US3727299A - Method for making a dental appliance - Google Patents

Method for making a dental appliance Download PDF

Info

Publication number
US3727299A
US3727299A US00147222A US3727299DA US3727299A US 3727299 A US3727299 A US 3727299A US 00147222 A US00147222 A US 00147222A US 3727299D A US3727299D A US 3727299DA US 3727299 A US3727299 A US 3727299A
Authority
US
United States
Prior art keywords
percent
weight
alloy
ceramic
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00147222A
Inventor
A Hoffmann
E Surbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fried Krupp AG
Original Assignee
Fried Krupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fried Krupp AG filed Critical Fried Krupp AG
Application granted granted Critical
Publication of US3727299A publication Critical patent/US3727299A/en
Anticipated expiration legal-status Critical
Assigned to ALLSTATE FINANCIAL CORPORATION reassignment ALLSTATE FINANCIAL CORPORATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOME AND FAMILY, INC. DBA CHEFSTAR DBA ELECTRO-SHIELD DBA NODORE DBA HEATECH
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/84Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys

Definitions

  • the present invention relates to a method of using a cobalt-chromiurn-nickel-titanium alloy for high-temperature bonding to-porcelain for dental purposes.
  • This alloy is especially suitable for these purposes, because it possesses good resistance to corrosion and excellent receptivity by the human body, in addition to having better mechanical properties (especially elongation and tensile strength) than the alloys previously used for such purposes.
  • the present invention concerns the new use of a certain alloy as a material to be bonded by heating to porcelain to make dental appliances, such as crowns and bridges.
  • a certain alloy as a material to be bonded by heating to porcelain to make dental appliances, such as crowns and bridges.
  • the joining of metal alloys with ceramic masses by high-temperature bonding to make such app'liarices places a number of special requirements on the metal alloy.
  • the alloy properties of importance are the permanence of color, the ability to form a strong bond with a ceramic mass, and a certain and not overly difficult procedure for working the alloy.
  • the strength of the bond between the alloy and the ceramic mass is determined essentially by the oxides formed on the surface of the alloy. These surface oxides must not react so strongly with the ceramic mass that a discoloration of the ceramic mass occurs.
  • noble metal alloys are relatively less desirable for high-temperature bonding to ceramic masses, since as compared with other metals they have relatively high density and smaller values for their mechanical properties. Therefore, nickel-based alloys have been developed to serve as material to which ceramic masses can be bonded, Some of these alloys contain, along with about 60 to 70 weight-percent nickel, about to weight-percent chromium, about 1 to 5 weight-percent of each of the elements silicon, molybdenum, manganese,vand aluminum, and about 0.5 to 1 weight-percent beryllium. These alloys require, however, considerable. safety measures when being made or worked, because of their beryllium content.
  • .Other alloys which have been used for bonding to ceramics contain about 60 weight-percent nickel, about 15 to 16 weight-percent of each of the elements chromium and molybdenum, and about 0.5 to 5 weight-percent of each of the elements silicon, tungsten, manganese, vanadium, iron, and cobalt.
  • An object of the present invention is to add to the group of alloys which can be used for the bonding of porcelain for dental purposes an alloy which has been discovered to be especially suited for such purposes, meeting in excellent manner the requirements as above given and possessing outstanding mechanical properties.
  • ac cording to the present invention by using an alloy consisting essentially of 8 to 15 weight-percent chromium, 5 to 15 weight-percent nickel, l to 10 weight-percent titanium, 0 to 3 weight-percent molybdenum, 0 to 2 weight-percent tungsten, 0 to 1 weight-percent manganese, 0 to 0.1 weight-percent carbon, remainder cobalt, as a cast material which is provided in several operations with ceramic masses which are deposited by burning for bonding to the said metal body and to each of the successive c'eramic layers, whereby the last deposited ceramic porcelain mass with glazing is shaped by burning to form artificial teeth so that the metal body in conjunction with the deposited ceramic masses can be used as a non-removable dental prosthesis.
  • the so-called basic mass oxides are formed on the metal body surface which produce an excellent bond between metal and ceramic :mass.
  • the alloy used in the present invention may contain the impurities which are commonly present in the raw materials used for its manufacture.
  • impurities are silicon and aluminum, each to be present in the alloy preferably at substantially less than 1 weight-percent.
  • the alloy for use in the present invention surpasses the previously used alloys in terms of mechanical properties and additionally forms bonding surface oxides more easily because of its titanium content.
  • the alloy may be melted in vacuum induction furnaces using either a vacuum of 10' to 5 mm Hg or a protective gas atmosphere (for example, argon) at a pressure of about 1 to 300 mm Hg.
  • a vacuum of 10' to 5 mm Hg or a protective gas atmosphere for example, argon
  • Casting of the alloy is usually done in burned ceramic molds such as used for small, fine-detail castings.
  • the melting point of the alloy is about l,350 C. It can be formed in ceramic molds using the techniques of centrifuge casting.
  • the alloy may be melted using an oxygen-acetylene flame adjusted neutrally (that is neither oxidizing nor reducing).
  • Test specimens for determining the mechanical properties of the alloy used in the present invention are produced using a centrifuge casting method.
  • the cast specimens are turned to final size and polished. They have a diameter of 2.1 to 2.6 mm and a gage length of 25 mm. This corresponds closely to the directives of British Standard 3366:1961 entitled Specification for Dental Cobalt Chromium Casting Alloy.
  • the strain rate used in obtaining 0.2 percent yield strength data is about 10 sec".
  • the corrosion measurements were carried out both in artificial saliva and in an aqueous solution containing 1 percent lactic acid and 0.25 percent NaCl. Thesolution was held at 40 C. The test specimens were left in such solution for more than one year. Even for such a long test time, the alloy gave the extremely small corrosion velocities of 0.01 mm/year or less. Such velocities 0.95 grams K HPO 0.16 grams CaCl, 0.22 grams KSCN 0.77 grams NaHCO 0.23 grams NaCl 0.55 grams KCl 0.13 grams (NH- CO Current-time curves were recorded in artificial saliva in the electrochemical measurements. Potentials of +100 and +150 mV as measured against a saturated calomel electrode were used.
  • the alloy of the present invention has been in the mouths of humans now for more than 3 years. Neither evidence of corrosion nor any type of disturbance or effect on the persons involved has been noted.
  • An alloy usable in the present invention has the following composition: 13.6 weight-percent Cr, 7.9 weight-percent Ni, 0.045 weight-percent C, 8.5 weightpercent Ti, remainder Co. And, it has the following mechanical properties: a 0.2 percent yield strength of 75.7 kilopondslmm a tensile strength of 1 16.0 kilopondslmm and an elongation of 12.4 percent.
  • test specimens used for determining the mechanical properties of this alloy were manufactured in the following manner:
  • test specimens For making the test specimens, these metal pieces were melted using an oxygen-acetylene flame adjusted neutrally, whereupon the liquid metal was cast centrifugally into burned ceramic molds also made by the lost wax process. Before casting, these molds were preheated to about 950 C and the casting temperature was again about 1,430 C.
  • the solidified as-cast specimens had a diameter of 2.8 mm. When turned and polished, the test specimen had a diameter of 2.4 to 2.5 mm and a gage length of 25 mm.
  • the mechanical properties as above given represent the average values obtained from measurements on four different test specimens.
  • An alloy B usable in the present invention was prepared having the following composition: 11.9 weight-percent Cr, 9.0 weight-percent Ni, 0.53 weightpercent Mo, 0.003 weight-percent C, 8.2 weight-percent Ti, remainder Co.
  • EXAMPLE 111 An alloy C usable in the present invention was prepared having the following composition: 12.1 weight-percent Cr, 9.1 weight-percent Ni, 1.3 weightpercent Mo, 0.008 weight-percent C, 8.2 weight-percent Ti, remainder Co.
  • EXAMPLE 1V An alloy D usable in the present invention was prepared having the following composition: 9.8 weightpercent Cr, 1 1.9 weight-percent Ni, 0.040 weight-percent C, 8.1 weight-percent Ti, remainder Co.
  • An alloy E usable in the present invention was prepared having the following composition: 12.0 weight-percent Cr, 7.8 weight-percent Ni, 0.53 weightpercent Mo, 0.030 weight-percent C, 8.4 weight-percent Ti, remainder Co.
  • An alloy K was prepared having the following composition: 12.0 weight-percent chromium, 9.0 weightpercent nickel, 8.1 weight-percent titanium, 1.0 weight-percent molybdenum, 0.011 weight-percent carbon, remainder cobalt. This alloy had the following mechanical properties:
  • This alloy was provided in several operations with ceramic masses which were deposited and bonded to the metal body and to each of the successive ceramic layers by burning, whereby the last deposited ceramic porcelain mass with glazing was shaped by burning to form artificial teeth so that the metal body in conjunction with the deposited ceramic masses could be used as a non-removable dental prostheses. It was found that all requirements as above given were met in outstanding manner. Additionally advantageous is that the average linear coefficient of thermal expansion for this alloy between room temperature and 600 to 900 C amounts to 15.4 to 16.4) X l0 C and consequently adequately matches that of tired porcelain, which lies from about (l4 to X 10- C".
  • the alloys for use in the present invention have been found to be suited for making alloy-to-porcelain bonded dental appliances from the ceramic masses presently available on the dental supplies market.
  • the making of the bonded appliances can proceed according to the instructions provided by the manufacturers of the ceramic and porcelain masses.
  • the mentioned ceramic masses are produced and delivered for example by the firms VlTA-Zahnfabrik H. Rauter KG, Saeckingen (BRD) and IVOCLAR AG, Schaan (Liechtenstein).
  • the burning takes place mainly with temperatures between 650 and 1,000 C.
  • said alloy contains up to 3 weight-percent molybdenum, up to 2 weight-percent tungsten, up to 1 weight-percent manganese, and up to 0.1 weight-percent carbon.

Abstract

An alloy consisting essentially of 8 to 16 weight-percent chromium, 5 to 15 weight-percent nickel, 1 to 10 weight-percent titanium, remainder cobalt, as a material that can be bonded to ceramic masses by burning, whereby an integrally assembled alloyporcelain dental applicance is formed for making non-removable dental prostheses.

Description

United States Patent 1191 Hoffmann et al.
METHOD FOR MAKING A DENTAL APPLIANCE Assignee:
Filed:
App].
US. Cl.
Int. Cl. ..B23k 31/02 Field of Search ..75/170, 171;
Inventors: Alfred Hoffmann, Erkrath; Erich Surbach, Essen, both of Germany Fried Krupp Gesellschaft mit beschrankter Haftung, Essen, Germany May 26, 1971 References Cited UNITED STATES PATENTS Burger et a]. ..75/170 X Cocherdt Davies et a1. ..75/ 170 X Cochardt, A., Development of a Ferromagnetic Cobalt-Base High Temperature Alloy", ASM Transactions, Vol. 52, preprint No. 119, pp. 1 and Table 1a of appendix, 75-170.
Primary Examiner-J. Spencer Overholser Assistant ExaminerRonald J. Shore Attorney-Spencer & Kaye [5 7 ABSTRACT An alloy consisting essentially of 8 to 16 weight-percent chromium, S to 15 weight-percent nickel, l to 10 weight-percent titanium, remainder cobalt, as a material that can be bonded to ceramic masses by burning, whereby an integrally assembled alloy-porcelain dental applicance is formed for making nonremovable dental prostheses.
3 Claims, No Drawings 1 METHOD FOR MAKING A DENTAL APPLIANCE BACKGROUND OF THE INVENTION .The present invention relates to a method of using a cobalt-chromiurn-nickel-titanium alloy for high-temperature bonding to-porcelain for dental purposes.
An alloy with 5 to 15 weight-percent chromium, 5 to 15 weight-percent nickel, 4 to weight-percent titanium, contents of carbon, silicon, manganese, aluminum,
and iron up to 1 weight-percent, contents of molybdenuni up to 3 weight-percent, remainder cobalt, may be used as a material for tooth prostheses and general surgical implants. This alloy is especially suitable for these purposes, because it possesses good resistance to corrosion and excellent receptivity by the human body, in addition to having better mechanical properties (especially elongation and tensile strength) than the alloys previously used for such purposes.
The present invention concerns the new use of a certain alloy as a material to be bonded by heating to porcelain to make dental appliances, such as crowns and bridges. The joining of metal alloys with ceramic masses by high-temperature bonding to make such app'liarices places a number of special requirements on the metal alloy. Among the alloy properties of importance are the permanence of color, the ability to form a strong bond with a ceramic mass, and a certain and not overly difficult procedure for working the alloy.
The strength of the bond between the alloy and the ceramic mass is determined essentially by the oxides formed on the surface of the alloy. These surface oxides must not react so strongly with the ceramic mass that a discoloration of the ceramic mass occurs.
Generally, noble metal alloys are relatively less desirable for high-temperature bonding to ceramic masses, since as compared with other metals they have relatively high density and smaller values for their mechanical properties. Therefore, nickel-based alloys have been developed to serve as material to which ceramic masses can be bonded, Some of these alloys contain, along with about 60 to 70 weight-percent nickel, about to weight-percent chromium, about 1 to 5 weight-percent of each of the elements silicon, molybdenum, manganese,vand aluminum, and about 0.5 to 1 weight-percent beryllium. These alloys require, however, considerable. safety measures when being made or worked, because of their beryllium content.
.Other alloys which have been used for bonding to ceramics contain about 60 weight-percent nickel, about 15 to 16 weight-percent of each of the elements chromium and molybdenum, and about 0.5 to 5 weight-percent of each of the elements silicon, tungsten, manganese, vanadium, iron, and cobalt.
SUMMARY OF THE INVENTION ,An object of the present invention, therefore, is to add to the group of alloys which can be used for the bonding of porcelain for dental purposes an alloy which has been discovered to be especially suited for such purposes, meeting in excellent manner the requirements as above given and possessing outstanding mechanical properties.
This as well as other objects which will become apparent in the discussion that follows are achieved, ac cording to the present invention, by using an alloy consisting essentially of 8 to 15 weight-percent chromium, 5 to 15 weight-percent nickel, l to 10 weight-percent titanium, 0 to 3 weight-percent molybdenum, 0 to 2 weight-percent tungsten, 0 to 1 weight-percent manganese, 0 to 0.1 weight-percent carbon, remainder cobalt, as a cast material which is provided in several operations with ceramic masses which are deposited by burning for bonding to the said metal body and to each of the successive c'eramic layers, whereby the last deposited ceramic porcelain mass with glazing is shaped by burning to form artificial teeth so that the metal body in conjunction with the deposited ceramic masses can be used as a non-removable dental prosthesis. During the burning of the first deposited ceramic layer, the so-called basic mass, oxides are formed on the metal body surface which produce an excellent bond between metal and ceramic :mass.
DESCRIPTION OF THE PREFERRED EMBODIMENTS It is permissible for the alloy used in the present invention to contain the impurities which are commonly present in the raw materials used for its manufacture. Examples of such impurities are silicon and aluminum, each to be present in the alloy preferably at substantially less than 1 weight-percent.
The alloy for use in the present invention surpasses the previously used alloys in terms of mechanical properties and additionally forms bonding surface oxides more easily because of its titanium content.
In preparing the alloy for practice of the present invention, the alloy may be melted in vacuum induction furnaces using either a vacuum of 10' to 5 mm Hg or a protective gas atmosphere (for example, argon) at a pressure of about 1 to 300 mm Hg. Casting of the alloy is usually done in burned ceramic molds such as used for small, fine-detail castings.
Conventional casting processes can be used with the alloy in the present invention, since the melting point of the alloy is about l,350 C. It can be formed in ceramic molds using the techniques of centrifuge casting. The alloy may be melted using an oxygen-acetylene flame adjusted neutrally (that is neither oxidizing nor reducing).
Test specimens for determining the mechanical properties of the alloy used in the present invention are produced using a centrifuge casting method. The cast specimens are turned to final size and polished. They have a diameter of 2.1 to 2.6 mm and a gage length of 25 mm. This corresponds closely to the directives of British Standard 3366:1961 entitled Specification for Dental Cobalt Chromium Casting Alloy. The strain rate used in obtaining 0.2 percent yield strength data is about 10 sec".
In order to test the compatibility of the alloy used in the present invention with the bodies of animals and, in particular, humans, corrosion and electrochemical measurements were carried out.
The corrosion measurements were carried out both in artificial saliva and in an aqueous solution containing 1 percent lactic acid and 0.25 percent NaCl. Thesolution was held at 40 C. The test specimens were left in such solution for more than one year. Even for such a long test time, the alloy gave the extremely small corrosion velocities of 0.01 mm/year or less. Such velocities 0.95 grams K HPO 0.16 grams CaCl, 0.22 grams KSCN 0.77 grams NaHCO 0.23 grams NaCl 0.55 grams KCl 0.13 grams (NH- CO Current-time curves were recorded in artificial saliva in the electrochemical measurements. Potentials of +100 and +150 mV as measured against a saturated calomel electrode were used. These potentials can arise should the alloys of the present invention come in contact with. gold in the mouth of an individual. In these experiments, the alloys gave current densities of 10 to 10 milli-amperes per square centimeter. Such values are hardly measurable using conventional equipment. In no case in these experiments was evidence of corrosion found.
In addition to the above experiments, the alloy of the present invention has been in the mouths of humans now for more than 3 years. Neither evidence of corrosion nor any type of disturbance or effect on the persons involved has been noted.
Further illustrative of the present invention are the following examples:
EXAMPLE I An alloy usable in the present invention has the following composition: 13.6 weight-percent Cr, 7.9 weight-percent Ni, 0.045 weight-percent C, 8.5 weightpercent Ti, remainder Co. And, it has the following mechanical properties: a 0.2 percent yield strength of 75.7 kilopondslmm a tensile strength of 1 16.0 kilopondslmm and an elongation of 12.4 percent.
The test specimens used for determining the mechanical properties of this alloy were manufactured in the following manner:
At first, cobalt, chromium and nickel mixed in proportions to obtain the desired composition of the alloy were melted in a vacuum induction furnace using a vacuum of to 10' mm Hg. After complete degassing of the metal bath, commercially pure titanium melted in a vacuum arc furnace was added to the liquid alloy in the quantity required to obtain the desired composition. After complete solution of the titanium in the metal bath, the liquid alloy was cast at a temperature of about 1,430 C into a burned ceramic mold placed in a vacuum induction furnace. This burned ceramic mold had been manufactured in the conventional manner by the lost wax process. The cast alloy which after solidification was available in cylindrical or rectangular parallelepiped form was blasted with steel shot and subsequently cut up into pieces weighing between and 30 grams. For making the test specimens, these metal pieces were melted using an oxygen-acetylene flame adjusted neutrally, whereupon the liquid metal was cast centrifugally into burned ceramic molds also made by the lost wax process. Before casting, these molds were preheated to about 950 C and the casting temperature was again about 1,430 C. The solidified as-cast specimens had a diameter of 2.8 mm. When turned and polished, the test specimen had a diameter of 2.4 to 2.5 mm and a gage length of 25 mm. The mechanical properties as above given represent the average values obtained from measurements on four different test specimens.
EXAMPLE II An alloy B usable in the present invention was prepared having the following composition: 11.9 weight-percent Cr, 9.0 weight-percent Ni, 0.53 weightpercent Mo, 0.003 weight-percent C, 8.2 weight-percent Ti, remainder Co.
EXAMPLE 111 An alloy C usable in the present invention was prepared having the following composition: 12.1 weight-percent Cr, 9.1 weight-percent Ni, 1.3 weightpercent Mo, 0.008 weight-percent C, 8.2 weight-percent Ti, remainder Co.
EXAMPLE 1V An alloy D usable in the present invention was prepared having the following composition: 9.8 weightpercent Cr, 1 1.9 weight-percent Ni, 0.040 weight-percent C, 8.1 weight-percent Ti, remainder Co.
EXAMPLE V An alloy E usable in the present invention was prepared having the following composition: 12.0 weight-percent Cr, 7.8 weight-percent Ni, 0.53 weightpercent Mo, 0.030 weight-percent C, 8.4 weight-percent Ti, remainder Co.
EXAMPLES V1 TO X Alloys F to J usable in the present invention were prepared having the following compositions in weightpercent:
Percent Alloy Cr Ni C Ti M0 W Co F 12.1 9. 15 0. 001 7.1 1. 05 0. 6O Remainder. G 12. 15 9. 15 0. 005 6.15 1. .25 DO. 11 1'2. 3 8. 7 0.007 1.1 0.77 0. Do. I r 12.1 .1. 15 0. 000 -l. 1 1. 05 0. 60 D0. J 12.1 11.1 0. 001 7.1 1. 25 D0.
The alloys of Examples 11 to X exhibited the following properties:
An alloy K was prepared having the following composition: 12.0 weight-percent chromium, 9.0 weightpercent nickel, 8.1 weight-percent titanium, 1.0 weight-percent molybdenum, 0.011 weight-percent carbon, remainder cobalt. This alloy had the following mechanical properties:
0.2% yield strength tensile strength elongation Brinell hardness 79.5 kiloponds/mm 1 16.4 kiloponds/mm 1 1.5%
357 kiloponds/mm This alloy was provided in several operations with ceramic masses which were deposited and bonded to the metal body and to each of the successive ceramic layers by burning, whereby the last deposited ceramic porcelain mass with glazing was shaped by burning to form artificial teeth so that the metal body in conjunction with the deposited ceramic masses could be used as a non-removable dental prostheses. It was found that all requirements as above given were met in outstanding manner. Additionally advantageous is that the average linear coefficient of thermal expansion for this alloy between room temperature and 600 to 900 C amounts to 15.4 to 16.4) X l0 C and consequently adequately matches that of tired porcelain, which lies from about (l4 to X 10- C".
The alloys for use in the present invention have been found to be suited for making alloy-to-porcelain bonded dental appliances from the ceramic masses presently available on the dental supplies market. The making of the bonded appliances can proceed according to the instructions provided by the manufacturers of the ceramic and porcelain masses.
The mentioned ceramic masses are produced and delivered for example by the firms VlTA-Zahnfabrik H. Rauter KG, Saeckingen (BRD) and IVOCLAR AG, Schaan (Liechtenstein). The burning takes place mainly with temperatures between 650 and 1,000 C.
The terms 0.2 percent yield strength, tensile strength, and elongation are used as defined on pages 4 and 5 of Elementsof Materials Science" by Lawrence H. Van Vlack, 2nd edition, 1964, Addison- Wesley Publishing Co.
The Brinell hardness was calculated with the formula as set forth on page 94 of the Metals Handbook,"
'the present invention is susceptible to various modifications, changes and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.
We claim:
1. The method of using an alloy consisting essentially of 8 to 16 weight-percent chromium, 5 to 15 weightpercent nickel, l to 10 weight-percent titanium, remainder cobalt, comprising placing such an alloy in contact with several layers of ceramic masses as parts of a dental appliance, and heating the contacting alloy and masses for causing their bonding to one another, whereby an integrally assembled alloy-porcelain dental appliance is formed.
2. The method as claimed in claim 1, wherein said alloy contains up to 3 weight-percent molybdenum, up to 2 weight-percent tungsten, up to 1 weight-percent manganese, and up to 0.1 weight-percent carbon.
3. The method of using an alloy consisting essentially of 8 to 16 weight-percent chromium, 5 to 15 weightpercent nickel, l to 10 weight-percent titanium, up to 3 weight-percent molybdenum, up to 2 weight-percent tungsten, up to l weight-percent manganese, up to 0.1 weight-percent carbon, remainder cobalt, comprising bonding a body of such an alloy to ceramic masses by burning for making non-removable dental prostheses.

Claims (2)

  1. 2. The method as claimed in claim 1, wherein said alloy contains up to 3 weight-percent molybdenum, up to 2 weight-percent tungsten, up to 1 weight-percent manganese, and up to 0.1 weight-percent carbon.
  2. 3. The method of using an alloy consisting essentially of 8 to 16 weight-percent chromium, 5 to 15 weight-percent nickel, 1 to 10 weight-percent titanium, up to 3 weight-percent molybdenum, up to 2 weight-percent tungsten, up to 1 weight-percent manganese, up to 0.1 weight-percent carbon, remainder cobalt, comprising bonding a body of such an alloy to ceramic masses by burning for making non-removable dental prostheses.
US00147222A 1971-05-26 1971-05-26 Method for making a dental appliance Expired - Lifetime US3727299A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14722271A 1971-05-26 1971-05-26

Publications (1)

Publication Number Publication Date
US3727299A true US3727299A (en) 1973-04-17

Family

ID=22520718

Family Applications (1)

Application Number Title Priority Date Filing Date
US00147222A Expired - Lifetime US3727299A (en) 1971-05-26 1971-05-26 Method for making a dental appliance

Country Status (1)

Country Link
US (1) US3727299A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077560A (en) * 1975-02-03 1978-03-07 Johnson & Johnson Dental solder
US4129680A (en) * 1974-02-06 1978-12-12 Sterndent Corporation Chrome dental alloy
US4216583A (en) * 1978-08-03 1980-08-12 Zulauf Inc. Orthodontic appliance
US4322206A (en) * 1978-08-03 1982-03-30 Zulauf Inc. Orthodontic appliance
WO1986000218A1 (en) * 1984-06-20 1986-01-16 Titanweld N.V. Dental crowns and bridges made up of a titanium alloy capable of being welded in the mouth
US4878840A (en) * 1978-08-03 1989-11-07 Zulauf, Inc. Orthodontic appliance
US20100143576A1 (en) * 2007-02-09 2010-06-10 Zimmer Technology, Inc. Direct application of pressure for bonding porous coatings to substrate materials used in orthopaedic implants

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071196A (en) * 1937-02-16 Glass-to-metal seal
US2206502A (en) * 1938-09-29 1940-07-02 Nobilium Products Inc Shaped material for casting dentures
US2617725A (en) * 1950-10-07 1952-11-11 Hugh P Owens Alloy metals for use in dental castings
US2631095A (en) * 1950-02-21 1953-03-10 Cons Car Heating Co Inc Alloy adapted for prosthetic articles
US2829048A (en) * 1956-01-16 1958-04-01 Westinghouse Electric Corp High damping alloy and members prepared therefrom
US3334399A (en) * 1962-12-31 1967-08-08 Stewart Warner Corp Brazed laminated construction and method of fabrication thereof
US3514849A (en) * 1964-12-31 1970-06-02 Texas Instruments Inc Method for making a glass-to-metal seal
US3544315A (en) * 1969-03-12 1970-12-01 Univ Of Michigan The Denture alloy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071196A (en) * 1937-02-16 Glass-to-metal seal
US2206502A (en) * 1938-09-29 1940-07-02 Nobilium Products Inc Shaped material for casting dentures
US2631095A (en) * 1950-02-21 1953-03-10 Cons Car Heating Co Inc Alloy adapted for prosthetic articles
US2617725A (en) * 1950-10-07 1952-11-11 Hugh P Owens Alloy metals for use in dental castings
US2829048A (en) * 1956-01-16 1958-04-01 Westinghouse Electric Corp High damping alloy and members prepared therefrom
US3334399A (en) * 1962-12-31 1967-08-08 Stewart Warner Corp Brazed laminated construction and method of fabrication thereof
US3514849A (en) * 1964-12-31 1970-06-02 Texas Instruments Inc Method for making a glass-to-metal seal
US3544315A (en) * 1969-03-12 1970-12-01 Univ Of Michigan The Denture alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cochardt, A., Development of a Ferromagnetic Cobalt Base High Temperature Alloy , ASM Transactions, Vol. 52, preprint No. 119, pp. 1 and Table 1 a of appendix, 75 170. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129680A (en) * 1974-02-06 1978-12-12 Sterndent Corporation Chrome dental alloy
US4077560A (en) * 1975-02-03 1978-03-07 Johnson & Johnson Dental solder
US4216583A (en) * 1978-08-03 1980-08-12 Zulauf Inc. Orthodontic appliance
US4322206A (en) * 1978-08-03 1982-03-30 Zulauf Inc. Orthodontic appliance
US4878840A (en) * 1978-08-03 1989-11-07 Zulauf, Inc. Orthodontic appliance
WO1986000218A1 (en) * 1984-06-20 1986-01-16 Titanweld N.V. Dental crowns and bridges made up of a titanium alloy capable of being welded in the mouth
US4740160A (en) * 1984-06-20 1988-04-26 Titanweld B.V. Weldable crowns, bridges and jointing implements or means
US20100143576A1 (en) * 2007-02-09 2010-06-10 Zimmer Technology, Inc. Direct application of pressure for bonding porous coatings to substrate materials used in orthopaedic implants
US8070041B2 (en) * 2007-02-09 2011-12-06 Zimmer Technology, Inc. Direct application of pressure for bonding porous coatings to substrate materials used in orthopaedic implants

Similar Documents

Publication Publication Date Title
Baran The metallurgy of Ni-Cr alloys for fixed prosthodontics
Okabe et al. The use of titanium in dentistry
US3896547A (en) Prosthetic article and method for manufacture
US20140150933A1 (en) Objects made of bulk-solidifying amorphous alloys and method of making same
EP1900836B1 (en) Palladium-cobalt based alloys and dental articles including the same
EP0149134A2 (en) Nickel based casting alloy
US3727299A (en) Method for making a dental appliance
US4210447A (en) Dental restorations using castings of non-precious metals
JPS6249340B2 (en)
US4129944A (en) Dental constructions and dental alloys
US3948653A (en) Novel nonprecious alloy suitable for fusion to porcelain
US6572815B1 (en) Titanium having improved castability
Bates et al. Metals and alloys in dentistry
JPS63186842A (en) Titanium alloy castings for dentistry
US4608229A (en) Palladium metal base dental alloy
US4592890A (en) Dental prostheses alloy
US4108642A (en) Alloy for preparing dentures therefrom
US4929420A (en) Alloy useful particularly in dentistry
Palaghias et al. In vivo corrosion behavior of gold-plated versus titanium dental retention pins
JP3916098B2 (en) Porcelain-precious metal alloy for dental casting
US3606615A (en) Tooth prostheses and surgical implants
US4249943A (en) Non-precious ceramic alloy
US4038752A (en) Dental alloys
US6103383A (en) High tungsten, silicon-aluminum dental alloy
US4268308A (en) Dental alloys

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALLSTATE FINANCIAL CORPORATION, VIRGINIA

Free format text: SECURITY INTEREST;ASSIGNOR:HOME AND FAMILY, INC. DBA CHEFSTAR DBA ELECTRO-SHIELD DBA NODORE DBA HEATECH;REEL/FRAME:006401/0207

Effective date: 19921106