US3725727A - Wide-band magnetic yoke deflection system - Google Patents

Wide-band magnetic yoke deflection system Download PDF

Info

Publication number
US3725727A
US3725727A US00113221A US3725727DA US3725727A US 3725727 A US3725727 A US 3725727A US 00113221 A US00113221 A US 00113221A US 3725727D A US3725727D A US 3725727DA US 3725727 A US3725727 A US 3725727A
Authority
US
United States
Prior art keywords
yoke
amplifier
voltage
power amplifier
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00113221A
Inventor
G Waehner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Aircraft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Aircraft Corp filed Critical United Aircraft Corp
Application granted granted Critical
Publication of US3725727A publication Critical patent/US3725727A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K6/00Manipulating pulses having a finite slope and not covered by one of the other main groups of this subclass
    • H03K6/02Amplifying pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/20Cathode-ray oscilloscopes
    • G01R13/22Circuits therefor

Definitions

  • ABSTRACT A system for providing current to an inductive load such as a magnetic yoke deflection system is improved by the addition of a low power, high frequency amplifier and a few passive components. Deflection current components at frequencies higher than the frequency spectrum of the unimproved magnetic yoke deflection system are provided by the high frequency amplifier, thereby enhancing the deflection system bandwidth far beyond limitations encountered using the teachings of the prior art.
  • CRT displays employing magnetic yoke deflection commonly use one of two techniques to drive the yoke.
  • a non-dissipative and inexpensive system currently in use is the resonant energy recovery circuit.
  • This circuit has wide application where a raster is being generated, such as in commercial television, but no application to display systems where deflection is derived from a stroke generator.
  • a high degree of display linearity is not possible with a resonant energy recovery circuit, primarily because it is an open loop type of circuit.
  • a more flexible system employs a feedback amplifier I where current in the yoke is sampled by feeding it through a small sampling resistor and feeding back the resulting voltage for comparison with the voltage input.
  • the current waveform in the yoke will be a faithful reproduction of the voltage waveform at the circuit input.
  • deflection yokes commonly require peak currents of several amperes
  • a decisive factor in display bandwidth is the frequency response of the output stage required to drive the yoke.
  • transistors having high current and high voltage capability have a low bandwidth. The usual consequence is that for high quality displays, the output stage is very expensive and there is a tendency toward circuit instability due to the low frequencies at which frequency dependent phase shift and attenuation are introduced by the output stage.
  • the primary object of this invention is to provide an improved system for driving an inductive load.
  • Another object of the present invention is to provide a simple and improved yoke deflection system which has wide bandwidth.
  • an inductor in series with an inductive load such as a deflection yoke, and a low power, high frequency amplifier stage, increases the bandwidth of a conventional system for driving an inductive load.
  • the high frequency amplifier stage augments the power amplifier of a yoke deflection system known to the prior art, so that the bandwidth of the improved yoke deflection system is limited only by the upper pass frequency of the high frequency amplifier stage.
  • the present invention widens the bandwidth of inductive load amplification systems significantly more than heretofore possible or economically feasible.
  • FIG. 1 is a schematic block diagram of a preferred embodiment of the present invention.
  • FIG. 2 isan illustration of the frequency response of elements in the embodiment of FIG. 1.
  • FIG. 1 a prior art magnetic yoke driving circuit is properly illustrated by connecting the output of a power amplifier 10 to an inductive load (in this embodiment, a magnetic deflection yoke 12) and excising an improvement 14 of the present invention.
  • the current through the magnetic deflection yoke 12 is returned to ground through a very small sampling resistor 16 (typically 1 ohm or less) thereby causing a voltage waveform, at a voltage sampling point 17, proportional to the current waveform through the magnetic deflection yoke 12.
  • This voltage is applied to a summing resistor 18 which is connected to a summing point 20.
  • the cascade combination of the voltage amplifier 26 and the power amplifier 10 must supply a phase reversal to cause negative polarity of feedback from the voltage sampling point 17 to the summing point 20; in this embodiment, this is provided by the voltage amplifier 26. Any tendency for the potential at the voltage sampling point 17 to vary (variation in yoke current) away from the value required for system equilibrium (imposed by the input signal voltage at terminals 22), will be reduced by the negative feedback.
  • the transconductance of the cascade combination of the voltage amplifier 26 and the power amplifier 10 should be sufficiently high so that the voltage at the summing point 20 will be substantially zero, and variations from system equilibrium at the voltage sampling point 17 which would otherwise cause deviation of the summing point 20 from zero, will immediately be reduced to a negligible value.
  • This virtual ground at the summing point 20 is a well-known phenomena where amplifier feedback circuitry is used, and causes the current through the input summing resistor 24 to be the input signal voltage (at terminals 22) divided by the value of the input summing resistor 24. Since the voltage amplifier 26 must draw no current into its input, the current through the input summing resistor 24 must be equal to the current through the summing resistor 18, thereby determining the potential at the voltage sampling point 17, and the yoke current (which is the voltage at the voltage sampling point 17 divided by the value of the sampling resistor 16).
  • the amplifier characteristics hereinbefore described cause the voltage across the sampling resistor 16 and therefore the current through the sampling resistor 16 (current through the magnetic deflection yoke 12) to be proportional to the input signal voltage at terminals 22, with the current amplitude scaled by the ratio of the summing resistor 18 to the input summing resistor 24, at frequencies in the pass band of the magnetic yoke deflection system. Because of the feedback and the virtual ground described hereinbefore, the output of the power amplifier 10 is independent of the gain of amplifiers 10, 26.
  • the closed loop bandwidth of the prior art magnetic yoke deflection system is dependent upon the cascade frequency response of the voltage amplifier 26 and the power amplifier 10 (illustration a, FIG. 2), where the frequency response is the ratio of voltage at the sampling point 17 to the voltage at the summing point 20, as a function of frequency. Because of negative feedback, the magnetic yoke deflection system bandwidth extends to approximately the zero db crossover frequency of the cascade frequency response where, because of low gain, the voltage of the summing point 20 departs significantly from zero and the closed loop magnetic deflection system departs significantly from its midband value.
  • the improvement 14 of the present invention which can be suitably adapted to the prior art, extends the closed loop bandwidth of the magnetic yoke deflection system to a much higher frequency.
  • the improvement 14 comprises a high frequency amplifier 32 driven by the voltage amplifier 26, with its output connected to a junction 36.
  • the junction 36 is connected to the magnetic deflection yoke 12, and to the power amplifier 10 through an inductor 34. Because the invention is in the configuration of a high gain feedback amplifier, midband yoke current, in response to the input signal at terminals 22, is determined by the value of the sampling resistor 16, scaled by the summing resistors 18, 24, and is independent of the gain of the high frequency amplifier 32 (as well as the amplifiers 10, 26, as described hereinbefore).
  • the high frequency amplifier 32 is composed of devices with a low output current capacity, incapable of supplying the high yoke current demands common at the lower frequencies. Therefore, it is necessary to select the gain for the high frequency amplifier 32, the gain for the power amplifier 10, and the inductance of the inductor 34 so that at low frequencies, in the pass band of the power amplifier 10, the high frequency amplifier 32 does not supply any current.
  • the yoke 12 and the inductor 34 form a voltage divider; all of the current through the magnetic deflection yoke 12 passes through the inductor 34.
  • the gain of the high frequency amplifier 32 is adjusted so that, at frequencies in the pass band of the power amplifier 10, an input (common to the power amplifier 10 and the high frequency amplifier 32) will cause a voltage at its output equal to the voltage at the junction 36, formed by the voltage divider; because of this, connecting the output of the high frequency amplifier 32 to the junction 36 will not cause a change in the voltage output of the power amplifier 10 or the voltage at the junction 36, and therefore, in the pass band of the power amplifier 10, all of the yoke current will pass through the inductor 34 from the power amplifier l and none of it will come from the high frequency amplifier 32.
  • the output voltage, V of the power amplifier is given as:
  • the voltage, V at the junction 36 is given as:
  • the midband gain, G, of the high frequency amplifier 32, in the pass band of the power amplifier 10, must be:
  • the current not supplied by the power amplifier 10 is supplied by the high frequency amplifier 32 (illustration b, FIG. 2).
  • the feedback characteristics of the magnetic yoke deflection system are determined by the cascade frequency response of the voltage amplifier 26 and the high frequency amplifier 32.
  • the inductor 34 degenerates into a minor load on the output of the high frequency amplifier 32, but draws little current because this condition occurs at a relatively high frequency, and is of no importance since none of the current drawn effects the drop across the sampling resistor 16 or current through the yoke.
  • An essential feature of the invention is that the inductive load driving system upper pass frequency is increased from the upper frequency determined by the pass band of the power amplifier 10 to the upper frequency determined by the pass band of the high frequency amplifier 32.
  • Another feature of the invention is that, in all known CRT display applications, yoke deflection current requirements are relatively low in a spectrum beyond the bandwidth of the inexpensive power amplifier 10, and the high frequency amplifier 32 may be implemented with inexpensive low power components since its current requirements are similarly low.
  • amplification means responsive to the difference between an input voltage representative of desired yoke current and a feedback voltage representative of actual yoke current, the improvement comprising:
  • a high frequency amplifier driven by the voltage amplifier, having its output connected to the junction of said yoke and said inductive reactance and, at frequencies within the pass band of said power amplifier, having a gain related to the gain of the power amplifier by the ratio of the yoke inductance to the total inductance of said yoke and said inductive reactance.

Abstract

A system for providing current to an inductive load such as a magnetic yoke deflection system is improved by the addition of a low power, high frequency amplifier and a few passive components. Deflection current components at frequencies higher than the frequency spectrum of the unimproved magnetic yoke deflection system are provided by the high frequency amplifier, thereby enhancing the deflection system bandwidth far beyond limitations encountered using the teachings of the prior art.

Description

United States Patent 1 1 1111 3,725,727 Waehner [4 1 Apr. 3, 1973 54] WIDE-BAND MAGNETIC YOKE 3,408,586 10/1968 Ordower ..330/l26 DEFLECTION SYSTEM Glenn C. Waehner, Scarsdale, NY.
United Aircraft Corporation, East Hartford, Conn.
Feb. 8, 1971 Inventor:
Assignee:
Filed:
Appl. No.:
US. Cl .Q. ..315/27 TD, 330/l26 Int. Cl ..H01j 29/70 Field of Search ..3l5/27 R, 27 TD; 330/126 References Cited UNITED STATES PATENTS 3,529,206 9/1970 Rodal 1 5/27 TD Primary ExaminerBenjamin R. Padgett Assistant Examiner-J. M. Potenza Attorney-Melvin Pearson Williams [57] ABSTRACT A system for providing current to an inductive load such as a magnetic yoke deflection system is improved by the addition of a low power, high frequency amplifier and a few passive components. Deflection current components at frequencies higher than the frequency spectrum of the unimproved magnetic yoke deflection system are provided by the high frequency amplifier, thereby enhancing the deflection system bandwidth far beyond limitations encountered using the teachings of the prior art.
1 Claim, 2 Drawing Figures WIDE-BAND MAGNETIC YOKE DEFLECTION SYSTEM BACKGROUND OF THE INVENTION 1. Field of Invention This invention relates to cathode ray tube deflection circuitry, and more particularly to a wide-band magnetic yoke deflection system.
2. Description of the Prior Art CRT displays employing magnetic yoke deflection commonly use one of two techniques to drive the yoke. A non-dissipative and inexpensive system currently in use is the resonant energy recovery circuit. This circuit has wide application where a raster is being generated, such as in commercial television, but no application to display systems where deflection is derived from a stroke generator. A high degree of display linearity is not possible with a resonant energy recovery circuit, primarily because it is an open loop type of circuit.
A more flexible system employs a feedback amplifier I where current in the yoke is sampled by feeding it through a small sampling resistor and feeding back the resulting voltage for comparison with the voltage input. Within the limitations imposed by circuit bandwidth, the current waveform in the yoke will be a faithful reproduction of the voltage waveform at the circuit input. For a stroke written display or a display where a very precise raster must be generated, this property is essential. Since deflection yokes commonly require peak currents of several amperes, a decisive factor in display bandwidth is the frequency response of the output stage required to drive the yoke. In the present state of the art, it is a common experience to find that transistors having high current and high voltage capability have a low bandwidth. The usual consequence is that for high quality displays, the output stage is very expensive and there is a tendency toward circuit instability due to the low frequencies at which frequency dependent phase shift and attenuation are introduced by the output stage.
f yoke deflection circuits thus far devised, either their usage is limited to specialized application, they are of restricted bandwidth, or they employ components which are extremely expensive.
SUMMARY OF INVENTION The primary object of this invention is to provide an improved system for driving an inductive load.
Another object of the present invention is to provide a simple and improved yoke deflection system which has wide bandwidth.
According to the present invention, the addition of an inductor in series with an inductive load, such as a deflection yoke, and a low power, high frequency amplifier stage, increases the bandwidth of a conventional system for driving an inductive load.
The high frequency amplifier stage augments the power amplifier of a yoke deflection system known to the prior art, so that the bandwidth of the improved yoke deflection system is limited only by the upper pass frequency of the high frequency amplifier stage. The present invention widens the bandwidth of inductive load amplification systems significantly more than heretofore possible or economically feasible.
Other objects, features and advantages of the present invention will become more apparent in the light of the following detailed description of a preferred embodiment thereof as illustrated in the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a schematic block diagram of a preferred embodiment of the present invention; and
FIG. 2 isan illustration of the frequency response of elements in the embodiment of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIG. 1, a prior art magnetic yoke driving circuit is properly illustrated by connecting the output of a power amplifier 10 to an inductive load (in this embodiment, a magnetic deflection yoke 12) and excising an improvement 14 of the present invention. The current through the magnetic deflection yoke 12 is returned to ground through a very small sampling resistor 16 (typically 1 ohm or less) thereby causing a voltage waveform, at a voltage sampling point 17, proportional to the current waveform through the magnetic deflection yoke 12. This voltage is applied to a summing resistor 18 which is connected to a summing point 20. An input voltage to the yoke deflection system, proportional to the .desired deflection, is applied at terminals 22 to an input summing resistor 24 connected to the summing point 20, which is the input to a high gain voltage amplifier 26, whose output drives the power amplifier 10.
The cascade combination of the voltage amplifier 26 and the power amplifier 10 must supply a phase reversal to cause negative polarity of feedback from the voltage sampling point 17 to the summing point 20; in this embodiment, this is provided by the voltage amplifier 26. Any tendency for the potential at the voltage sampling point 17 to vary (variation in yoke current) away from the value required for system equilibrium (imposed by the input signal voltage at terminals 22), will be reduced by the negative feedback. The transconductance of the cascade combination of the voltage amplifier 26 and the power amplifier 10 should be sufficiently high so that the voltage at the summing point 20 will be substantially zero, and variations from system equilibrium at the voltage sampling point 17 which would otherwise cause deviation of the summing point 20 from zero, will immediately be reduced to a negligible value. This virtual ground at the summing point 20 is a well-known phenomena where amplifier feedback circuitry is used, and causes the current through the input summing resistor 24 to be the input signal voltage (at terminals 22) divided by the value of the input summing resistor 24. Since the voltage amplifier 26 must draw no current into its input, the current through the input summing resistor 24 must be equal to the current through the summing resistor 18, thereby determining the potential at the voltage sampling point 17, and the yoke current (which is the voltage at the voltage sampling point 17 divided by the value of the sampling resistor 16). The amplifier characteristics hereinbefore described cause the voltage across the sampling resistor 16 and therefore the current through the sampling resistor 16 (current through the magnetic deflection yoke 12) to be proportional to the input signal voltage at terminals 22, with the current amplitude scaled by the ratio of the summing resistor 18 to the input summing resistor 24, at frequencies in the pass band of the magnetic yoke deflection system. Because of the feedback and the virtual ground described hereinbefore, the output of the power amplifier 10 is independent of the gain of amplifiers 10, 26.
The closed loop bandwidth of the prior art magnetic yoke deflection system is dependent upon the cascade frequency response of the voltage amplifier 26 and the power amplifier 10 (illustration a, FIG. 2), where the frequency response is the ratio of voltage at the sampling point 17 to the voltage at the summing point 20, as a function of frequency. Because of negative feedback, the magnetic yoke deflection system bandwidth extends to approximately the zero db crossover frequency of the cascade frequency response where, because of low gain, the voltage of the summing point 20 departs significantly from zero and the closed loop magnetic deflection system departs significantly from its midband value. The improvement 14 of the present invention, which can be suitably adapted to the prior art, extends the closed loop bandwidth of the magnetic yoke deflection system to a much higher frequency.
In accordance with the present invention, the improvement 14 comprises a high frequency amplifier 32 driven by the voltage amplifier 26, with its output connected to a junction 36. The junction 36 is connected to the magnetic deflection yoke 12, and to the power amplifier 10 through an inductor 34. Because the invention is in the configuration of a high gain feedback amplifier, midband yoke current, in response to the input signal at terminals 22, is determined by the value of the sampling resistor 16, scaled by the summing resistors 18, 24, and is independent of the gain of the high frequency amplifier 32 (as well as the amplifiers 10, 26, as described hereinbefore).
The high frequency amplifier 32 is composed of devices with a low output current capacity, incapable of supplying the high yoke current demands common at the lower frequencies. Therefore, it is necessary to select the gain for the high frequency amplifier 32, the gain for the power amplifier 10, and the inductance of the inductor 34 so that at low frequencies, in the pass band of the power amplifier 10, the high frequency amplifier 32 does not supply any current.
In the absence of the high frequency amplifier 32, the yoke 12 and the inductor 34 form a voltage divider; all of the current through the magnetic deflection yoke 12 passes through the inductor 34. The gain of the high frequency amplifier 32 is adjusted so that, at frequencies in the pass band of the power amplifier 10, an input (common to the power amplifier 10 and the high frequency amplifier 32) will cause a voltage at its output equal to the voltage at the junction 36, formed by the voltage divider; because of this, connecting the output of the high frequency amplifier 32 to the junction 36 will not cause a change in the voltage output of the power amplifier 10 or the voltage at the junction 36, and therefore, in the pass band of the power amplifier 10, all of the yoke current will pass through the inductor 34 from the power amplifier l and none of it will come from the high frequency amplifier 32.
Accordingly, the output voltage, V of the power amplifier is given as:
where K low frequency voltage gain of the power amplifier l0; and V input voltage into the power amplifier 10.
The voltage, V at the junction 36 is given as:
where L inductance of the magnetic deflection yoke 12, and L inductance of the inductor 34. Therefore, the midband gain, G, of the high frequency amplifier 32, in the pass band of the power amplifier 10, must be:
At frequencies above where the response of the power amplifier It) begins to deteriorate, (illustration a, FIG. 2), the current not supplied by the power amplifier 10 is supplied by the high frequency amplifier 32 (illustration b, FIG. 2). Outside of the pass band of the power amplifier 10 (within the bandwidth of the high frequency amplifier 32), the feedback characteristics of the magnetic yoke deflection system are determined by the cascade frequency response of the voltage amplifier 26 and the high frequency amplifier 32.
According to the invention, all of the feedback amplifier characteristics hereinbefore described for the voltage amplifier 26 in cascade with the power amplifier 10 within the pass band of the power amplifier 10, apply to the voltage amplifier 26 in cascade with the high frequency amplifier 32 in the range of frequencies above the pass band of the power amplifier 10, but within the bandwidth of the high frequency amplifier 32. This is obviously true because, even in the complete absence of the power amplifier 10, the remaining elements are in the configuration of the prior art, thereby supplying yoke current at frequencies above the pass band of the power amplifier 10. The inductor 34 degenerates into a minor load on the output of the high frequency amplifier 32, but draws little current because this condition occurs at a relatively high frequency, and is of no importance since none of the current drawn effects the drop across the sampling resistor 16 or current through the yoke.
An essential feature of the invention is that the inductive load driving system upper pass frequency is increased from the upper frequency determined by the pass band of the power amplifier 10 to the upper frequency determined by the pass band of the high frequency amplifier 32.
Another feature of the invention is that, in all known CRT display applications, yoke deflection current requirements are relatively low in a spectrum beyond the bandwidth of the inexpensive power amplifier 10, and the high frequency amplifier 32 may be implemented with inexpensive low power components since its current requirements are similarly low.
Although the invention has been shown and described with respect to an exemplary embodiment thereof, relating to magnetic deflection yokes, it should be understood by those skilled in the art that the invention is applicable to any other similar inductive load driving application, and that various changes and omissions in the form and detail thereof may be made therein without departing from the spirit and the scope of the invention.
Having thus described a typical embodiment of my invention, that which I claim as new and desire to secure by Letters Patent of the United States is:
1. In a system for driving a magnetic deflection yoke connected to the output of amplification means having a voltage amplifier driving a power amplifier, said amplification means responsive to the difference between an input voltage representative of desired yoke current and a feedback voltage representative of actual yoke current, the improvement comprising:
an inductive reactance, said power amplifier connected to said yoke through said inductive reactance; and
a high frequency amplifier driven by the voltage amplifier, having its output connected to the junction of said yoke and said inductive reactance and, at frequencies within the pass band of said power amplifier, having a gain related to the gain of the power amplifier by the ratio of the yoke inductance to the total inductance of said yoke and said inductive reactance.

Claims (1)

1. In a system for driving a magnetic deflection yoke connected to the output of amplification means having a voltage amplifier driving a power amplifier, said amplification means responsive to the difference between an input voltage representative of desired yoke current and a feedback voltage representative of actual yoke current, the improvement comprising: an inductive reactance, said power amplifier connected to said yoke through said inductive reactance; and a high frequency amplifier driven by the voltage amplifier, having its output connected to the junction of said yoke and said inductive reactance and, at frequencies within the pass band of said power amplifier, having a gain related to the gain of the power amplifier by the ratio of the yoke inductance to the total inductance of said yoke and said inductive reactance.
US00113221A 1971-02-08 1971-02-08 Wide-band magnetic yoke deflection system Expired - Lifetime US3725727A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11322171A 1971-02-08 1971-02-08

Publications (1)

Publication Number Publication Date
US3725727A true US3725727A (en) 1973-04-03

Family

ID=22348239

Family Applications (1)

Application Number Title Priority Date Filing Date
US00113221A Expired - Lifetime US3725727A (en) 1971-02-08 1971-02-08 Wide-band magnetic yoke deflection system

Country Status (1)

Country Link
US (1) US3725727A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2208245A1 (en) * 1972-11-23 1974-06-21 Siemens Ag
FR2393314A1 (en) * 1977-01-17 1978-12-29 Philips Nv DEVICE FOR VIEWING VARIABLE PARAMETERS
US4237407A (en) * 1978-01-20 1980-12-02 Victor Company Of Japan, Limited Vertical deflection circuit for a camera tube in a television camera
US4367442A (en) * 1980-07-10 1983-01-04 Sansui Electric Co., Ltd. Distortion correction circuit for a power amplifier
US4484111A (en) * 1980-09-12 1984-11-20 Analogic Corporation Signal amplifier for a signal recording device with magnetic deflection
US4823094A (en) * 1986-05-02 1989-04-18 Reiffin Martin G Dual-band high-fidelity amplifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408586A (en) * 1966-07-19 1968-10-29 Ibm Feedback amplifier utilizing a feed forward technique to achieve high direct currentgain and wide bandwidth
US3529206A (en) * 1968-03-01 1970-09-15 Ampex Rapid retrace yoke driver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408586A (en) * 1966-07-19 1968-10-29 Ibm Feedback amplifier utilizing a feed forward technique to achieve high direct currentgain and wide bandwidth
US3529206A (en) * 1968-03-01 1970-09-15 Ampex Rapid retrace yoke driver

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2208245A1 (en) * 1972-11-23 1974-06-21 Siemens Ag
FR2393314A1 (en) * 1977-01-17 1978-12-29 Philips Nv DEVICE FOR VIEWING VARIABLE PARAMETERS
US4237407A (en) * 1978-01-20 1980-12-02 Victor Company Of Japan, Limited Vertical deflection circuit for a camera tube in a television camera
US4367442A (en) * 1980-07-10 1983-01-04 Sansui Electric Co., Ltd. Distortion correction circuit for a power amplifier
US4484111A (en) * 1980-09-12 1984-11-20 Analogic Corporation Signal amplifier for a signal recording device with magnetic deflection
US4823094A (en) * 1986-05-02 1989-04-18 Reiffin Martin G Dual-band high-fidelity amplifier

Similar Documents

Publication Publication Date Title
GB553266A (en) Improvements in and relating to high frequency electron discharge apparatus
US2794936A (en) Space-charge wave tubes
US3725727A (en) Wide-band magnetic yoke deflection system
US2821657A (en) Deflecting system
US2382822A (en) Cathode ray beam deflecting circuits
US2307308A (en) Degenerative expander-compressor circuit
US2302798A (en) Thermionic valve amplifier
US2886659A (en) Zero output impedance amplifier
US2305919A (en) Deflection circuit
Schade Beam power tubes
US2743381A (en) Raster centering control
US3757155A (en) Wide bandwidth deflection amplifier
US3611001A (en) High-speed current-switching amplifiers
US2480511A (en) Scanning circuit
US2147559A (en) Transformation of relaxation oscillations
US2728876A (en) Magnetic deflection sweep circuit
US2661443A (en) Television keystone balance control circuit
US2205072A (en) Space discharge apparatus and circuits therefor
US3515933A (en) Cathode ray tube magnetic deflection circuit
McCann et al. Electronic techniques applied to analogue methods of computation
US2775656A (en) Electron discharge tube amplifiers
US2552136A (en) Linear amplifier system
US2295816A (en) Signal-translating stage
US3109122A (en) Deflection amplifier
US2859379A (en) Feedback network for correcting distortion due to magnetic characteristics of deflection yokes