US3725968A - Double-dished pipeline pig - Google Patents

Double-dished pipeline pig Download PDF

Info

Publication number
US3725968A
US3725968A US00147433A US3725968DA US3725968A US 3725968 A US3725968 A US 3725968A US 00147433 A US00147433 A US 00147433A US 3725968D A US3725968D A US 3725968DA US 3725968 A US3725968 A US 3725968A
Authority
US
United States
Prior art keywords
pig
pipeline
dished
cylindrical body
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00147433A
Inventor
K Knapp
M Knapp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3725968A publication Critical patent/US3725968A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/04Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
    • B08B9/053Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved along the pipes by a fluid, e.g. by fluid pressure or by suction
    • B08B9/055Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved along the pipes by a fluid, e.g. by fluid pressure or by suction the cleaning devices conforming to, or being conformable to, substantially the same cross-section of the pipes, e.g. pigs or moles
    • B08B9/0553Cylindrically shaped pigs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1266Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being completely encapsulated, e.g. for packaging purposes or as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/12Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels
    • B29C33/14Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels against the mould wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/74Domestic articles
    • B29L2031/7406Sponges; Cleaning equipment

Definitions

  • ABSTRACT [52 0.5. CI. ..l5/l04.06 R, 264/275 A pipe i e p g i g a dished face at each the [51] Int. Cl. ..B08b 9/04 dished f improving the wiping action of the [58] Field of Search ..15/104.06 R, 104.06 A, periphery of the pig as it passes through the pipeline, l5/3.5; 264/271, 275 there being a slightly compressible axial member cast internally of the pig extending from the dished face at References Cited one end to the dished face at the other end to protect UNITED STATES PATENTS the p g againstpressure surges which tend to rupture the pig in transit in the pipeline.
  • the invention also rel,415,60 0 5/ 1922 Mannion et a] l 5/l04.06 R lates to a method of forming for such pigs. 1,547,440 7/1925 Penn 1,713,895 5/1929 Ford ..15/l04 06 R 10 Claims, 9 Drawing, Figures PATENTEDAPRl-OIHH SHEET 1 UF 3 Mary M. Knapp Kenneth M. Knapp v INVENTORS BY Donald Gunn A TTORNEV PATENIEUAPR 1 0mm SHEET 2 0F 3 FIGS Mary M Knapp Kenneth M. Kna
  • Pipeline pigs have been provided heretofore with bullet-shaped noses, dished faces, and the like. In many circumstances, a dished face has been found preferable for a pipeline pig. Pipeline pigs have been attempted heretofore with a dished face at both ends, but the gripping action of such pigs is sometimes too good. A surge of pressure traveling in the pipeline acts somewhat as a shock wave. When the shock wave hits the pig and the pig firmly grips the side walls, the shock wave must be absorbed in the pig. Quite often, pigs have simply disintegrated on the passage of a shock wave. The disintegration has given rise to problemsmaking the double dished pig essentially unworkable, which has essentially led to its abandonment.
  • the apparatus of the present invention provides an improved double-dished pipeline pig which obviates the problem mentioned above.
  • the pig is preferably formed with a dished face at each end, and includes an outer shell contiguous with the dished faces on both ends of a relatively hard plastic material.
  • the central portions of the pig are communicated by means of ports, or even microscopic open cell structures to permit pressure equalization within the pig with pressures in the pipeline.
  • the central portions are formed of a resilient material except that an axial portion of substantially increased strength extends between the dished faces to prevent the dished faceat either end from giving excessively on the occurrence of the pressure surge.
  • a method of manufacture permits fabrication of a pig having an exterior of hardened particles to improve the cleaning action and extend the life of the pig.
  • FIG. 1 is a perspective viewof the pig of the present invention in a pipeline
  • FIG. 2 shows the method of the present invention and a molding technique for forming the'pig, which includes double-dished ends;
  • FIG. 3 is a sectional view of the completed pig manufactured in accordance with the method shown in FIG.
  • FIG. 4 discloses an alternative embodiment having an increased number of edges for wiping the pipe bore
  • FIG. 5 shows the pig of FIG. 4 in a mold which forms additional edges on the pig while casting a fairly tough outer shell about a foamed insert positioned in the mold;
  • FIG. 6 shows a sectional view through the mold and illustrates a number of openings which communicate the interiorofthe pig with the pipe line;
  • FIG. 7 is a side view of an alternative embodiment in- 1 eluding spiral grooves whichcause the pig to rotate as it
  • the pig 12 is a double-dished pipeline pig which has a concave face at each end. Preferably, it is cylindrical and its diameter is approximately equal to the nominal id of the pipeline 10.
  • the pig is forced through the pipeline 10 by the pressure fluid flowing in the pipeline.
  • the pig is used to clean deposits from the walls of the pipeline, to force an accumulation of liquid out of low spots in a gas pipeline, or the like. Pigs are customarily forced through the pipeline at selected occasions for the cleaning and remedial purposes mentioned above.
  • FIG. 2 shows a mold indicated by the numeral 14.
  • the mold 14 has an internal configuration which forms the external surface of the pig 12 when manufactured.
  • a pour hole 16 is formed at the upper end of the mold.
  • the internal wall 18 forms a cylinder and the lower wall 20 forms a cone face.
  • the upper wall 22 is similar to the wall 20 and the two walls define the concave faces desired on the completed pig.
  • the angle of the cone is not extreme, but can be something in the range of 5 to 15, depending on a number of factors.
  • the diameter of the mold 14 is likewise matched to the id. of the pipeline with the goal of having the cylindrical face of the pig wipe the bore of the pipeline clean.
  • a pair of support pins 24 and 26 extend inwardly of the cylindrical open space to support a core member 28.
  • the core member 281 is preferably formed of a relatively soft, low density polyurethane material and is held in position by the pins 24 and 26. The density is in the range of 10 to 30 pounds per cubic foot.
  • the core member includes an axial opening for reasons to be discussed.
  • the core member 28 is spaced from the cylindrical wall 18 and from the dished face ends of the mold at 20 and 22 an appropriate distance to permit the completed pig, on pouring of the harder material to be described, to attain a wall thickness which is Preferably, a polyurethane material having about 70 I durometer hardness is used.
  • the cured pig has a complete exterior of this hardness, and yet the pig as a whole is somewhat flexible inasmuch as the core member, a relatively low density yieldable material, permits the required degree of flexure for the pig to permit it to travel through the pipeline. More particularly, the pig, when completed, is encased in the hardermaterial to substantially increase its life during useage.
  • the molding operation begins with the central core' 28 in the posture shown in FIG. 2.
  • the heavier material is gently poured into the mold andit fills the mold from the bottom up, including those portions of space outside the core and adjacent to the cylindrical wall 1'8 and also up the central axis of the core member 28. Additionally, the poured material fills both dishes, that is,
  • the material is poured until the mold is filled and the pourhole 16 gives evidence of this fact.
  • the pourhole 16 should be of sufficient diameter to permit the escape of air bubbles while pouring.
  • FIG. 3 The completed pig is shown in FIG. 3.
  • the numeral 32 indicates the structural material at one end of the pig. Attention should be carefully directed to this face for an understanding of the heavy gauge of high density polyurethane foam which forms the end face. There is enough structure for the pig to bear up under the stress and strain of its intended application, and yet enough flexibility to permit it to give on pressure surges. Moreover, the pig is somewhat flexible and incorporates an outer lip at the dished face which grips and wipes against the bore of the pipeline. It will be understood and appreciated that this is a valuable action inasmuch as the pig is quite often used to wipe rather slippery materials such as paraffin coatings from the walls of the pipeline.
  • the pig as shown in FIG. 3 further incorporates a central support or structural member 34 which extends from one face to the other.
  • the member 34 supports both faces at a spaced location without unduly flexing or giving. It is not so rigid that it causes the pig to rupture and break into small pieces on a pressure surge.
  • the axial structure member 34 which is integrally formed with the two dished faces is not so yieldable or pliable as to permit the pig to deform unduly. It will be understood that if the member 34 unduly elongates, the pig would shrink in diameter and would not have the desired contact with the full periphery of the bore of the pipeline.
  • the core member 28 is left essentially intact within the body of the pig 12 as shown in FIG. 3. Moreover, the pins 24 and 26 are pulled from the cast polyurethane structure. A number of pressure relief openings 40 are drilled in the side wall of the pig to the soft inner core member 28. It should be understood that the drilled holes are helpful in providing pressure equalization within the body of the pig. For this reason, the ports or openings 40 found at random around the circumference of the cylindrical pig relieve the pressure from within the pig and permit the pig to equalize with thy pipeline pressure. In the alternative, an open celled foamed polyurethane can be used to permit the pressure fluid to pass through the side walls of the cylinder and communicate with the internal portions of the pig. Open cell polyurethane casting is believed well known in the art.
  • the holes or openings 40 are preferably drilled at the convenience of the user, and there is no set pattern or required number of openings except that they be sufficient in number to provide the fluid communication and yet not be so great in number as to weaken the physical structure of the pig.
  • FIGS. 4, 5 and 6 illustrate a pig embodiment identified by the number 62.
  • the pig 62 is similar to the pig 12 in most regards except that the pig 62 is circumferentially slotted at three or four locations at a point near its middle.
  • the pig 62 is improved over the pig 12 in one or two significant regards. The first is that the pig 62 has more wiping edges or lips for removing paraffin coatings in the pipeline. Moreover, the pig 62 is able to flex. On
  • the grooves or slots take up axial bending or flexure. The most extreme bend is about one times the radius. of the pipe while many bends are about three times the radius. It is axiomatic that a pig in the pipeline must negotiate any curve or bend which it encounters. As a consequence of the grooves or slots, the pig 62 is able to traverse the curves.
  • FIG. 5 the same internal core 78 is placed in a mold 64.
  • the mold is filled with the liquid urethane polymer which is cured to a desired hardness depending on formulation.
  • the finished product is shown in FIG. 6 where the pig includes the opposing dished ends connected by an axial rod or support 84.
  • FIG. 6 discloses details of the slots or grooves in the pig 62. There are three in number, but two or four may be used for various sizes.
  • the foamed core is communicated with the exterior through a number of passages at 90. The passages open to the exterior at the recessed areas between the protruding ring-like members at 68, 70 and 72. Without regard to the direction of the pig movement in the pipeline, it moves along the pipe achieving contact with four or five scraping edges to clean the pipe. Again, the double-dished arrangement works in the manner described with regard to the embodiment 12.
  • the ring-like members 68, 70 and 72 are of common diameter with that of the body of the pig while their thickness might be as much as about 1 inch on a pig 8 inches in diameter.
  • the grooves or cuts defining the rings are about I inch deep on an 8 inch pig. Bigger sizes vary somewhat proportionally.
  • FIG. 7 of the drawings where an alternative embodiment is indicated by the numeral 100.
  • the pig 100 is equipped with a number of external rings indicated by the numerals 102, 104 and 106.
  • the rings are spaced apart and separated by a number of grooves which are indicated generally by the numeral 108.
  • Ports 110 are formed in the periphery to communicate with the interior of the pig in the same manner as the ports or passages shown in FIG. 6.
  • the passages expose the interior of the pig to the external pressure to equalize pressure within the pig.
  • a significant feature of the pig is the inclusion of the spiral grooves indicated at 112 The spiral grooves are found on the leading and aft portions of the pig. The spirals do not fully encircle the pig, but are found at spaced points about the circumference to be located at trast, the pig 100 of FIG. 7 tends to rotate ever so slightly to evenlydistribute the wear. This also prevents the formation of a flat spot on the pig. In these regards, the pig 100 of FIG. 7 is improved over the other pigs.
  • Additional grooves are found at 114. These grooves provide relief passages, it is believed, for matter which is scraped fro the wall of the pipeline which is directed and channeled through the grooves away from the lead ing edge of the pig.
  • FIG. 9 of the drawings where a further alternative pig is indicated by the numeral 120.
  • the pig 120 is quite similar to the pig shown in FIG. 6 of the drawings. However, the exterior surface of the pig is formed of a harder material.
  • the pig 120 has an internal foamed core indicated by the numeral 122 which is similar in all regards to the core 78 shown in FIG. 5.
  • a body 124 is formed about the core, and a central axis 126 is likewise a portion of the pig.
  • the foam core is suspended within a mold and the body is formed about it.
  • the body includes the axial rod or support 126 which is connected to the harder elastomer which forms the double-dished pig.
  • the axial support 126 is cast integral with the remainder of the body as previously mentioned.
  • a significant feature of the pig 120 is the inclusion of a third plastic material which is indicated by the numeral 128.
  • the third material is found on the outer surface.
  • the body 124 is somewhat harder than the foam core 122, the outer surface or coating 128 is even yet harder than the body.
  • the foam core 122 is a lowdurometer, low density, foamed polyurethane material.
  • the body 124 might be, by way of example and not limitation, a molded urethane polymer which is cured to a hardness of perhaps 60 to 90 durometer.
  • the outer coating 128 can readily be, by way of example and not limitation, a mix of the same liquid polymer ofwhich thebody 124'is formed having added thereto gr'anuals of tungsten carbide or some other extremely hard material.
  • the coating 128 is a mix of a plastic binder and a hard material. It is manufactured in the following manner, utilizing FIG. 8 of the drawings.
  • the foam insert 122 is shown suspended in a' mold which is indicated generally by the numeral 132.
  • the mold can be-disassembled and assembled to enclose the foam body 122.
  • the foam body is held in position by a pair of pins 136.
  • the mold is perhaps a three piece mold having a left half 138, a right half 140, and a top 142.
  • the mold forms the exterior of the pig to the double dished shape of the preferred embodiment.
  • a void is left in the mold which provides for the externally facing rings and grooves in the manner ofthe embodiment 100 shown in FIG. 7.
  • the method of manufacture of the pig 120 having an externally hard surface comprised of a plastic binder and hard particles will next be considered.
  • An opening 144 is left in the top plate 142 to permit the addition of a small but measured quantity of mixed liquid urethane opening 144 at the top.
  • the mold is completely filled to the top, and is permitted to sit until the remainder of the body is cast and becomes firm.
  • the second addition of liquid elastomer to the mold binds the foamed core 122 to the hardenedexternal coating previously formed on the outer wall of the mold.
  • the molding process described above forms a double dished pig having an axial support through the center. This is in accordance with the teachings recited earlier herein.
  • the exterior surface is extremely hard, and achieves the purposes desired as mentioned before with respect to the embodiment 120.
  • the molding sequence described herein is perhaps the most convenient to execute and yields a finished product having a controlled external diameter so that the pig can be assigned duty in a pipeline of known nominal diameter.
  • the several dimensions of thepig can be varied within dished ends tend to flare slightly, which enhances the gripping action of the pig at both ends against the side walls. This enhanced gripping action tends to remove paraffin coating and other accumulations within the pipeline.
  • the foamed elastomer may be shaped into a cone, a section of which shows two straight line segments, or it may have the form of a curve or are. Thus, both ends may be shaped to this alternative form.
  • the are may be that of a circle or ellipse.
  • a pipeline pig which comprises an elongate cylindrical body having an elongate dimension from end to endand having a cavity therewithin and adapted to fit within a pipeline and beingofapproxim ately equal diameter to the inside diameter of the pipeline;
  • the invention of claim 1 including a cylindrical core of low-density polyolefin foam in said cavity in said body and a surrounding polyolefin body cast to said core and having an outer surface hardness in the range of 70 durometer or greater.
  • said resilient material is a urethane material which is molded about said particles which extend radially inwardly from the outer face thereof a predetermined depth.
  • cylindrical body includes spiralled grooves extending at least partway along the length of the body thereof sufficient to impart a slight rotative twist to said pig as it traverses the pipeline.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning In General (AREA)

Abstract

A pipeline pig having a dished face at each end, the dished face improving the wiping action of the periphery of the pig as it passes through the pipeline, there being a slightly compressible axial member cast internally of the pig extending from the dished face at one end to the dished face at the other end to protect the pig against pressure surges which tend to rupture the pig in transit in the pipeline. The invention also relates to a method of forming for such pigs.

Description

o i United States Patent [191 [111 3,725,968 Knapp et a1. 5] Apr. 10, 1973 54] DOUBLE-DISI-IED PIPELINE PIG 3,403,701 10/1968 Knapp et a1 15/104.06 R x 3 543,323 12/1970 Girard ..15/104.06 R [76] Inventors. Mary M. Knapp; Kenneth M.
pp, both of 1209 y, 3,602,934 9/1971 Reed ..l5/104.06 R Houston, Tex. 77020 Primary Examiner-Edward L. Roberts Flledi y 1971 Attorney-Donald Gunn [21] Appl. No.: 147,433
' [57] ABSTRACT [52 0.5. CI. ..l5/l04.06 R, 264/275 A pipe i e p g i g a dished face at each the [51] Int. Cl. ..B08b 9/04 dished f improving the wiping action of the [58] Field of Search ..15/104.06 R, 104.06 A, periphery of the pig as it passes through the pipeline, l5/3.5; 264/271, 275 there being a slightly compressible axial member cast internally of the pig extending from the dished face at References Cited one end to the dished face at the other end to protect UNITED STATES PATENTS the p g againstpressure surges which tend to rupture the pig in transit in the pipeline. The invention also rel,415,60 0 5/ 1922 Mannion et a] l 5/l04.06 R lates to a method of forming for such pigs. 1,547,440 7/1925 Penn 1,713,895 5/1929 Ford ..15/l04 06 R 10 Claims, 9 Drawing, Figures PATENTEDAPRl-OIHH SHEET 1 UF 3 Mary M. Knapp Kenneth M. Knapp v INVENTORS BY Donald Gunn A TTORNEV PATENIEUAPR 1 0mm SHEET 2 0F 3 FIGS Mary M Knapp Kenneth M. Kna
/N VE N TORS BY Dona/d Gunn A TTORNEV PATENTEDAPR 1 0191s sum 3 OF 3 Mary M. Knapp 'Kenneth M. Kn
INVE N TORS Donald Gunn ATTORNEY DOUBLE-DISIIED PIPELINE PIG SUMMARY OF PROBLEM AND INVENTION Pipeline pigs have been provided heretofore with bullet-shaped noses, dished faces, and the like. In many circumstances, a dished face has been found preferable for a pipeline pig. Pipeline pigs have been attempted heretofore with a dished face at both ends, but the gripping action of such pigs is sometimes too good. A surge of pressure traveling in the pipeline acts somewhat as a shock wave. When the shock wave hits the pig and the pig firmly grips the side walls, the shock wave must be absorbed in the pig. Quite often, pigs have simply disintegrated on the passage of a shock wave. The disintegration has given rise to problemsmaking the double dished pig essentially unworkable, which has essentially led to its abandonment.
The apparatus of the present invention provides an improved double-dished pipeline pig which obviates the problem mentioned above. The pig is preferably formed with a dished face at each end, and includes an outer shell contiguous with the dished faces on both ends of a relatively hard plastic material. However, the central portions of the pig are communicated by means of ports, or even microscopic open cell structures to permit pressure equalization within the pig with pressures in the pipeline. Additionally, the central portions are formed of a resilient material except that an axial portion of substantially increased strength extends between the dished faces to prevent the dished faceat either end from giving excessively on the occurrence of the pressure surge.
Further, a method of manufacture permits fabrication of a pig having an exterior of hardened particles to improve the cleaning action and extend the life of the pig.
The foregoing summarizes the present invention. The following written specification sets forth the details of construction in conjunction with the drawings, which are:
FIG. 1 is a perspective viewof the pig of the present invention in a pipeline;
FIG. 2 shows the method of the present invention and a molding technique for forming the'pig, which includes double-dished ends;
FIG. 3 is a sectional view of the completed pig manufactured in accordance with the method shown in FIG.
FIG. 4 discloses an alternative embodiment having an increased number of edges for wiping the pipe bore;
FIG. 5 shows the pig of FIG. 4 in a mold which forms additional edges on the pig while casting a fairly tough outer shell about a foamed insert positioned in the mold;
FIG. 6 shows a sectional view through the mold and illustrates a number of openings which communicate the interiorofthe pig with the pipe line; a
FIG. 7 is a side view of an alternative embodiment in- 1 eluding spiral grooves whichcause the pig to rotate as it The pig 12 is a double-dished pipeline pig which has a concave face at each end. Preferably, it is cylindrical and its diameter is approximately equal to the nominal id of the pipeline 10. The pig is forced through the pipeline 10 by the pressure fluid flowing in the pipeline. The pig is used to clean deposits from the walls of the pipeline, to force an accumulation of liquid out of low spots in a gas pipeline, or the like. Pigs are customarily forced through the pipeline at selected occasions for the cleaning and remedial purposes mentioned above.
Considering the invention in greater detail, it will be best to first describe the method of manufacture, and then the completed pig. For this'purpose, attention is first directed to FIG. 2 which shows a mold indicated by the numeral 14. The mold 14 has an internal configuration which forms the external surface of the pig 12 when manufactured. A pour hole 16 is formed at the upper end of the mold. The internal wall 18 forms a cylinder and the lower wall 20 forms a cone face. The upper wall 22 is similar to the wall 20 and the two walls define the concave faces desired on the completed pig. The angle of the cone is not extreme, but can be something in the range of 5 to 15, depending on a number of factors. The diameter of the mold 14 is likewise matched to the id. of the pipeline with the goal of having the cylindrical face of the pig wipe the bore of the pipeline clean.
In FIG. 2, a pair of support pins 24 and 26 extend inwardly of the cylindrical open space to support a core member 28. The core member 281 is preferably formed of a relatively soft, low density polyurethane material and is held in position by the pins 24 and 26. The density is in the range of 10 to 30 pounds per cubic foot. The core member includes an axial opening for reasons to be discussed. The core member 28 is spaced from the cylindrical wall 18 and from the dished face ends of the mold at 20 and 22 an appropriate distance to permit the completed pig, on pouring of the harder material to be described, to attain a wall thickness which is Preferably, a polyurethane material having about 70 I durometer hardness is used. Thus, the cured pig has a complete exterior of this hardness, and yet the pig as a whole is somewhat flexible inasmuch as the core member, a relatively low density yieldable material, permits the required degree of flexure for the pig to permit it to travel through the pipeline. More particularly, the pig, when completed, is encased in the hardermaterial to substantially increase its life during useage.
The molding operation begins with the central core' 28 in the posture shown in FIG. 2. The heavier material is gently poured into the mold andit fills the mold from the bottom up, including those portions of space outside the core and adjacent to the cylindrical wall 1'8 and also up the central axis of the core member 28. Additionally, the poured material fills both dishes, that is,
the dished face spaces at the top and the bottom, to
complete thepig. The material is poured until the mold is filled and the pourhole 16 gives evidence of this fact. Preferably, the pourhole 16 should be of sufficient diameter to permit the escape of air bubbles while pouring.
It will be observed that a unitary pig is formed with a double-dished face at each end. Those engaged in pig manufacture have had difficulties in forming doubledished pigs inasmuch as there is a tendency, on molding, to trap bubbles in one of the concave faces. This problem has greatly reduced the quality of pigs formed to date. Consequently, the prior art has been found wanting in the provision of a means or method for the manufacture of an integrally formed pig having two concave faces.
The completed pig is shown in FIG. 3. In FIG. 3, the numeral 32 indicates the structural material at one end of the pig. Attention should be carefully directed to this face for an understanding of the heavy gauge of high density polyurethane foam which forms the end face. There is enough structure for the pig to bear up under the stress and strain of its intended application, and yet enough flexibility to permit it to give on pressure surges. Moreover, the pig is somewhat flexible and incorporates an outer lip at the dished face which grips and wipes against the bore of the pipeline. It will be understood and appreciated that this is a valuable action inasmuch as the pig is quite often used to wipe rather slippery materials such as paraffin coatings from the walls of the pipeline.
The pig as shown in FIG. 3 further incorporates a central support or structural member 34 which extends from one face to the other. On'the occurrence of a pressure shock, the member 34 supports both faces at a spaced location without unduly flexing or giving. It is not so rigid that it causes the pig to rupture and break into small pieces on a pressure surge. On the other hand, the axial structure member 34 which is integrally formed with the two dished faces is not so yieldable or pliable as to permit the pig to deform unduly. It will be understood that if the member 34 unduly elongates, the pigwould shrink in diameter and would not have the desired contact with the full periphery of the bore of the pipeline.
It will be noted that the core member 28 is left essentially intact within the body of the pig 12 as shown in FIG. 3. Moreover, the pins 24 and 26 are pulled from the cast polyurethane structure. A number of pressure relief openings 40 are drilled in the side wall of the pig to the soft inner core member 28. It should be understood that the drilled holes are helpful in providing pressure equalization within the body of the pig. For this reason, the ports or openings 40 found at random around the circumference of the cylindrical pig relieve the pressure from within the pig and permit the pig to equalize with thy pipeline pressure. In the alternative, an open celled foamed polyurethane can be used to permit the pressure fluid to pass through the side walls of the cylinder and communicate with the internal portions of the pig. Open cell polyurethane casting is believed well known in the art.
The holes or openings 40 are preferably drilled at the convenience of the user, and there is no set pattern or required number of openings except that they be sufficient in number to provide the fluid communication and yet not be so great in number as to weaken the physical structure of the pig.
Attention is next directed to FIGS. 4, 5 and 6 which illustrate a pig embodiment identified by the number 62. The pig 62 is similar to the pig 12 in most regards except that the pig 62 is circumferentially slotted at three or four locations at a point near its middle. The pig 62 is improved over the pig 12 in one or two significant regards. The first is that the pig 62 has more wiping edges or lips for removing paraffin coatings in the pipeline. Moreover, the pig 62 is able to flex. On
negotiating a curved pipe, the grooves or slots take up axial bending or flexure. The most extreme bend is about one times the radius. of the pipe while many bends are about three times the radius. It is axiomatic that a pig in the pipeline must negotiate any curve or bend which it encounters. As a consequence of the grooves or slots, the pig 62 is able to traverse the curves.
As shown in FIG. 5, the same internal core 78 is placed in a mold 64. The mold is filled with the liquid urethane polymer which is cured to a desired hardness depending on formulation. The finished product is shown in FIG. 6 where the pig includes the opposing dished ends connected by an axial rod or support 84. Of particular interest, FIG. 6 discloses details of the slots or grooves in the pig 62. There are three in number, but two or four may be used for various sizes. The foamed core is communicated with the exterior through a number of passages at 90. The passages open to the exterior at the recessed areas between the protruding ring-like members at 68, 70 and 72. Without regard to the direction of the pig movement in the pipeline, it moves along the pipe achieving contact with four or five scraping edges to clean the pipe. Again, the double-dished arrangement works in the manner described with regard to the embodiment 12.
The ring- like members 68, 70 and 72 are of common diameter with that of the body of the pig while their thickness might be as much as about 1 inch on a pig 8 inches in diameter. The grooves or cuts defining the rings are about I inch deep on an 8 inch pig. Bigger sizes vary somewhat proportionally.
Attention is next directed to FIG. 7 of the drawings where an alternative embodiment is indicated by the numeral 100. The pig 100 is equipped with a number of external rings indicated by the numerals 102, 104 and 106. The rings are spaced apart and separated by a number of grooves which are indicated generally by the numeral 108. Ports 110 are formed in the periphery to communicate with the interior of the pig in the same manner as the ports or passages shown in FIG. 6.
The passages expose the interior of the pig to the external pressure to equalize pressure within the pig. A significant feature of the pig is the inclusion of the spiral grooves indicated at 112 The spiral grooves are found on the leading and aft portions of the pig. The spirals do not fully encircle the pig, but are found at spaced points about the circumference to be located at trast, the pig 100 of FIG. 7 tends to rotate ever so slightly to evenlydistribute the wear. This also prevents the formation of a flat spot on the pig. In these regards, the pig 100 of FIG. 7 is improved over the other pigs.
Additional grooves are found at 114. These grooves provide relief passages, it is believed, for matter which is scraped fro the wall of the pipeline which is directed and channeled through the grooves away from the lead ing edge of the pig.
Attention is next directed to FIG. 9 of the drawings where a further alternative pig is indicated by the numeral 120. The pig 120 is quite similar to the pig shown in FIG. 6 of the drawings. However, the exterior surface of the pig is formed of a harder material. The pig 120 has an internal foamed core indicated by the numeral 122 which is similar in all regards to the core 78 shown in FIG. 5. A body 124 is formed about the core, and a central axis 126 is likewise a portion of the pig. As was discussed regarding the method of manufacture, and the arrangement of FIG. 5, the foam core is suspended within a mold and the body is formed about it. The body includes the axial rod or support 126 which is connected to the harder elastomer which forms the double-dished pig. Thus, the axial support 126 is cast integral with the remainder of the body as previously mentioned. However, a significant feature of the pig 120 is the inclusion of a third plastic material which is indicated by the numeral 128. The third material is found on the outer surface. Just as the body 124 is somewhat harder than the foam core 122, the outer surface or coating 128 is even yet harder than the body. The foam core 122 is a lowdurometer, low density, foamed polyurethane material. The body 124 might be, by way of example and not limitation, a molded urethane polymer which is cured to a hardness of perhaps 60 to 90 durometer. The outer coating 128 can readily be, by way of example and not limitation, a mix of the same liquid polymer ofwhich thebody 124'is formed having added thereto gr'anuals of tungsten carbide or some other extremely hard material. The coating 128 is a mix of a plastic binder and a hard material. It is manufactured in the following manner, utilizing FIG. 8 of the drawings.
In FIG. 8, the foam insert 122 is shown suspended in a' mold which is indicated generally by the numeral 132. The mold can be-disassembled and assembled to enclose the foam body 122. The foam body is held in position by a pair of pins 136. Preferably, the mold is perhaps a three piece mold having a left half 138, a right half 140, and a top 142. The mold forms the exterior of the pig to the double dished shape of the preferred embodiment. A void is left in the mold which provides for the externally facing rings and grooves in the manner ofthe embodiment 100 shown in FIG. 7.
The method of manufacture of the pig 120 having an externally hard surface comprised of a plastic binder and hard particles will next be considered. An opening 144 is left in the top plate 142 to permit the addition of a small but measured quantity of mixed liquid urethane opening 144 at the top. At this juncture the mold is completely filled to the top, and is permitted to sit until the remainder of the body is cast and becomes firm. The second addition of liquid elastomer to the mold binds the foamed core 122 to the hardenedexternal coating previously formed on the outer wall of the mold. Thus, the completed product is fully bonded together, and yet comprises different hardnesses at different locations for purposes set forth above.
It should be noted that the molding process described above forms a double dished pig having an axial support through the center. This is in accordance with the teachings recited earlier herein. The exterior surface is extremely hard, and achieves the purposes desired as mentioned before with respect to the embodiment 120. The molding sequence described herein is perhaps the most convenient to execute and yields a finished product having a controlled external diameter so that the pig can be assigned duty in a pipeline of known nominal diameter.
The foregoing has been directed to the method of manufacture of the present invention. The pipeline pig manufactured by the method of the present invention has likewise been described. Numerous alterations and variations can be included with the present invention without departing from the scope hereof. For instance,
' the several dimensions of thepig can be varied within dished ends tend to flare slightly, which enhances the gripping action of the pig at both ends against the side walls. This enhanced gripping action tends to remove paraffin coating and other accumulations within the pipeline.
The foamed elastomer may be shaped into a cone, a section of which shows two straight line segments, or it may have the form of a curve or are. Thus, both ends may be shaped to this alternative form. The are may be that of a circle or ellipse.
While many alterations and variations of the present invention may be incorporated, the terminology adapted herein is extended tothe claims which are appended hereto.
What is claimed is:
1. A pipeline pig which comprises an elongate cylindrical body having an elongate dimension from end to endand having a cavity therewithin and adapted to fit within a pipeline and beingofapproxim ately equal diameter to the inside diameter of the pipeline;
concave surfaces of a desired thickness at the opposite ends of said pig, said surfaces. being formed said cylindrical body being formed substantially of a I resilient material.
2. The invention of claim 1 including a cylindrical core of lower density material than that of said body within the cavity of said cylindrical body of said pig and surrounding said elongate support member. 'i
3. The invention of claim 1 including a cylindrical core of low-density polyolefin foam in said cavity in said body and a surrounding polyolefin body cast to said core and having an outer surface hardness in the range of 70 durometer or greater.
4. The invention of claim 1 including on said body a plurality of ring-like members extending to the periphery of the inside of the pipeline.
5. The invention of claim 2 further including passage means communicating the interior of the pipeline with the cavity within said body.
6. The invention of claim 2 further including an external coating on said cylindrical body which includes therein particlesof a material harder than the resilient material comprising said cylindrical body.
7. The invention of claim 6 wherein said particles are tungsten carbide particles which are embedded in said resilient material.
8. The invention of claim 6 wherein said resilient material is a urethane material which is molded about said particles which extend radially inwardly from the outer face thereof a predetermined depth.
9. The invention of claim 1 wherein said cylindrical body includes spiralled grooves extending at least partway along the length of the body thereof sufficient to impart a slight rotative twist to said pig as it traverses the pipeline.
10. The invention of claim 9 wherein said spiral grooves are found at at least two locations along the length of said body.

Claims (10)

1. A pipeline pig which comprises an elongate cylindrical body having an elongate dimension from end to end and having a cavity therewithin and adapted to fit within a pipeline and being of approximately equal diameter to the inside diameter of the pipeline; concave surfaces of a desired thickness at the opposite ends of said pig, said surfaces being formed of a resilient material different from the material of said body and permitting some flexure thereof to enhance the gripping action of the pig as it engages the side wall of the pipe; an elongate support member extending through the central portions of said pig for connecting said surfaces; and, said cylindrical body being formed substantially of a resilient material.
2. The invention of claim 1 including a cylindrical core of lower density material than that of said body within the cavity of said cylindrical body of said pig and surrounding said elongate support member.
3. The invention of claim 1 including a cylindrical core of low-density polyolefin foam in said cavity in said body and a surrounding polyolefin body cast to said core and having an outer surface hardness in the range of 70 durometer or greater.
4. The invention of claim 1 including on said body a plurality of ring-like members extending to the periphery of the inside of the pipeline.
5. The invention of claim 2 further including passage means communicating the interior of the pipeline with the cavity within said body.
6. The invention of claim 2 further including an external coating on said cylindrical body which includes therein particles of a material harder than the resilient material comprising said cylindrical body.
7. The invention of claim 6 wherein said particles are tungsten carbide particles which are embedded in said resilient material.
8. The invention of claim 6 wherein said resilient material is a urethane material which is molded about said particles which extend radially inwardly from the outer face thereof a predetermined depth.
9. The invention of claim 1 wherein said cylindrical body includes spiralled grooves extending at least part-way along the length of the body thereof sufficient to impart a slight rotative twist to said pig as it traverses the pipeline.
10. The invention of claim 9 wherein said spiral grooves are found at at least two locations along the length of said body.
US00147433A 1971-05-27 1971-05-27 Double-dished pipeline pig Expired - Lifetime US3725968A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14743371A 1971-05-27 1971-05-27

Publications (1)

Publication Number Publication Date
US3725968A true US3725968A (en) 1973-04-10

Family

ID=22521549

Family Applications (1)

Application Number Title Priority Date Filing Date
US00147433A Expired - Lifetime US3725968A (en) 1971-05-27 1971-05-27 Double-dished pipeline pig

Country Status (1)

Country Link
US (1) US3725968A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857132A (en) * 1972-11-24 1974-12-31 K Knapp Pipeline pig operable in two directions
US3875606A (en) * 1973-08-15 1975-04-08 Oil States Rubber Co Foam filled pipeline pig
US4083076A (en) * 1977-01-14 1978-04-11 Girard Harry J Pipeline pig with longitudinally incompressible member
US4767603A (en) * 1986-01-14 1988-08-30 Halliburton Company Pig for a fluid conducting system
EP0542840A1 (en) * 1990-08-10 1993-05-26 Compri Technic Pty. Ltd. Improved pneumatic gun and projectiles therefor
US5271118A (en) * 1991-03-02 1993-12-21 Gerhard Kopp Gmbh Plastic packing ring or disk and a method and apparatus for making same
US5457841A (en) * 1994-10-13 1995-10-17 Continental Emsco Company Cleaning pig for pipeline of varying diameter
US5528790A (en) * 1995-09-21 1996-06-25 Curran; Ed Pipe scraper assembly
US5685041A (en) * 1996-02-14 1997-11-11 Sivacoe; Orlande Pipe pig with abrasive exterior
US5895619A (en) * 1997-01-21 1999-04-20 Knapp; Kenneth M. Method for casting a bidirectional foam pig
EP1102018A1 (en) * 1999-11-16 2001-05-23 Matsushita Electric Industrial Co., Ltd. Piping cleaning method of air conditioner, compounds used therein, and piping cleaning apparatus
GB2358450A (en) * 1997-01-21 2001-07-25 Kenneth M Knapp Making a pig
US6523612B2 (en) * 2000-03-31 2003-02-25 M-I L.L.C. Method and apparatus for cleaning wellbore casing
US20030166366A1 (en) * 2002-03-01 2003-09-04 H2Eye (International) Limited. Submersible articles and method of manufacture thereof
US6769321B1 (en) * 1999-09-29 2004-08-03 University Of Durham Conduit traversing vehicle
US20060266512A1 (en) * 2003-04-15 2006-11-30 Wilhelmus Christianus Lohbeck Pump plug
WO2007006341A1 (en) * 2005-07-07 2007-01-18 Schmid Baukunststoffe Gmbh Method for producing foam rubber moulded parts and moulded parts produced by this method
US20070028706A1 (en) * 2005-07-29 2007-02-08 Mandziuk Michael W Abrasion-resistant pig, and materials and methods for making same
US20170299108A1 (en) * 2014-09-21 2017-10-19 Curapipe System Ltd. Flexible pig for pipeline maintenance
US10627039B2 (en) * 2016-06-24 2020-04-21 Tdw Delaware, Inc. Multi-diameter foam pig
US11459185B1 (en) * 2021-05-06 2022-10-04 INMAR Rx SOLUTIONS, INC. Pneumatic transport system including pharmaceutical transport cleaner having a rotatable band and related methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1415600A (en) * 1922-05-09 And egbert g
US1547440A (en) * 1921-03-28 1925-07-28 Warren C Drake Tube-cleaning system
US1713895A (en) * 1926-03-27 1929-05-21 Ernest B Ford Tube cleaner
US3403701A (en) * 1966-12-27 1968-10-01 Mary M. Knapp Pressure sealing pipe line pig
US3543323A (en) * 1968-11-20 1970-12-01 Harry J Girard Foamed plastic pig for pipe lines
US3602934A (en) * 1969-07-31 1971-09-07 Acushnet Co Resilient plug for cleaning pipelines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1415600A (en) * 1922-05-09 And egbert g
US1547440A (en) * 1921-03-28 1925-07-28 Warren C Drake Tube-cleaning system
US1713895A (en) * 1926-03-27 1929-05-21 Ernest B Ford Tube cleaner
US3403701A (en) * 1966-12-27 1968-10-01 Mary M. Knapp Pressure sealing pipe line pig
US3543323A (en) * 1968-11-20 1970-12-01 Harry J Girard Foamed plastic pig for pipe lines
US3602934A (en) * 1969-07-31 1971-09-07 Acushnet Co Resilient plug for cleaning pipelines

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857132A (en) * 1972-11-24 1974-12-31 K Knapp Pipeline pig operable in two directions
US3875606A (en) * 1973-08-15 1975-04-08 Oil States Rubber Co Foam filled pipeline pig
US4083076A (en) * 1977-01-14 1978-04-11 Girard Harry J Pipeline pig with longitudinally incompressible member
US4767603A (en) * 1986-01-14 1988-08-30 Halliburton Company Pig for a fluid conducting system
EP0542840A1 (en) * 1990-08-10 1993-05-26 Compri Technic Pty. Ltd. Improved pneumatic gun and projectiles therefor
EP0542840A4 (en) * 1990-08-10 1993-11-03 Compri Technic Pty. Ltd. Improved pneumatic gun and projectiles therefor
US5555585A (en) * 1990-08-10 1996-09-17 Compri Technic Pty., Ltd. Pneumatic gun and projectiles therefor
US5271118A (en) * 1991-03-02 1993-12-21 Gerhard Kopp Gmbh Plastic packing ring or disk and a method and apparatus for making same
US5457841A (en) * 1994-10-13 1995-10-17 Continental Emsco Company Cleaning pig for pipeline of varying diameter
US5528790A (en) * 1995-09-21 1996-06-25 Curran; Ed Pipe scraper assembly
US5685041A (en) * 1996-02-14 1997-11-11 Sivacoe; Orlande Pipe pig with abrasive exterior
GB2358450B (en) * 1997-01-21 2001-09-12 Kenneth Mcbeath Knapp Method of making a pipeline pig
GB2358450A (en) * 1997-01-21 2001-07-25 Kenneth M Knapp Making a pig
US5895619A (en) * 1997-01-21 1999-04-20 Knapp; Kenneth M. Method for casting a bidirectional foam pig
US6769321B1 (en) * 1999-09-29 2004-08-03 University Of Durham Conduit traversing vehicle
EP1102018A1 (en) * 1999-11-16 2001-05-23 Matsushita Electric Industrial Co., Ltd. Piping cleaning method of air conditioner, compounds used therein, and piping cleaning apparatus
US6523612B2 (en) * 2000-03-31 2003-02-25 M-I L.L.C. Method and apparatus for cleaning wellbore casing
US20030166366A1 (en) * 2002-03-01 2003-09-04 H2Eye (International) Limited. Submersible articles and method of manufacture thereof
US6668748B2 (en) * 2002-03-01 2003-12-30 H2Eye (International) Limited Submersible articles and method of manufacture thereof
US20060266512A1 (en) * 2003-04-15 2006-11-30 Wilhelmus Christianus Lohbeck Pump plug
WO2007006341A1 (en) * 2005-07-07 2007-01-18 Schmid Baukunststoffe Gmbh Method for producing foam rubber moulded parts and moulded parts produced by this method
CN101137483B (en) * 2005-07-07 2010-06-16 施密德建筑塑料有限公司 Method for producing foam rubber moulded parts and moulded parts produced by this method
US20070028706A1 (en) * 2005-07-29 2007-02-08 Mandziuk Michael W Abrasion-resistant pig, and materials and methods for making same
US7526971B2 (en) * 2005-07-29 2009-05-05 General Electric Company Abrasion-resistant pig, and materials and methods for making same
US20170299108A1 (en) * 2014-09-21 2017-10-19 Curapipe System Ltd. Flexible pig for pipeline maintenance
US10627039B2 (en) * 2016-06-24 2020-04-21 Tdw Delaware, Inc. Multi-diameter foam pig
US11365842B2 (en) 2016-06-24 2022-06-21 Tdw Delaware, Inc. Multi-diameter foam pig
US11459185B1 (en) * 2021-05-06 2022-10-04 INMAR Rx SOLUTIONS, INC. Pneumatic transport system including pharmaceutical transport cleaner having a rotatable band and related methods

Similar Documents

Publication Publication Date Title
US3725968A (en) Double-dished pipeline pig
AU673477B2 (en) Pipeline pig
US3879790A (en) Pipe line pig
US3861646A (en) Dual sealing element valve for oil well pumps
US5625917A (en) Foam pipeline pig with seal cups
US6272713B1 (en) Internal pipe cleaning device
US5150493A (en) Pipeline pig
US2143106A (en) Oil packer
US8051524B2 (en) Multi-diameter elastic sealing module for pigs
US5685041A (en) Pipe pig with abrasive exterior
US4406030A (en) Pipeline spheres
US3480984A (en) Pig apparatus
US3900912A (en) Pipeline paraffin scraper
CA2099794C (en) Scraper for a pipe pig
GB2023732A (en) Wear liner eg for centrifugal pumps
CA1258558A (en) Unicast pig body for parafin removal
US5032185A (en) Method and apparatus for removing paraffin from a fouled pipeline
US6065174A (en) Parabolic scraper for a pipeline pig
US4663795A (en) Pig apparatus
US3906576A (en) Resilient element for a bi-directional pig
US2478961A (en) Cleaner for pipe lines
US3863287A (en) Pipeline pig
US3538531A (en) Pipeline pig
US3403418A (en) Pipeline pig or swipe
US3602934A (en) Resilient plug for cleaning pipelines