/1971 Geislel et al. 1l7-235 3,547,693 12/1970 Huguenard 117-235 FOREIGN PATENTS 10 1,049,628 11/1966 Great Britain 117-235 RONALD H. SMITH, Primary Examiner US. Cl. X.R.
15 9679, 87 R, 87 A; 117138.8 F, 161 C, 235
US00246013A 1972-04-20 1972-04-20 Photographic film with magnetic recording layer Expired - Lifetime US3729317A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24601372A 1972-04-20 1972-04-20

Publications (1)

Publication Number Publication Date
US3729317A true US3729317A (en) 1973-04-24

Family

ID=22928991

Family Applications (1)

Application Number Title Priority Date Filing Date
US00246013A Expired - Lifetime US3729317A (en) 1972-04-20 1972-04-20 Photographic film with magnetic recording layer

Country Status (1)

Country Link
US (1) US3729317A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB248916I5 (en) * 1972-05-01 1975-01-28
US3891444A (en) * 1973-06-04 1975-06-24 Agfa Gevaert Ag Motion picture film materials containing magnetic recording stripes
US4037251A (en) * 1974-05-15 1977-07-19 Thomson-Brandt Data carrier optically read out by transmission, and method of manufacturing said data carrier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB248916I5 (en) * 1972-05-01 1975-01-28
US3920862A (en) * 1972-05-01 1975-11-18 Eastman Kodak Co Process by which at least one stripe of one material is incorporated in a layer of another material
US3891444A (en) * 1973-06-04 1975-06-24 Agfa Gevaert Ag Motion picture film materials containing magnetic recording stripes
US4037251A (en) * 1974-05-15 1977-07-19 Thomson-Brandt Data carrier optically read out by transmission, and method of manufacturing said data carrier

Similar Documents

Publication Publication Date Title
KR920008220B1 (en) Coating compositions
JPH0249908B2 (en)
US3713887A (en) Magnetic recording member with binder therefor
US2976148A (en) Antistatic backing layers for photographic film
US3729317A (en) Photographic film with magnetic recording layer
US3857729A (en) Indicia receiving matte sheet materials having an outermost antistatic layer
US3808136A (en) Magnetic composition for deposit on sound recording tape or motion picture film
US3634137A (en) Magnetic recording medium
US3840374A (en) Motion picture film having a magnetic stripe
DE3143192A1 (en) DEVELOPER, METHOD AND CARRIER FOR ELECTROPHOTOGRAPHY
JPS58108537A (en) Light shading masking film
US4008088A (en) Motion picture film materials containing magnetic recording stripes
GB1504293A (en) Method of forming magnetic media
US3419420A (en) Magnetic coating compositions
US4003743A (en) Process for production of motion picture film with sound track containing p-toluenesulfonic acid and glacial acetic acid
US3852069A (en) Application of magnetic recording strips to motion picture film
US3999992A (en) Photosensitive element with antihalation layer and magnetic recording strips containing in-benzene disulfofluoride to crosslink antihalation layer
JPH01313572A (en) Antistatic coated resin article and its production
DE2424268A1 (en) METHOD OF APPLYING A MAGNETIC SOUND TRACK TO CINEMA FILM MATERIAL
JPS62223815A (en) Magnetic recording medium
JPS5841429A (en) Magnetic recording medium
JPS6275930A (en) Magnetic recording medium
JP2695647B2 (en) Magnetic recording media
JPH0481250B2 (en)
JPS6368676A (en) Antistatic film on surface of polyester