US3725234A - Partial insulation of an electrodeposition tank - Google Patents

Partial insulation of an electrodeposition tank Download PDF

Info

Publication number
US3725234A
US3725234A US00138215A US3725234DA US3725234A US 3725234 A US3725234 A US 3725234A US 00138215 A US00138215 A US 00138215A US 3725234D A US3725234D A US 3725234DA US 3725234 A US3725234 A US 3725234A
Authority
US
United States
Prior art keywords
article
tank
electrodeposition
power
electrodepositable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00138215A
Inventor
F Loop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Inc
Original Assignee
PPG Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPG Industries Inc filed Critical PPG Industries Inc
Application granted granted Critical
Publication of US3725234A publication Critical patent/US3725234A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes

Definitions

  • articles to be electrocoated are contacted with an aqueous dispersion of a solubilized, ionized film-forming material such as synthetic organic vehicle resins.
  • An electric current is passed between the article to be coated, serving as an electrode, and a counter-electrode to cause deposition of a coating of the vehicle resin on the article.
  • the article is then withdrawn from contact with the electrodepositable composition and usually rinsed and the coating either airdried or baked in the manner of a conventional finish.
  • the article maybe introduced into the electrodepositable composition either in a power-on or powenoff mode.
  • the article In power-on configurations, the article has an impressed current, the circuit being completed upon contact with the electrodepositable composition and coating commences immediately as the advancing portion of the article is introduced into the electrodepositable composition.
  • Those skilled in the art have found numerous technical and safety considerations which have led them to use a power-01f introduction of the article into the electrodepositable composition.
  • the article is first introduced into the electrodepositable composition and then the electrical circuit is completed, power flowing through the article and the article coated.
  • the second article being introduced in a non-conductive state functions as a dipole, current flowing through this article to the counter-electrode.
  • this dipole state a portion of the article has a more positive charge and a portion of the article has a more negative charge.
  • the metal it has been discovered that there is a tendency, as with any metal in an anodic state, for the metal to function as an anode and cause dissolution of the metal and/or metal pretreatment contained on the metal.
  • FIG. 1 depicts one embodiment of the apparatus.
  • This schematic drawing is related to an anionic resin composition which coats upon an anode.
  • the invention is equally applicable to a cationic coating which coats upon the cathode, the power reversal being obvious.
  • a steel tank 1 which contains an electrodepositable composition 2 and which serves as a cathode in the coating process.
  • Tank 1 is electrically connected to a power supply unit 20 through connection 22.
  • the articles to be coated (for example, automobile bodies) 18 and 19 are shown suspended from a conveyor 9 by hangers 10, 1-1, 12 and 13.
  • the conveyor 9 can be a conventionally electrically-powered, chain-driven conveyor constructed and arranged for the transportation of articles to be coated through the bath.
  • the hangers include insulators 14, 15, 1633s 17 which insulate the articles from the grounded conveyor.
  • Busbar 8 may be segmented and contain segments that have no connection to the principal power supply 20 and arranged to allow electrical contactthrough the hangers with the article being coated for pre-determined intervals so that the articles becomes conductive only when immersed in the electrodepositable composition.
  • the portion of the busbar 8 in the schematic drawing between points 6 and 7 may be considered conductive and in electrical contact with the article 18, completing the electrical circuit and allowing for coating of the article 18.
  • article 18 serves as the positive electrode or anode of an electro-deposition cell as the article is passed through the bath being coated.
  • Article 19 being entered into the electrodeposition bath is not in electrical contact with the coating power supply source 20.
  • the layer of insulation 23 may be paint, plastic, or other non-conductive materials if adherent to or in close proximity to the tank. Examples of such materials include unsaturated polyester coatings and polyolefin inserts such as inserts made from polyethylene and polypropylene.
  • Electrodepositable resins are known and can be employed to provide the electrodepositable composition utilized in the practice of this invention.
  • Virtually any water-soluble, Water-dispersible or water-emulsifiable polyacid r polybasic resinous material can be electrocoated and, if film-forming, provides coatings which may be suitable for certain purposes. Any of such electrodepositable compositions is included among those which may be employed in the present invention, even though the coating obtained may not be entirely satisfactory for certain specialized uses.
  • Electrodepositable compositions while referred to as solubilized, in fact are considered a complex solution, dispersion or suspension or combina: tion of one or more of these classes in water, which acts as an electrolyte under the influence of an electric current.
  • the polyacids are anionic in nature and are dispersed or dissolved in water with alkaline metals such as amine or alkaline metal hydroxides and when subjected to electric current they migrate to the anode.
  • alkaline metals such as amine or alkaline metal hydroxides
  • Polybasic resins solubilized by acids are cationic in nature and when these resins are water-dispersed or solubilized with an acid, the material is deposited on the cathode under an electric current.
  • Electrodepositable compositions are a complex mixture
  • most commercially-utilized electrodepositable compositions are a complex mixture of either the anionic or cationic resins described above formulated with adjuvants such as pigments, solvents and sur-
  • the vehicle resin in this example is a maleinized tall oil fatty acid-adipic acid ester of a styrene-allyl alcohol of 1100 molecular weight and 5 hydroxyl functionality (Shell X-450) comprising 39.7 percent X-450, 52.9 per- 4 cent tall oil fatty acids, 1.3 percent adipic acid and 6.1 percent maleic anhydride as a percent solids solution in 4-methoxy-4-methylpentanone-Z, having a viscosity of 36,700 centipoises and an acid value of 38.2.
  • the electrodeposition primer had the composition:
  • Automobile bodies were continuously electrocoated in an electrodeposition tank of the general nature of the drawing but without insulation 23'. Each automobile body was immersed power-off and then processed through the tank, being coated at between 350 and 425 volts for tWo minutes. The bodies were in such proximity that a following body was entering into the electrodepositable composition at the rear of the electrodeposition tank while the preceding body was being coated. Surface defects were noticable in the finished coating on the forward portion of bodies thus coated.
  • Electrodepositable compositions, materials and conditions such as those herein described or within the skill of the art may be substituted for those exemplified.
  • vehicle resin is a base-solubilized synthetic polycarboxylic acid resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

IN A CONTINUOUS ELECTRODEPOSITION PROCESS WHERE THE ARTICLE ENTERS THE ELECTRODEPOSITION BATH IN A POWER-OFF CONFIGURATION IT HAS BEEN FOUND THAT SURFACE IRREGULARITIES OCCUR ON AN ARTICLE WHEN THAT ARTICLE IS INTRODUCED POWEROFF INTO THE ELECTRODEPOSITABLE COMPOSITION WHILE THE PRECEDING ARTICLE IS STILL BEING COATED AND IS IN A POWER-ON CONDITION. THIS PROBLEM IS SOLVED BY INSULATING THAT PORTION OF THE ELECTRODEPOSITION TANK ADJACENT TO AND TO THE REAR OF THE POINT OF ENTRY OF THE ARTICLE.

Description

April 3, 1973 F. M. LOOP 3,725,234
PARTIAL INSULATION OF AN ELECTRODEPOSITION TANK Filed April 28, 1971 I L L mvsmox Heinz/ex m. 100/ ATTORNEYS 3,725,234 PARTIAL INSULATION OF AN ELECTRO- DEPOSITION TANK Frederick M. Loop, North Olmsted, Ohio, assiguor to PPG Industries, Inc, Pittsburgh, Pa. Filed Apr. 28, 1971, Ser. No. 138,215
Int. Cl. B011; 5/02; C23b 13/00 U.S. Cl. 204-481 6 Claims ABSTRACT OF THE DISCLOSURE STATE OF THE ART Electrodeposition of organic resinous coatings on a conductive substrate from an aqueous bath comprising an ionically-solubilized synthetic organic coating resin has rapidly achieved commercial success in the United States due to material cost advantages, labor savings, performance and eliiciency of coating, as well as environmental control advantages.
In the electrodeposition process, articles to be electrocoated are contacted with an aqueous dispersion of a solubilized, ionized film-forming material such as synthetic organic vehicle resins. An electric current is passed between the article to be coated, serving as an electrode, and a counter-electrode to cause deposition of a coating of the vehicle resin on the article. The article is then withdrawn from contact with the electrodepositable composition and usually rinsed and the coating either airdried or baked in the manner of a conventional finish.
The article maybe introduced into the electrodepositable composition either in a power-on or powenoff mode. In power-on configurations, the article has an impressed current, the circuit being completed upon contact with the electrodepositable composition and coating commences immediately as the advancing portion of the article is introduced into the electrodepositable composition. Those skilled in the art have found numerous technical and safety considerations which have led them to use a power-01f introduction of the article into the electrodepositable composition.
In the power-off configuration, the article is first introduced into the electrodepositable composition and then the electrical circuit is completed, power flowing through the article and the article coated.
In an automated production line utilizing power-off introduction, it has been frequently found that the articles are placed on a line in such close proximity that when a first article in a power-on configuration being coated in the electrodepositable composition, a second immediately-following article in the power-off state is impinging beneath the surface of the electrodeposition bath. It wouldbe thought that this article, being insulated and in a non-coating state, would not present any problem in approaching its electrodeposition position and impinging. upon the ,electrodeposition bath prior to the comple- United States Patent 0 M 3,725,234 Patented Apr. 3, 1973 tion of the coating of the article immediately ahead of it. It has been found, however, that since current is flowing in the bath between the article being coated and the counter-electrode, i.e., the tank containing the electrodepositable composition, the second article being introduced in a non-conductive state functions as a dipole, current flowing through this article to the counter-electrode. In this dipole state, a portion of the article has a more positive charge and a portion of the article has a more negative charge. In those portions of the article Where the relatively negative charge is created, it has been discovered that there is a tendency, as with any metal in an anodic state, for the metal to function as an anode and cause dissolution of the metal and/or metal pretreatment contained on the metal. This phenomena is then translated into discernible irregularities in the film subsequently electrodeposited on the article. These irregularities are frequently sufficiently severe to affect the appearance of a topcoat even when the material deposited is a primer, such as on automobile bodies. This, again, is especially critical where the article must have a uniform, highquality appearance, such as an automobile body.
DESCRIPTION OF THE INVENTION It has now been found that surface irregularities caused by the introduction of an article into an electrodepositable composition in a power-off state while the electrodepositable composition itself is in a conductive state due to the fact that there is a second preceding article in the bath in a power-on condition being electrocoated can be eliminated or greatly reduced by insulating the portion of the tank in the areas adjacent to and to the rear of the point of entry.
For better understanding of the invention, one may refer to the accompanying schematic drawing depicting one embodiment of the apparatus. This schematic drawing is related to an anionic resin composition which coats upon an anode. The invention is equally applicable to a cationic coating which coats upon the cathode, the power reversal being obvious. In the drawing there is shown a steel tank 1 which contains an electrodepositable composition 2 and which serves as a cathode in the coating process. Tank 1 is electrically connected to a power supply unit 20 through connection 22. The articles to be coated (for example, automobile bodies) 18 and 19 are shown suspended from a conveyor 9 by hangers 10, 1-1, 12 and 13. The conveyor 9 can be a conventionally electrically-powered, chain-driven conveyor constructed and arranged for the transportation of articles to be coated through the bath. The hangers include insulators 14, 15, 1633s 17 which insulate the articles from the grounded conveyor. Busbar 8 may be segmented and contain segments that have no connection to the principal power supply 20 and arranged to allow electrical contactthrough the hangers with the article being coated for pre-determined intervals so that the articles becomes conductive only when immersed in the electrodepositable composition. For example, the portion of the busbar 8 in the schematic drawing between points 6 and 7 may be considered conductive and in electrical contact with the article 18, completing the electrical circuit and allowing for coating of the article 18. Thus, article 18 serves as the positive electrode or anode of an electro-deposition cell as the article is passed through the bath being coated.
Article 19, being entered into the electrodeposition bath is not in electrical contact with the coating power supply source 20.
The rearward portion of the tank 1 to the rear and adjacent to the point of entry of article 19, i.e., tank Walls and bottom, are insulated (from the electrodepositable material 2 by a layer of insulation 23. Alternatively, only the rear wall 24 is so insulated. The layer of insulation 23 may be paint, plastic, or other non-conductive materials if adherent to or in close proximity to the tank. Examples of such materials include unsaturated polyester coatings and polyolefin inserts such as inserts made from polyethylene and polypropylene.
A number of electrodepositable resins are known and can be employed to provide the electrodepositable composition utilized in the practice of this invention. Virtually any water-soluble, Water-dispersible or water-emulsifiable polyacid r polybasic resinous material can be electrocoated and, if film-forming, provides coatings which may be suitable for certain purposes. Any of such electrodepositable compositions is included among those which may be employed in the present invention, even though the coating obtained may not be entirely satisfactory for certain specialized uses. Electrodepositable compositions, while referred to as solubilized, in fact are considered a complex solution, dispersion or suspension or combina: tion of one or more of these classes in water, which acts as an electrolyte under the influence of an electric current. While, no doubt, in some circumstances the vehicle resin is in solution, it is clear that in some instances and perhaps in most the vehicle resin is a dispersion which may be called a molecular dispersion of molecular size between a colloidal suspension and a true solution. Numerous such resins are described in US. Pat. Nos. 3,230,- 162, 3,441,489, 3,422,044, 3,403,088, 3,369,983, 3,366,- 563, 3,382,165 and British Patent 1,132,267, as Well as other patents to be found in Class 204, sub-class 181 of the US. Patent Ofiice. Since these materials are wellknown, art-recognized class or materials, it is deemed-unnecessary to set forth a descripton of those resins in detail. The resin and electrodepositable composition descriptions of the above-mentioned patents are hereby incorporated by reference. For a general review of electrodeposition paint formulation, reference may be had to R. L. Yeates, Electropainting, Robert Draper, Ltd., Teddington, England 196 6) Presently the most widely used electrodeposition ve hicle resins are synthetic polycarboxylic acid resinous materials; however, polyacids other than polycarboxylic acids are known in the art as electrodepositable resins. Likewise, polybasic resins may be employed.
The polyacids are anionic in nature and are dispersed or dissolved in water with alkaline metals such as amine or alkaline metal hydroxides and when subjected to electric current they migrate to the anode. Polybasic resins solubilized by acids are cationic in nature and when these resins are water-dispersed or solubilized with an acid, the material is deposited on the cathode under an electric current. Although most electrodepositable compositions are a complex mixture, most commercially-utilized electrodepositable compositions are a complex mixture of either the anionic or cationic resins described above formulated with adjuvants such as pigments, solvents and sur- The vehicle resin in this example is a maleinized tall oil fatty acid-adipic acid ester of a styrene-allyl alcohol of 1100 molecular weight and 5 hydroxyl functionality (Shell X-450) comprising 39.7 percent X-450, 52.9 per- 4 cent tall oil fatty acids, 1.3 percent adipic acid and 6.1 percent maleic anhydride as a percent solids solution in 4-methoxy-4-methylpentanone-Z, having a viscosity of 36,700 centipoises and an acid value of 38.2. The electrodeposition primer had the composition:
Percent Organic solvent-4 methoxy 4 methylpentanone-Z in 20/80 ratio to vehicle resin (above). Amine% diethyl/triethylamine The composition was diluted to 11 percent solids with deionized water.
Automobile bodies were continuously electrocoated in an electrodeposition tank of the general nature of the drawing but without insulation 23'. Each automobile body was immersed power-off and then processed through the tank, being coated at between 350 and 425 volts for tWo minutes. The bodies were in such proximity that a following body was entering into the electrodepositable composition at the rear of the electrodeposition tank while the preceding body was being coated. Surface defects were noticable in the finished coating on the forward portion of bodies thus coated.
When the rear of the tank or the rear and areas of the tank to the rear and adjacent to the point of entry of the body were insulated, the surface irregularity previously noted was greatly reduced or eliminated.
Other electrodepositable compositions, materials and conditions such as those herein described or within the skill of the art may be substituted for those exemplified.
According to the provisions of the Patent Statutes, there are described above the invention and what are now considered its best embodiments; however, within the scope of the appended claims, it is to be understood that the invention can be practiced otherwise than as specifically described.
I claim:
1. In a continuous electrodeposition process where a first metal article is electrocoated while serving as an elec trode in a circuit comprising said article and a tank containing an electrodepositable composition comprising an ionically solubilized synthetic vehicle resin, said tank serving as a counter-electrode in said circuit, while a second metal article is entering said electrodepositable composition power-off, the improvement comprising insulating the portion of said tank to the rear and immediately adjacent to the point of entry of said second article so as to curtail or prevent the formation of a dipole state on said second article whereby the formation of surface irregularities on said second metal article is reduced or eliminated.
2. A process as in claim 1 wherein the vehicle resin is a base-solubilized synthetic polycarboxylic acid resin.
3. A process as in claim 1 wherein the article is an automobile body.
4. -In a continuous electrodeposition process where a first metal article is electrocoated while serving as an electrode in a circuit comprising said article and a tank containing an electrodepositable composition comprising an ionically solubilized synthetic vehicle resin, said tank serving as a counter-electrode in said circuit, while a second 6 metal article is entering said electrodepositable composi- References Cited tion power-off, the improvement comprising insulating the UNITED STATES PATENTS rear of said tank so as to curtail or prevent the formation of a dipole state on said second article whereby the forma- $471389 10/1969 Swanson 204-181 tion of surface irregularities on said second metal article 5 is reduced or eliminated JOHN H. MACK, Primary Examiner 5. A process as in claim 4 wherein the vehicle resin A. C. PRESCOTT, Assistant Examiner is a base-solubilized synthetic polycarboxylic acid resin.
6. A process as in claim 4 wherein the article is an automobile body. 204300
US00138215A 1971-04-28 1971-04-28 Partial insulation of an electrodeposition tank Expired - Lifetime US3725234A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13821571A 1971-04-28 1971-04-28

Publications (1)

Publication Number Publication Date
US3725234A true US3725234A (en) 1973-04-03

Family

ID=22480987

Family Applications (1)

Application Number Title Priority Date Filing Date
US00138215A Expired - Lifetime US3725234A (en) 1971-04-28 1971-04-28 Partial insulation of an electrodeposition tank

Country Status (1)

Country Link
US (1) US3725234A (en)

Similar Documents

Publication Publication Date Title
US5385655A (en) Treatment of metal parts to provide rust-inhibiting coatings
US3200057A (en) Electrophoretic coating process
US2800447A (en) Control of ph in electrodeposition of polytetrafluoroethylene
US3616396A (en) Electrophoretic coating process
US3671412A (en) Process for the removal of ionic contaminants from an electrocoating bath
US3498898A (en) Method for providing corrosion protection for automobile bodies
US3355374A (en) Method of electrocoating with variation of electrical inducement
US3444066A (en) Method of electrically induced deposition of paint on conductors
US4529492A (en) Process for the coating of hollow bodies open on one side
US3399126A (en) Electrodeposition process and apparatus having conduit electrodes
US3728242A (en) Continuous electrodeposition process
US3399128A (en) Electrodeposition process and apparatus having a movable conduit electrode
US3362899A (en) Method of maintaining bath composition in continuous electrodeposition process
US3725234A (en) Partial insulation of an electrodeposition tank
US3585120A (en) Novel method of electrocoating hollow bodies
US3575909A (en) Electrodeposition bath composition and replenishment composition therefor
US3361658A (en) Method of electrophoretic surface coating
US3730866A (en) Catholyte rinse of electrocoat
US3898145A (en) Process for applying contrasting coatings to a workpiece
US3855106A (en) Process for electrodeposition of paint
Brewer Electrophoretic painting
US3382165A (en) Electrodeposition with organic acid resins having mineral acid groups attached thereto
US3891526A (en) Method of electrocoating electric wire
US3444065A (en) Method for electrodeposition of paint
US3531390A (en) Electrodeposition method