US3728107A - Additives for production of cast irons - Google Patents

Additives for production of cast irons Download PDF

Info

Publication number
US3728107A
US3728107A US00214961A US3728107DA US3728107A US 3728107 A US3728107 A US 3728107A US 00214961 A US00214961 A US 00214961A US 3728107D A US3728107D A US 3728107DA US 3728107 A US3728107 A US 3728107A
Authority
US
United States
Prior art keywords
silicon carbide
hardness
chromite
pelleted
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00214961A
Inventor
D Loricchio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Co
Original Assignee
Carborundum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carborundum Co filed Critical Carborundum Co
Application granted granted Critical
Publication of US3728107A publication Critical patent/US3728107A/en
Assigned to KENNECOTT CORPORATION reassignment KENNECOTT CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE DEC. 31, 1980 NORTH DAKOTA Assignors: BEAR CREEK MINING COMPANY, BEAR TOOTH MINING COMPANY, CARBORUNDUM COMPANY THE, CHASE BRASS & COPPER CO. INCORPORATED, KENNECOTT EXPLORATION, INC., KENNECOTT REFINING CORPORATION, KENNECOTT SALES CORPORATION, OZARK LEAD COMPANY, PLAMBEAU MINING CORPORATION, RIDGE MINING CORPORATION (ALL MERGED INTO)
Assigned to KENNECOTT MINING CORPORATION reassignment KENNECOTT MINING CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE DEC. 31, 1986. (SEE DOCUMENT FOR DETAILS) Assignors: KENNECOTT CORPORATION
Assigned to STANDARD OIL COMPANY, 200 PUBLIC SQUARE, CLEVELAND, OHIO 44114 A OHIO CORP. reassignment STANDARD OIL COMPANY, 200 PUBLIC SQUARE, CLEVELAND, OHIO 44114 A OHIO CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KENNECOTT MINING CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/006Making ferrous alloys compositions used for making ferrous alloys

Definitions

  • the homogenization of the microstructure improves the final product because of the uniform physical-chemical behavior of the workpiece in all the points thereof. There is also greater resistance to thermal shock in the finished piece.
  • the hardness may be controlled in order to obtain specific properties for various types of finished products. The hardness is controlled in order to:
  • the hardness and the homogenization have for some time been controlled by additives which are introduced together with the charge into cupolas or furnaces which process cast irons. Another technique normally used is to control the charges conveyed into furnaces by the addition of scrap iron. Pan (fore-crucible) additives are also used.
  • the invention relates to cast iron which is understood to include any carbon iron alloy containing more than 1.7% total carbon and, more particularly, up to about 4% carbon.
  • Such alloys may contain from 0.05 to 0.20% sulphur, from 0.5 to 3.0% silicon, from 0.50 to 1.0% manganese, and from 0.1 to 1.0% phosphorus and optionally other elements.
  • the present invention disclosed herein permits homogenizing of the microstructure of cast ice iron to increase the hardness of a piece to the desired point by the addition of silicon carbide pelleted with chromite (Fe O -Cr O and, with the addition of catalytically activated silicon carbide to produce cast iron with a homogenized microstructure with a lower hardness of the finished piece.
  • Additions of 050% silicon carbide pelleted with chromite has increased the hardness in such a way that the final product exceeded the desired specification (brake pans). Additions of only 0.10% silicon carbide pelleted with chromite noticeably improved the behavior of pieces of medium hardnesses.
  • the addition of 0.50% of catalytically activated silicon carbide lowers the hardness of the pieces.
  • the addition eliminates cementite hard points and facilitates the machining to thereby obtain a considerable improvement of the finished pieces.
  • the pieces had a lesser index of foundry defects, greater resistance to thermal shock, increase of mechanical strength to stress and compression, particularly in engine blocks.
  • silicon carbide pelleted with chromite and catalytical silicon carbide enables the production of pieces of high, medium and low hardness, with easy machinability and improved physical-chemical behavior from the same batch of cast iron. In all instances, the foundry (casting) defects were practically eliminated.
  • SILICON CARBIDE PELLETED WITH CHROMITE A highly activated silicon carbide having a surface area of about 15 to 33 square meters per gram is used.
  • the material preferably has a size grading which may vary from 80 mesh screen to impalpable powders or from 40 mesh Tyler screen to impalpable powders.
  • This material is combined with fine chromite of a size less than 40 mesh Tyler screen, ideally 150 mesh Tyler screen, in colloidal conditions in an aqueous highly thixotropic suspension which includes a surface-active ingredient.
  • the addition of the surfactant to silicon carbide facilities the penetration of the chromite into the pores of the crystals of this material. After curing the mass for 18 hours, it is pelletized by slowly extruding the cured material onto rotatory dishes.
  • a combination between chromite and silicon carbide is thus obtained with a maximum contact between the two materials.
  • a controlled pressure of more or less 15 kg./cm. of the extruded product and the adequate composition of the mixture aiford an appropriate mechanical strength to the pellets.
  • the thixo'tropic agent is a consistent gel which fiuidifies by intense agitation or stirring.
  • a surface-active agent is meant to include an organic surface-active compound capable of reducing the surface tension of mineral particles or to prevent repulsions by electrostatic forces.
  • organic surface-active compound capable of reducing the surface tension of mineral particles or to prevent repulsions by electrostatic forces.
  • anionic or nonionic character which do not introduce incompatible mineral elements such as organic sulphonates, particularly fatty alcohols, fatty acid condensation products, polyglycerine and polyglycol and fatty acid esters, alkylene oxide condensation products, especially ethylene oxide and the like are suitable.
  • Silicon carbide to chromite proportions may vary from 20% to 50% silicon carbide to 80% to 50% chromite.
  • the thixotropic ingredients are used in amounts ranging from 1 to 3%, while the surface-active ingredients for treating silicon carbide are used in an amount of approximately 0.50%.
  • Temporary binders such as sodium lignin sulphonate; sodium silicate and dextrine may be employed in the range of 0.50 to 1.50% by weight, but the presence thereof is not critical.
  • chromite does not sufier segregation, it is fully reduced and the binding or pick up of chromium can be foreseen with precision and the desired hardness of the finished piece can also be obtained with precision.
  • the size of the pellets can vary from approximately 4 0.50 cm. to approximately 3.5 cm. in diameter and can have up to approximately 2 diameters length. Stick form of 0.20 cm. by 0.50 cm. up to 2 cm. by 7 cm. have been found satisfactory.
  • a silicon carbide of high surface area up to 40 square meters per gram, less than mesh Tyler screen, in intimate mixture with lead chromate and potassium bichromate solution. After the solutions have been completely absorbed by the mass which optionally contains the above-mentioned binders and other ingredients with silicon carbide, the drying of the mixture is carried out in an abrasion resistant pulverization chamber. A reddish black powder is thus obtained, which is called component (A).
  • component (A) 20% or more of component (A) is mixed with silicon carbide of mixed crystallization (alpha and beta), which may also embody a single crystalline system, to complete a total of
  • the preformed mixture comprises 30% of a component (A) with 70% silicon carbide of mixed crystallization with a preferential size grading between 12 mesh and 80 mesh Tyler screens. Size gradings of from 6 mesh Tyler up to mesh Tyler screens may also be employed as maximum values. Percentages above 60% of component (A) with 40% of silicon carbide are violently reactive and may prove to be explosive.
  • component (A) Upon adding the thus obtained product to cast irons there initially occurs a rapid decomposition of component (A) which liberates a great number of calories, increases the temperature in loco and causes the decomposition of the silicon carbide crystals.
  • the silicon and carbon elements which are then free, deoxid-ized and liquefy the cast iron and disperse all of the microstructural elements, among which are graphite (elemental carbon) and cementite (Fe C).
  • silicon carbide By mixing with component (A), silicon carbide suffers a positive catalysis and becomes highly reactive.
  • An additive for use in the production of cast iron consisting essentially of a pelletized mixture of finely divided silicon carbide and chromite in the ratio of from 0.1 to 1.0 part silicon carbide to 1.0 part chromite.
  • pelletized mixture includes a binder in an amount of 0.50 to 1.50% by weight, a thixotropic gel in an amount of 1 to 3% by weight, and a surface-active agent in an amount of about 0.5% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

THE ADDITION OF SILICON VARBIDE PELLETED WITH CHROMITE TO MOLTEN IRON HAS BEEN FOUND TO HOMOGENIZE THE MICROSTRUCTURE TO CONTROL THE HARDNESS. AN ADDITION IN THE RANGE OF 0.10 T 1.0% SILICON CARBIDE PELLETED WITH CHROMITE INCREASES THE HARDNESS OF A CASTING. CATALYTICALLY ACTIVATED SILICON CARBIDE IN THE RANGE OF FROM 0.1 TO 1.5% BY WEIGHT HAS ALSO BEEN FOUND TO REDUCE THE HARDNESS OF AN IRON ALLOY. THE ADDITIONS ARE PREFERABLY MADE IN THE MOLTEN STAGE IMMEDIATELY SUBSEQUENT TO THE EXIT FROM THE FURNACE OR CUPOLA WHEN CASTING THE METAL IN THE PAN OR FORECRUCIBLE.

Description

United States Patent O 3,728,107 ADDITIVES FOR PRODUCTION OF CAST IRONS Domingos Loricchio, Sao Paulo, Brazil, assignor to The Carborundum Company, Niagara Falls, N.Y.
No Drawing. Original application Feb. 16, 1971, Ser. No. 115,694, now Patent No. 3,682,625, dated Aug. 8, 1972. Divided and this application Jan. 3, 1972, Ser. No. 214,961
Int. Cl. C22c 37/02, 37/04 U.S. Cl. 75-130 R 2 Clainis ABSTRACT OF THE DISCLOSURE This is a division of copending application Ser. No. 115,694, filed Feb. 16, 1971, now U.S. Pat. 3,682,625 which issued Aug. 8, 1972.
BACKGROUND OF THE INVENTION In the industrial processes for thecproduction of cast irons for most diverse purposes there are two technical problems of importance. These problems relate to the basic properties of an alloy for a particular use:
(1) to homogenize the microstructure; and (2) to control the hardness.
The homogenization of the microstructure improves the final product because of the uniform physical-chemical behavior of the workpiece in all the points thereof. There is also greater resistance to thermal shock in the finished piece. The hardness may be controlled in order to obtain specific properties for various types of finished products. The hardness is controlled in order to:
(a) facilitate the machinability; and (b) increase the hardness for pieces which will suffer attrition.
The hardness and the homogenization have for some time been controlled by additives which are introduced together with the charge into cupolas or furnaces which process cast irons. Another technique normally used is to control the charges conveyed into furnaces by the addition of scrap iron. Pan (fore-crucible) additives are also used.
BRIEF SUMMARY OF THE INVENTION The additive products and the processes disclosed herein are intended to permit the production of cast irons, improved in the above-indicated sense, with small additions of silicon carbide pelleted with chromite or of catalytic and highly reactive silicon carbide.
In general, the invention relates to cast iron which is understood to include any carbon iron alloy containing more than 1.7% total carbon and, more particularly, up to about 4% carbon. Such alloys may contain from 0.05 to 0.20% sulphur, from 0.5 to 3.0% silicon, from 0.50 to 1.0% manganese, and from 0.1 to 1.0% phosphorus and optionally other elements.
More particularly, the present invention disclosed herein permits homogenizing of the microstructure of cast ice iron to increase the hardness of a piece to the desired point by the addition of silicon carbide pelleted with chromite (Fe O -Cr O and, with the addition of catalytically activated silicon carbide to produce cast iron with a homogenized microstructure with a lower hardness of the finished piece.
In this way, a founder will work without worrying about either the furnace charge, the microstructure of the finished piece or the hardness of the final piece and can obtain cast irons of homogeneous structures and high or low hardnesses, according to their specific requirements. These results are obtained with small additions of the above-mentioned products during the casting of the metal from the furnace or fore-crucible (ladle). Furthermore, an operator can start from the same cast iron composition to produce a highly hard final product, or pieces of reduced hardness which are easy to machine.
DETAILED DESCRIPTION The following experimental data will serve to further illustrate the present invention.
The addition of approximately 0.20% silicon carbide pelleted with chromite increases the hardness of conventional iron alloys to thereby render them useful for the production of brake shoes, brake pans, milling cylinders and the like. In those cases where metal chromium has been added to the cast metal the resulting cast metal has been found suitable for the manufacture of milling cylinders.
Additions of 050% silicon carbide pelleted with chromite has increased the hardness in such a way that the final product exceeded the desired specification (brake pans). Additions of only 0.10% silicon carbide pelleted with chromite noticeably improved the behavior of pieces of medium hardnesses.
In all of the cited cases the increase of the hardness did not hamper the machinability of the piece, i.e., there was a homogenization of the microstructure, notwithstanding the increase of the hardness. This permitted an ease of machining of the cast pieces, either in the moulding, cutting, milling or trimming stage.
Normally, when the founder increases the hardness of the piece so-called hard points are formed which are chemically constituted by cementite Fe C. The additions of the silicon carbide pelleted with chromite increases the hardness of the alloy without producing cementite hard points. The addition homogenizes the microstructure Without segregating cementite, which is an iron carbide with 6.67% carbon and therefore richer in carbon than the matrix of the ferrous alloys, including usual steels.
The addition of 0.50% of catalytically activated silicon carbide lowers the hardness of the pieces. The addition eliminates cementite hard points and facilitates the machining to thereby obtain a considerable improvement of the finished pieces. The pieces had a lesser index of foundry defects, greater resistance to thermal shock, increase of mechanical strength to stress and compression, particularly in engine blocks.
Additions of 0.80% of catalytically activated silicon carbide have proved to have extraordinary effects for ingot moulds, while additions of 0.30% have given optirnum results for manufacturing cast pieces for machine construction industries and automobile industries (levers, foot levers, brackets, etc.).
The utilization of silicon carbide pelleted with chromite and catalytical silicon carbide enables the production of pieces of high, medium and low hardness, with easy machinability and improved physical-chemical behavior from the same batch of cast iron. In all instances, the foundry (casting) defects were practically eliminated.
The additives are obtained in the manner explained below.
SILICON CARBIDE PELLETED WITH CHROMITE A highly activated silicon carbide having a surface area of about 15 to 33 square meters per gram is used. The material preferably has a size grading which may vary from 80 mesh screen to impalpable powders or from 40 mesh Tyler screen to impalpable powders. This material is combined with fine chromite of a size less than 40 mesh Tyler screen, ideally 150 mesh Tyler screen, in colloidal conditions in an aqueous highly thixotropic suspension which includes a surface-active ingredient. The addition of the surfactant to silicon carbide facilities the penetration of the chromite into the pores of the crystals of this material. After curing the mass for 18 hours, it is pelletized by slowly extruding the cured material onto rotatory dishes. A combination between chromite and silicon carbide is thus obtained with a maximum contact between the two materials. A controlled pressure of more or less 15 kg./cm. of the extruded product and the adequate composition of the mixture aiford an appropriate mechanical strength to the pellets.
The thixo'tropic agent is a consistent gel which fiuidifies by intense agitation or stirring. There are various types or brands generally available based on synthetic polymers in a dispersing liquid.
A surface-active agent is meant to include an organic surface-active compound capable of reducing the surface tension of mineral particles or to prevent repulsions by electrostatic forces. For this purpose a number of commercial products of anionic or nonionic character which do not introduce incompatible mineral elements such as organic sulphonates, particularly fatty alcohols, fatty acid condensation products, polyglycerine and polyglycol and fatty acid esters, alkylene oxide condensation products, especially ethylene oxide and the like are suitable.
Silicon carbide to chromite proportions may vary from 20% to 50% silicon carbide to 80% to 50% chromite. The thixotropic ingredients are used in amounts ranging from 1 to 3%, while the surface-active ingredients for treating silicon carbide are used in an amount of approximately 0.50%. Temporary binders, such as sodium lignin sulphonate; sodium silicate and dextrine may be employed in the range of 0.50 to 1.50% by weight, but the presence thereof is not critical.
By this process a maximum contact between crystals of silicon carbide and chromite is achieved. The addition of this product to cast iron, results in an immediate decomposition of iron carbide Fe C or cementite. There is also an immediate and total reduction of chromite with an almost instantaneous presence of chromium, silicon and carbon elements in the body of the cast iron. While silicon and carbon cause the formation of an appeased or calmed-down ambient around the chromium element, the latter dissolves integrally in the cast iron and increases its hardness.
Separate additions of silicon carbide and of chromite do not produce the same result. In that case part of the chromite segregates and is lost, whereas a great part of the reduced chromite chrome suffers oxidation and is lost. By the present process chromite does not sufier segregation, it is fully reduced and the binding or pick up of chromium can be foreseen with precision and the desired hardness of the finished piece can also be obtained with precision.
The size of the pellets can vary from approximately 4 0.50 cm. to approximately 3.5 cm. in diameter and can have up to approximately 2 diameters length. Stick form of 0.20 cm. by 0.50 cm. up to 2 cm. by 7 cm. have been found satisfactory.
CATALYTICAL SILICON CAR'BIDE WHICH IS IDEAL FOR REACTIVITY WITH CAST IRON For this product one employs a silicon carbide of high surface area (up to 40 square meters per gram), less than mesh Tyler screen, in intimate mixture with lead chromate and potassium bichromate solution. After the solutions have been completely absorbed by the mass which optionally contains the above-mentioned binders and other ingredients with silicon carbide, the drying of the mixture is carried out in an abrasion resistant pulverization chamber. A reddish black powder is thus obtained, which is called component (A).
20% or more of component (A) is mixed with silicon carbide of mixed crystallization (alpha and beta), which may also embody a single crystalline system, to complete a total of The preformed mixture comprises 30% of a component (A) with 70% silicon carbide of mixed crystallization with a preferential size grading between 12 mesh and 80 mesh Tyler screens. Size gradings of from 6 mesh Tyler up to mesh Tyler screens may also be employed as maximum values. Percentages above 60% of component (A) with 40% of silicon carbide are violently reactive and may prove to be explosive.
Upon adding the thus obtained product to cast irons there initially occurs a rapid decomposition of component (A) which liberates a great number of calories, increases the temperature in loco and causes the decomposition of the silicon carbide crystals. The silicon and carbon elements, which are then free, deoxid-ized and liquefy the cast iron and disperse all of the microstructural elements, among which are graphite (elemental carbon) and cementite (Fe C).
The addition of common inactive silicon carbide does not produce the same result since there is a longer time for decomposition which permits the oxidation of the elements of the cast iron alloy. Furthermore, the loss of silicon carbide in this case is always high (on the order of 30%).
By mixing with component (A), silicon carbide suffers a positive catalysis and becomes highly reactive.
What is claimed is:
1. An additive for use in the production of cast iron consisting essentially of a pelletized mixture of finely divided silicon carbide and chromite in the ratio of from 0.1 to 1.0 part silicon carbide to 1.0 part chromite.
2. An additive according to claim 1 in which the pelletized mixture includes a binder in an amount of 0.50 to 1.50% by weight, a thixotropic gel in an amount of 1 to 3% by weight, and a surface-active agent in an amount of about 0.5% by weight.
References Cited UNITED STATES PATENTS 933,357 9/1909 Boraduc-Muller 75-5 3 X 2,465,672 3/ 1949 Blaha l0644 2,569,146 9/1951 Bolkcom 75---130 A X 2,889,218 6/1959 Hickey et al 7527 L. DEWAYNE RUTLEDGE, Primary Examiner I. E. LEGRU, Assistant Examiner
US00214961A 1971-02-16 1972-01-03 Additives for production of cast irons Expired - Lifetime US3728107A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11569471A 1971-02-16 1971-02-16
US21496172A 1972-01-03 1972-01-03

Publications (1)

Publication Number Publication Date
US3728107A true US3728107A (en) 1973-04-17

Family

ID=26813471

Family Applications (1)

Application Number Title Priority Date Filing Date
US00214961A Expired - Lifetime US3728107A (en) 1971-02-16 1972-01-03 Additives for production of cast irons

Country Status (1)

Country Link
US (1) US3728107A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899320A (en) * 1973-02-23 1975-08-12 Kempten Elektroschmelz Gmbh Process for making iron sponge pellets containing silicon carbide
US4072511A (en) * 1976-11-26 1978-02-07 Harold Huston Method of producing silicon containing cast iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899320A (en) * 1973-02-23 1975-08-12 Kempten Elektroschmelz Gmbh Process for making iron sponge pellets containing silicon carbide
US4072511A (en) * 1976-11-26 1978-02-07 Harold Huston Method of producing silicon containing cast iron

Similar Documents

Publication Publication Date Title
US3197306A (en) Method for treating ferrous metals
US2622022A (en) Method for producing cast iron
US3833361A (en) Method for adding special elements to molten pig iron
US2662820A (en) Method for producing cast iron
US2726152A (en) Addition agent and method for treating cast iron
US1910034A (en) Pearlitic cast iron and method of producing the same
US2527829A (en) Foundry additives
US3728107A (en) Additives for production of cast irons
US3507644A (en) Titanium additive and method of use thereof
US3682625A (en) Process for the production of cast irons
US3144690A (en) Exothermically reacting shaped products for use in foundry practice
US4263046A (en) Sinterable mass for producing workpieces of alloy steel
US2444424A (en) Steel metallurgy
US3744998A (en) Additives for controlling the physical and structural characteristics of cast iron
US2805145A (en) Exothermic metallurgical composition and method of introducing same into ferrous alloy
US3304174A (en) Low oxygen-silicon base addition alloys for iron and steel refining
US2171391A (en) Process of producing hard materials
CN108950368B (en) A kind of case of transmission spheroidal graphite cast-iron
US2020171A (en) Cast iron and the manufacture thereof
US3899320A (en) Process for making iron sponge pellets containing silicon carbide
DE2634869C2 (en) Lining compound for containers designed to hold molten iron
US2563859A (en) Addition agent
US3194649A (en) Filling substance for producing chromium-molybdenum steel
US3120699A (en) Method for producing sintered ferrous article
US3744999A (en) Composite ferrophosphorus composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: KENNECOTT CORPORATION

Free format text: MERGER;ASSIGNORS:BEAR CREEK MINING COMPANY;BEAR TOOTH MINING COMPANY;CARBORUNDUM COMPANY THE;AND OTHERS;REEL/FRAME:003961/0672

Effective date: 19801230

AS Assignment

Owner name: KENNECOTT MINING CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:KENNECOTT CORPORATION;REEL/FRAME:004815/0036

Effective date: 19870220

Owner name: STANDARD OIL COMPANY, 200 PUBLIC SQUARE, CLEVELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KENNECOTT MINING CORPORATION;REEL/FRAME:004815/0079

Effective date: 19870320