US3725951A - Electro-ionic printing - Google Patents

Electro-ionic printing Download PDF

Info

Publication number
US3725951A
US3725951A US00153718A US3725951DA US3725951A US 3725951 A US3725951 A US 3725951A US 00153718 A US00153718 A US 00153718A US 3725951D A US3725951D A US 3725951DA US 3725951 A US3725951 A US 3725951A
Authority
US
United States
Prior art keywords
ion
dielectric
dielectric surface
streams
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00153718A
Inventor
Curry R Mc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Application granted granted Critical
Publication of US3725951A publication Critical patent/US3725951A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/32Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head
    • G03G15/321Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by charge transfer onto the recording material in accordance with the image
    • G03G15/323Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by charge transfer onto the recording material in accordance with the image by modulating charged particles through holes or a slit

Definitions

  • ABSTRACT A method of forming electrostatic images on a dielec- 21 Appl. N0.: 153,718
  • FIG. 2 ION HEAD ASSEMBLY DIELECTRIC MEDIUM CHARACTER PULSING MEANS POWER SUPPLY
  • FIG. 2 ION HEAD ASSEMBLY DIELECTRIC MEDIUM CHARACTER PULSING MEANS POWER SUPPLY
  • control voltage and power are reduced by orders of magnitude compared with other techniques.
  • the invention relates broadly to the control of the ion concentration in a gas stream, and more particularly to the formation of an image on a dielectric surface by directing thereon a controlled concentration of ions borne by the gas stream.
  • the present invention employs a relatively simple means for controlling the ion concentration in a moving gas stream directed upon a dielectric surface to cause the formation of a desired latent image.
  • Another object is to provide a relatively simple and inexpensive method for forming latent images on a dielectric surface.
  • Yet another object is to provide a relatively simple and inexpensive method for forming latent images on an image receiving surface by controlling ion concentration in a moving gas stream directed on said surface.
  • Still another object is to provide electrostatic images of a high quality and resolution on a dielectric surface.
  • the invention has a Any gas can be used in which stable corona can be generated. It is not limited to He or inert gases.
  • Ions are transported primarily by the gas stream hence no erosion or other deterioration effects.
  • Metastable atoms are not required.
  • FIG. I shows an ion head assembly generating a plurality of individual ion streams.
  • FIG. 2 is a schematic arrangement of the invention showing 3 channels of the head assembly interconnected between a DC power supply and a character pulsing means.
  • FIG. 3 is a schematic arrangement of a printer utilizing the head assembly of FIG. 1.
  • FIGS. 40, 4b, and 40 show schematically the 7 channels of a write head and the pulse patterns for forming images of the alphabetic characters E and H, respectively.
  • FIGS. 5a, 5b, and 5c show diagramatically how ion concentration is controlled in a channel of the ion head.
  • FIG. 6 shows ion current pulse behavior according theory.
  • each port 3 communicates with an individual channel of which there are 7 such channels namely 4a1-4a7 constituting a head assembly 4.
  • Each channel is constituted of electrical conducting top and bottom wall membersSa, 5b and insulating side walls 6.
  • the head assembly 4 is held together and at tached to the ion chamber by any suitable means not shown. It is thus seen that the head assembly 4 provides a plurality of longitudinal channels insulated from each other to provide a plurality of individual ion streams, each of high ion concentration.
  • each channel may be any suitable configuration, for example, square, rectangular, or any other desired crosssection.
  • Attached to the top and bottom walls Sal-507, 5bl-5b7 are electrical lines 15a-15g, l6a-16g. Lines 16a-16 are connected in common to a DC power supply, while the lines ISa-lSg are individually controlled by differentially timed pulses issued by a character pulsing means, cpm.
  • ion concentration decreases as a result of recombination and neutralization at the channel walls.
  • the ion loss through a conductive wall may be substantially increased by superimposing an electrical field across opposing channel walls, for example, the top and bottom walls. Application of a sufficiently large electrical field will remove substantially percent of the ion concentration in the gas stream. Conversely, the
  • the electrical field is induced by application of an electrical potential through the lines 150-153 connected to the opposing walls of the channels shown in the drawing of FIG. 1.
  • the write state of a channel is attained when a low or zero transverse electrical field is applied, and the off state is attained with the application of a greater biasing electrical field to remove more ions from the gas stream.
  • the variation of the electrical potentials to produce character printing is controlled by the character pulsing means, cpm.
  • FIG. 2 The application of desired electrical fields to a write head 4 is schematically illustrated in FIG. 2
  • the write head 4' partially shown with 3 capacitors, representing 3 channels shown in FIG. 1.
  • the plates Sal, 5bl, of the capacitors correspond to the top and bottom channel walls respectively.
  • Each capacitor is seen connected'between the character pulsing means (cpm) by way of lines a-15g and the DC power supply, the latter being adjusted to a desired potential V to obtain the desired ion output.
  • the character pulsing means, cpm supplies pulses of appropriate polarity and magnitude substantially equal to the potential V of the power supply.
  • the field across the capacitors (the channel) is reduced to enable the ion concentration to attain its maximum concentration and be directed against an image receiving surface for the formation of a desired image configuration.
  • FIG. 3 shows schematically a printer arrangement for forming a latent electrostatic image upon a dielectric medium moving from right to left underneath a precharging unit 21 that precharges the medium 20 with a desired potential with polarity op posite the ion polarity.
  • the precharged dielectric medium moves underneath a write head 4" similar to that described above.
  • the write head communicates with ion generator 1 By controlling the individual channels of the write head with suitable voltage pulses, a latent image of alphabetical characters is formed upon the 'precharged dielectric surface of medium 20.
  • the medium 20 with its latent image passes through a developer 22 and thereafter through a fixer 23, both of which are well known in the art.
  • the latent image After passing through the fixer the latent image is developed and fixed to provide a visible image comprised of two alphabetic characters E and H.
  • the character pulse means as mentioned herein write head channels.
  • the formation of alphabetical characters by means of printer arrangement of FIG. 3 may be described with reference to FIG. 4a, 4b, and 4c.
  • FIG. 4a shows a line arrangement of 7 capacitors representing 7 channels of the write head.
  • the left sides, 5al-5a7 of the capacitors are connected to 15 volt DC supply whereas the right sides, 5b1-5b7 of the capacitors are connected to the character pulsing means, cpm, not shown, that selectively pulses the right sides of these capacitors to cause formation of the desired latent image on the dielectric medium 20.
  • the character pulsing means cpm, not shown
  • FIG. 4b From a further inspection of FIG. 4b it is seen that the upper and lower horizontal lines, as well as the central horizontal line, of the character E are formed during the application of l5v potentials to the channel walls represented respectively by capacitors 4al, 4a4, and 4a7 shown in FIG. 4a for approximately 5 time intervals.
  • the character pulsing means applies zero voltage to channel walls represented by 5b2, 5b3, 5b5, and 5b6. These four walls are maintained at zero potential for the duration of the character formation.
  • the l5v potential on wall SM is maintained on for 4 time intervals. It is understood that the latent image is being formed on the dielectric medium as the latter moves from right to left under the respective channels of the write head.
  • ions of concentration n are distributed uniformly across the entrance to a rectangular crosssection channel head in a uniform electric field and that the velocity of gas through the channel head is V,,.
  • the transmitted ion current is q W-X) 6) Where q is the charge per ion.
  • the ion current density changes from 0 to nq V, at a distance X from the collector electrode. From this point of view the difference between ON and OFF conditions is the cross-sectional area through which ions are transmitted.
  • Typical bias voltage values that work fairly well are 15 volts and it is estimated that ion mobility is 1-2 cm /v-sec. Hence, T -5 to 10 X 10' sec. This value of T represents a factor of 10 smaller than one would expect.
  • T The value of T is expected to be much more reliable, and one may take T as best estimate of the transient on-time some part of which may be a complete delay. An important point here is that this time is approximately equal to the transient time (i.e., a point on the dielectric sheet will traverse the slot width in approximately the same time as the transit time). This should lead to a much sharper edge in one direction than in the other, i.e., gradient of charge density is much larger on one edge than on the other.
  • V is the velocity of the ion profile across the channel width, i.e., V W/T velocity in the forward direction is just V,,, the gas flow velocity.
  • the charge density gradient depends on the direction of relative motion of the dielectric surface, and the polarity of the head that determines which electrode acts as ion collector.
  • the result is a directional nature which can be minimized by minimizing T i.e., this procedure makes W W.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Dot-Matrix Printers And Others (AREA)

Abstract

A method of forming electrostatic images on a dielectric surface by controlling the relative ion concentration in a gas stream moving through a channel and directed upon said dielectric surface. Application of an electric field across the channel enables the stream to vary in ion concentration so as to cause the formation of a desired linear charge configuration on the dielectric. Selective application of electric fields to an array of channels causes formation of desired image charge configurations on the dielectric surface.

Description

[ 1 Apr. 3, 1973 Mutschler et I ELECTRO-IONIC PRENTING 3,495,269 2/1970 .346/74 EB 3,117,022 l/l964 Bronson et al............... ....346/74 EB [75] lnventor: Robert E. McCurry, Vestal, N.Y.
[73] Assignee: International Business Machines Primary Examiner-Bernard Konick Assistant Examiner-Jay P. Lucas Attorney-Andrew Taras et al.
Corporation, Armonk, N.Y.
June 16, 1971 [22] Filed:
[57] ABSTRACT A method of forming electrostatic images on a dielec- 21 Appl. N0.: 153,718
tric surface by controlling the relative ion concentration in a gas stream moving through a channel and directed upon said dielectric surface. Application of an electric field across the channel enables the stream to vary in ion concentration so as to cause the forma- 250/49.5 GC, 41.9 SE
tion of a desired linear charge configuration on the dielectric. Selective application of electric fields to-an References Cited UNITED STATES PATENTS array of channels causes formation of desired image charge configurations on the dielectric surface.
....346/75 4 Claims, 10 Drawing Figures Morgan...... Rourke ION HEAD ASSEMBLY DIELECTRIC MEDIUM LINE OF DOT IMAGES PATENTEDAPR3 1975 SHEET 1 UF 3 FIG. 1
4 ION HEAD ASSEMBLY DIELECTRIC MEDIUM CHARACTER PULSING MEANS POWER SUPPLY FIG. 2
INVENTOR ROBERT E. McCURRY AGENT PATEIHEDAPM 1975 7 5,951
SHEET 2 OF 3 ELECTRICAL BIAS MEANS MEANS 0PM) F decided advantage over the prior art printing techniques by virtue of the factthat:
rather than by an accelerating electric field.
it does not have to cause breakdown; hence the control voltage and power are reduced by orders of magnitude compared with other techniques.
ELECTRO-IONIC PRINTING BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates broadly to the control of the ion concentration in a gas stream, and more particularly to the formation of an image on a dielectric surface by directing thereon a controlled concentration of ions borne by the gas stream.
2. Description of the Prior Art The prior art is replete with a wide variety of means The most pertinent art is found in US. Pat. No.
3,495,269 issued to Mutschler et al. in which latent image formation is produced as a result of an ion charge produced in the air gap between the head and the image receiving surface. This charge is the result of electrical breakdown in the air gap caused by de-excitation of Metastable Helium atoms, the latter being generated by the application of high electric fields to helium atoms.
SUMMARY OF THE INVENTION The present invention, on the other hand, employs a relatively simple means for controlling the ion concentration in a moving gas stream directed upon a dielectric surface to cause the formation of a desired latent image.
Accordingly, it is the principal object of the invention to provide a unique method for controlling ion concentration in a moving gas stream.
Another object is to provide a relatively simple and inexpensive method for forming latent images on a dielectric surface.
Yet another object is to provide a relatively simple and inexpensive method for forming latent images on an image receiving surface by controlling ion concentration in a moving gas stream directed on said surface.
Still another object is to provide electrostatic images of a high quality and resolution on a dielectric surface.
Aside from these various objects, the invention has a Any gas can be used in which stable corona can be generated. It is not limited to He or inert gases.
Ions are transported primarily by the gas stream hence no erosion or other deterioration effects.
Electrical control has only to move ions across a gap,
Metastable atoms are not required.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I shows an ion head assembly generating a plurality of individual ion streams.
FIG. 2 is a schematic arrangement of the invention showing 3 channels of the head assembly interconnected between a DC power supply and a character pulsing means.
FIG. 3 is a schematic arrangement of a printer utilizing the head assembly of FIG. 1.
FIGS. 40, 4b, and 40 show schematically the 7 channels of a write head and the pulse patterns for forming images of the alphabetic characters E and H, respectively.
FIGS. 5a, 5b, and 5c show diagramatically how ion concentration is controlled in a channel of the ion head.
FIG. 6 shows ion current pulse behavior according theory.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of controlling a stream of gas borne ions may be explained in connection with FIG. 1 herein is shown an ion generating chamber 1, similar to the one shown and described in a copending application, Ser. No. 69,647, filed Sept. 4, 1970, titled Method and Apparatus for Generating Electrostatic Images. A gas,
- for example air under pressure is admitted into the ion chamber by way of an inlet 2 and the ions are generated in the manner described in said copending application. The gas exiting from ports 3 is laden with a very high concentration of ions. Each port 3 communicates with an individual channel of which there are 7 such channels namely 4a1-4a7 constituting a head assembly 4. Each channel is constituted of electrical conducting top and bottom wall membersSa, 5b and insulating side walls 6. The head assembly 4 is held together and at tached to the ion chamber by any suitable means not shown. It is thus seen that the head assembly 4 provides a plurality of longitudinal channels insulated from each other to provide a plurality of individual ion streams, each of high ion concentration. The cross-section of each channel may be any suitable configuration, for example, square, rectangular, or any other desired crosssection. Attached to the top and bottom walls Sal-507, 5bl-5b7 are electrical lines 15a-15g, l6a-16g. Lines 16a-16 are connected in common to a DC power supply, while the lines ISa-lSg are individually controlled by differentially timed pulses issued by a character pulsing means, cpm.
As the gas streams pass through their respective channels ion concentration decreases as a result of recombination and neutralization at the channel walls. The ion loss through a conductive wall may be substantially increased by superimposing an electrical field across opposing channel walls, for example, the top and bottom walls. Application of a sufficiently large electrical field will remove substantially percent of the ion concentration in the gas stream. Conversely, the
The electrical field is induced by application of an electrical potential through the lines 150-153 connected to the opposing walls of the channels shown in the drawing of FIG. 1. The write state of a channel is attained when a low or zero transverse electrical field is applied, and the off state is attained with the application of a greater biasing electrical field to remove more ions from the gas stream. In the case of a printing'application, the variation of the electrical potentials to produce character printing is controlled by the character pulsing means, cpm.
The application of desired electrical fields to a write head 4 is schematically illustrated in FIG. 2 In this schematic arrangement, the write head 4' partially shown with 3 capacitors, representing 3 channels shown in FIG. 1. The plates Sal, 5bl, of the capacitors, correspond to the top and bottom channel walls respectively. Each capacitor is seen connected'between the character pulsing means (cpm) by way of lines a-15g and the DC power supply, the latter being adjusted to a desired potential V to obtain the desired ion output. The character pulsing means, cpm, supplies pulses of appropriate polarity and magnitude substantially equal to the potential V of the power supply. During the interval of time that a write operation is desired the field across the capacitors (the channel) is reduced to enable the ion concentration to attain its maximum concentration and be directed against an image receiving surface for the formation of a desired image configuration.
An application of this type of ionic control is seen in FIG. 3 which shows schematically a printer arrangement for forming a latent electrostatic image upon a dielectric medium moving from right to left underneath a precharging unit 21 that precharges the medium 20 with a desired potential with polarity op posite the ion polarity. The precharged dielectric medium moves underneath a write head 4" similar to that described above. The write head communicates with ion generator 1 By controlling the individual channels of the write head with suitable voltage pulses, a latent image of alphabetical characters is formed upon the 'precharged dielectric surface of medium 20. The medium 20 with its latent image passes through a developer 22 and thereafter through a fixer 23, both of which are well known in the art. After passing through the fixer the latent image is developed and fixed to provide a visible image comprised of two alphabetic characters E and H. The character pulse means as mentioned herein write head channels. The formation of alphabetical characters by means of printer arrangement of FIG. 3 may be described with reference to FIG. 4a, 4b, and 4c.
The schematic arrangement of FIG. 4a shows a line arrangement of 7 capacitors representing 7 channels of the write head. The left sides, 5al-5a7 of the capacitors are connected to 15 volt DC supply whereas the right sides, 5b1-5b7 of the capacitors are connected to the character pulsing means, cpm, not shown, that selectively pulses the right sides of these capacitors to cause formation of the desired latent image on the dielectric medium 20. From an inspection of FIG. 4b it may be appreciated that in the formation of the image of the character E the vertical segment of the character E is formed during the intervalVT during which there is no electrical field present across the channels of the write head and during this intervalVT the character pulsing means supplies l5v pulse potential to the appropriate channel walls of all channels. From a further inspection of FIG. 4b it is seen that the upper and lower horizontal lines, as well as the central horizontal line, of the character E are formed during the application of l5v potentials to the channel walls represented respectively by capacitors 4al, 4a4, and 4a7 shown in FIG. 4a for approximately 5 time intervals. At the end of the first time intervalVT the character pulsing means applies zero voltage to channel walls represented by 5b2, 5b3, 5b5, and 5b6. These four walls are maintained at zero potential for the duration of the character formation. The l5v potential on wall SM is maintained on for 4 time intervals. It is understood that the latent image is being formed on the dielectric medium as the latter moves from right to left under the respective channels of the write head.
From an inspection of FIG. 4c it can be appreciated that the pattern of pulses'applied to the respective channels 4a1 through 4a7 is consistent for the formation of the alphabetical character H. 5
Although the precise mechanism may not be fully known, nevertheless a discussion of the theoretical aspects and behavior of ionic action can be offered to provide a reasonable explanation of what occurs in the control of ion concentration in a moving gas stream passing through a channel head-without in any way limiting or restricting the scope of the invention. In this vein the following theoretical discussion is submitted as a plausible explanation of ionic action that may occur in the formation of a desired image utilized, for example, in the printing of characters using a head configured according to certain desired parameters.
Suppose ions of concentration n are distributed uniformly across the entrance to a rectangular crosssection channel head in a uniform electric field and that the velocity of gas through the channel head is V,,.
The time required for a molecule or ion to pass through the channel head of Length, L, is T,=L/ V,,.
The time for an ion of mobility p. to drift across the channel head width is T =W/V =W /;LV I (2) Neglecting neutralization time substantially all ions ing the bias potential V to make ol V S (4) When this Condition is not satisfied, ions that are transmitted are nonuniforrnly distributed, i.e., substantially all ions will be removed from the cross-sectional area (a X X) where a is the electrode width and SeeFIGS. 5a-5c.
Under these conditions, the transmitted ion current is q W-X) 6) Where q is the charge per ion.
The ion current density changes from 0 to nq V, at a distance X from the collector electrode. From this point of view the difference between ON and OFF conditions is the cross-sectional area through which ions are transmitted.
If .we now consider the charge density which can be delivered to and deposited on a dielectric (relative velocity, V,,.) moving parallel to the direction in which W and X are measured, ignoring spreading caused by space charge and viscosity effects, then charge density deposited is As in other electrostatic image formation techniques, the voltage contrast produced is proportional to the difference in surface charge density. The proportionality constant being the reciprocal of capacitance per unit area. Thus in the case above the change in surface potential produced on a dielectric sheet of thickness d, and dielectric constant K is V.= o Q. (8)
And the width of a written-line would be a and its length V, X T,,, where T,, is the on time.
Thus far it has been assumed that transients, i.e., turn on and turn off times are not limiting factors, hence surface charge density will change as indicated by (7) rather than by some smaller amount. It is, however, of interest to consider the on-off transient behavior expected from this type of write-head.
In the simple theory considered here, the ion trajectories are just straight lines. If we consider turmon time first, (in response to a step input), we see that the total tum-on transient time is equal to the transmission time, T given by (1).
A part of this time will, however, be a simple delay if T Tthat delay time is just T ==T T After 713 has elapsed, the ion current rises linearly to its on-value, reaching it at time T Notice that if T 2 T then T =0, and the ion current begins to rise immediately. The situation is illustrated in FIG. 6.
If we now consider tum-off time, we note first that there is no comparable delay time, i.e., the ion current immediately begins to decrease. However, transient time in this case is given completely by T up to a maximum of T I One can therefore expect on the basis of these transient time considerations that line length for as well as of pulse length.
Thus far we have neglected the uniformity of ion distribution emerging from the head cross-section and considered only total current. Since the transients considered above are, in the simple theory, just associated with a one-dimensional change of the area of the head through which ions are transmitted, and since with present geometry the changing one dimension is parallel to the direction of V one expects that written lines may show a directional effect associated with dielectric motion. Hence, the leading and trailing edges of a line may differ and the leading edge should be sharper than the trailing edge for dielectric motion from the ion collector channel wall to the opposite wall and also sharper for this motion from rather than toward the collector.
Typical bias voltage values that work fairly well are 15 volts and it is estimated that ion mobility is 1-2 cm /v-sec. Hence, T -5 to 10 X 10' sec. This value of T represents a factor of 10 smaller than one would expect.
The value of T is expected to be much more reliable, and one may take T as best estimate of the transient on-time some part of which may be a complete delay. An important point here is that this time is approximately equal to the transient time (i.e., a point on the dielectric sheet will traverse the slot width in approximately the same time as the transit time). This should lead to a much sharper edge in one direction than in the other, i.e., gradient of charge density is much larger on one edge than on the other.
It may be worthwhile at this point to get a more quantitative idea of the magnitude of this effect. Considering that the off ion profile in a head is simply a wedge, and. that during turn-on" and tum-off transients the wedge moves down the channel toward the paper or back up toward the ion generator respectively, one can calculate the sharpness of the edges, i.e., the distance over which charge density varies.
The result is es p/ 2) S W for'V and V in the same direction, the or exponent is chosen so that and W W+T V W (10 for V and V in opposite directions.
In these expressions, T is the surface transport time across the slot width, i.e., T,,=W/ V,,
V is the velocity of the ion profile across the channel width, i.e., V W/T velocity in the forward direction is just V,,, the gas flow velocity.
From expressions 9 and 10 the charge density gradient depends on the direction of relative motion of the dielectric surface, and the polarity of the head that determines which electrode acts as ion collector. In particular, from (9), a leading or trailing edge can be made ideally sharp for T,,=T while the other cannot, i.e., the gradient of charge density will be non-zero over a distance greater than the slot width. The result is a directional nature which can be minimized by minimizing T i.e., this procedure makes W W.
While the invention has been particularly shown and streams to produce ionically modulated streams; described with reference to preferred embodiments and thereof, it will be understood by those skilled in the art directing said modulated streams upon said dielectric that the foregoing and other changes in form and surface to form said latent image, the potential details may be made therein without departing from the across said field being substantially less than the spirit and scope of the invention. breakdown potential of said gas.
We claimi 2. The method of claim 1 in which said individual ion 1. A meth d f f r in a lat nt l t t i image streams are configured with a desired cross section. on a dielectric surface comprising: 3. The method of claim 1 in which said electric fields generating a high concentration of ions in a pre 10 are varied so to provide variations in the intensity of surized gas in a chamber; 531d lmagesforming a plurality of individual ion streams from the method P clam 1 l" which 3 dlelectl'lc ionized pressurized gas chamber; face is moved during formation of the image. selectively applying a transverse electric field to said

Claims (4)

1. A method of forming a latent electrostatic image on a dielectric surface comprising: generating a high concentration of ions in a pressurized gas in a chamber; forming a plurality of individual ion streams from the ionized pressurized gas chamber; selectively applying a transverse electric field to said streams to produce ionically modulated streams; and directing said modulated streams upon said dielectric surface to form said latent image, the potential across said field being substantially less than the breakdown potential of said gas.
2. The method of claim 1 in which said individual ion streams are configured with a desired cross section.
3. The method of claim 1 in which said electric fields are varied so to provide variations in the intensity of said images.
4. The method of claim 1 in which said dielectric surface is moved during formation of the image.
US00153718A 1971-06-16 1971-06-16 Electro-ionic printing Expired - Lifetime US3725951A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15371871A 1971-06-16 1971-06-16

Publications (1)

Publication Number Publication Date
US3725951A true US3725951A (en) 1973-04-03

Family

ID=22548435

Family Applications (1)

Application Number Title Priority Date Filing Date
US00153718A Expired - Lifetime US3725951A (en) 1971-06-16 1971-06-16 Electro-ionic printing

Country Status (5)

Country Link
US (1) US3725951A (en)
JP (1) JPS5529428B1 (en)
DE (1) DE2223628A1 (en)
FR (1) FR2141935B1 (en)
GB (1) GB1357966A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112437A (en) * 1977-06-27 1978-09-05 Eastman Kodak Company Electrographic mist development apparatus and method
US4357618A (en) * 1978-10-16 1982-11-02 Algographic Associates Electrostatic imaging apparatus
EP0099243A1 (en) * 1982-07-06 1984-01-25 Xerox Corporation Fluid jet assisted electrographic marking apparatus
EP0120621A1 (en) * 1983-03-02 1984-10-03 Xerox Corporation Electrographic marking apparatus and method
EP0122003A1 (en) * 1983-04-01 1984-10-17 Xerox Corporation Electrographic marking apparatus
US4498090A (en) * 1981-02-18 1985-02-05 Sony Corporation Electrostatic printing apparatus
US4734721A (en) * 1985-10-04 1988-03-29 Markem Corporation Electrostatic printer utilizing dehumidified air
US4762997A (en) * 1983-11-30 1988-08-09 Xerox Corporation Fluid jet assisted ion projection charging method
US4772901A (en) * 1986-07-29 1988-09-20 Markem Corporation Electrostatic printing utilizing dehumidified air
US4809027A (en) * 1986-07-29 1989-02-28 Markem Corporation Offset electrostatic printing utilizing a heated air flow
US4809026A (en) * 1986-07-29 1989-02-28 Markem Corporation Electrostatic printing utilizing a heated air flow
US5039598A (en) * 1989-12-29 1991-08-13 Xerox Corporation Ionographic imaging system
US5073434A (en) * 1989-12-29 1991-12-17 Xerox Corporation Ionographic imaging system
US5153618A (en) * 1989-12-29 1992-10-06 Xerox Corporation Ionographic imaging system
US5231428A (en) * 1990-12-11 1993-07-27 Xerox Corporation Imaging device which compensates for fluctuations in the speed of an image receiving surface
US5933177A (en) * 1992-12-07 1999-08-03 Moore Business Forms, Inc. Erase unit for ion deposition web-fed print engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373719U (en) * 1986-10-29 1988-05-17
JPH01135422U (en) * 1988-03-07 1989-09-18

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3103582A (en) * 1963-09-10 morgan
US3117022A (en) * 1960-09-06 1964-01-07 Space Technhology Lab Inc Deposition arrangement
US3495269A (en) * 1966-12-19 1970-02-10 Xerox Corp Electrographic recording method and apparatus with inert gaseous discharge ionization and acceleration gaps
US3611422A (en) * 1969-11-17 1971-10-05 Mead Corp Ingesting catchers for noncontacting printing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3103582A (en) * 1963-09-10 morgan
US3117022A (en) * 1960-09-06 1964-01-07 Space Technhology Lab Inc Deposition arrangement
US3495269A (en) * 1966-12-19 1970-02-10 Xerox Corp Electrographic recording method and apparatus with inert gaseous discharge ionization and acceleration gaps
US3611422A (en) * 1969-11-17 1971-10-05 Mead Corp Ingesting catchers for noncontacting printing apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112437A (en) * 1977-06-27 1978-09-05 Eastman Kodak Company Electrographic mist development apparatus and method
US4357618A (en) * 1978-10-16 1982-11-02 Algographic Associates Electrostatic imaging apparatus
US4498090A (en) * 1981-02-18 1985-02-05 Sony Corporation Electrostatic printing apparatus
EP0099243A1 (en) * 1982-07-06 1984-01-25 Xerox Corporation Fluid jet assisted electrographic marking apparatus
EP0120621A1 (en) * 1983-03-02 1984-10-03 Xerox Corporation Electrographic marking apparatus and method
EP0122003A1 (en) * 1983-04-01 1984-10-17 Xerox Corporation Electrographic marking apparatus
US4524371A (en) * 1983-04-01 1985-06-18 Xerox Corporation Modulation structure for fluid jet assisted ion projection printing apparatus
US4762997A (en) * 1983-11-30 1988-08-09 Xerox Corporation Fluid jet assisted ion projection charging method
US4734721A (en) * 1985-10-04 1988-03-29 Markem Corporation Electrostatic printer utilizing dehumidified air
US4772901A (en) * 1986-07-29 1988-09-20 Markem Corporation Electrostatic printing utilizing dehumidified air
US4809027A (en) * 1986-07-29 1989-02-28 Markem Corporation Offset electrostatic printing utilizing a heated air flow
US4809026A (en) * 1986-07-29 1989-02-28 Markem Corporation Electrostatic printing utilizing a heated air flow
US5039598A (en) * 1989-12-29 1991-08-13 Xerox Corporation Ionographic imaging system
US5073434A (en) * 1989-12-29 1991-12-17 Xerox Corporation Ionographic imaging system
US5153618A (en) * 1989-12-29 1992-10-06 Xerox Corporation Ionographic imaging system
US5231428A (en) * 1990-12-11 1993-07-27 Xerox Corporation Imaging device which compensates for fluctuations in the speed of an image receiving surface
US5933177A (en) * 1992-12-07 1999-08-03 Moore Business Forms, Inc. Erase unit for ion deposition web-fed print engine

Also Published As

Publication number Publication date
FR2141935B1 (en) 1977-12-16
DE2223628A1 (en) 1972-12-21
JPS5529428B1 (en) 1980-08-04
FR2141935A1 (en) 1973-01-26
GB1357966A (en) 1974-06-26

Similar Documents

Publication Publication Date Title
US3725951A (en) Electro-ionic printing
US4675703A (en) Multi-electrode ion generating system for electrostatic images
US3742516A (en) Electro-ionic printing apparatus
US4160257A (en) Three electrode system in the generation of electrostatic images
US4463363A (en) Fluid assisted ion projection printing
US3052213A (en) Electrostatic printer apparatus for printing with liquid ink
ES348328A1 (en) Electrographic recording method and apparatus with inert gaseous discharge ionization and acceleration gaps
US3893131A (en) Ink printer
JPH0485053A (en) Image formation device
US3848258A (en) Multi-jet ink printer
US3864692A (en) Time dependent deflection control for ink jet printer
US4763141A (en) Printing apparatus with improved ion focus
GB987847A (en) Electrostatic printers
US3169886A (en) Apparatus for the electrophotographic production of images
US3372400A (en) Electrostatic recorder with plural electrodes and biased mask
JPH0262862B2 (en)
US5245502A (en) Semi-conductor corona generator for production of ions to charge a substrate
US4146898A (en) Non-contact magnetic toner transfer system
US5083145A (en) Non-arcing blade printer
US3605692A (en) Electrostatic liquid developing apparatus
US4133292A (en) Wet-developing stationary electrode
JP3055191B2 (en) Image forming device
JPS61277462A (en) Ion flow controller
US5206669A (en) Apparatus and method for selectively delivering an ion stream
WO1987002452A1 (en) Multi-electrode ion generating system for electrostatic images