US3724052A - Over travel linkage for assembly machine station - Google Patents

Over travel linkage for assembly machine station Download PDF

Info

Publication number
US3724052A
US3724052A US00204755A US3724052DA US3724052A US 3724052 A US3724052 A US 3724052A US 00204755 A US00204755 A US 00204755A US 3724052D A US3724052D A US 3724052DA US 3724052 A US3724052 A US 3724052A
Authority
US
United States
Prior art keywords
housing
link
resilient
end rod
relative movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00204755A
Inventor
J Graham
F Hackstock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cross Co
Original Assignee
Bendix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bendix Corp filed Critical Bendix Corp
Application granted granted Critical
Publication of US3724052A publication Critical patent/US3724052A/en
Assigned to CROSS COMPANY, THE reassignment CROSS COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BENDIX MACHINE TOOL CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/14Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting co-ordinated in production lines
    • B23Q7/1426Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting co-ordinated in production lines with work holders not rigidly fixed to the transport devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/002Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface comprising load carriers resting on the traction element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20006Resilient connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2142Pitmans and connecting rods
    • Y10T74/2144Yieldable
    • Y10T74/2146Longitudinal springs

Definitions

  • FIG. 1 is a plan view of a multiple station nonsynchronous automatic assembly machine.
  • the machine includes a plurality of assembly stations 12 interconnected by sections of power and free transport conveyor 14 and may also include manual stations (not shown) for various operations which are better suited for manual performance.
  • the conveyor system includes an inner and an outer roller chain 16, 18 which are con tinuously advanced by means of sprockets 20 and 22 at some point in the system (FIG. 1).
  • the roller chains 16 and 18 are supported on bars 24, 26 and carry fixed thereto on their upper surface portion, plates 28, 30 which serve to support and frictionally engage a pallet 32 upon which the workpiece 34 is located.
  • base members such as housings of the workpiece 34 to be assembled are placed on a pallet 32, which advances successively to each station 12, each of which may add parts from a supply and feed mechanism 36, to the assembly or may merely manipulate elements previously added thereto.
  • astation 12 with an operating mechanism according to the present invention is shown in some detail.
  • This station is adapted to receive pallets 32 which are carried into the station by the roller chains 16, 18.
  • the station 12 includes a locating fixture 38.
  • the pallet 32 is adapted to be stopped and located with respect to the fixture 38 immediately after it comes into approximate registry with the station 12, by means of a rough stop mechanism (not shown).
  • the cam assembly 40 includes a drum member 48 which is supported by means of bearings 50, 52 mounted on partitions 54, 56, respectively, supported in the station base 58. Secured to the drum 48 are a plurality of cam groove sections 60, 62, 64, 66, and 68 which may be constructed of standardized segments individually bolted or otherwise secured to the drum member 48. Associated with each respective segment 60, 62, 64, 66, 68 is a linkage assembly 70, 72, 74, 76, and 78 for performing a specific motion with regard to the workpiece or in locating or providing auxiliary support for the pallet 32. Each linkage assembly 70, 72, 74, 78 is supported by a cross member 80 which is in turn supported by partitions 54, 56 as well as partition 82, while linkage assembly 76 is supported by a plate 84 in turn supported by appropriate bracketry.
  • Each linkage assembly 70, 72, 74', 76 and 78 includes an associated link 86, 88, 90, 92, and 94 rotatably supported by pivots 96, 98, 100, 102, 104.
  • Each link 86, 88, 90, 92, 94 has an associated cam follower 105, 107, 109, 111, 113 disposed in its respective cam groove so as to constrain it to move in conformity with the particular contours thereof.
  • Each link 86, 88, 90, 92, 94 is drivingly associated with a mechanism designed to perform some motion function which is associated with the specific operation to be performed at the particular station 12.
  • link 88 is adapted to operate a wedge pin device 114 which serves to locate the pallet and workpiece with respect to the registry fixture 38
  • link 92 is adapted to drive an auxiliary support clamp mechanism 116
  • link 88 is adapted to operate a bearing or seal feed mechanism 118
  • link 86 operates a bearing positioning mechanism 1 19
  • link 94 drives a press mechanism 120, arranged to press a bearing or seal into the workpiece 34.
  • each of these mechanisms are operated in a sequence and in a manner determined by the particular contour of its associated cam groove to accomplish the intended station operation, after which time the cam drive is discontinued via a control arrangement (not shown) cooperating with the clutch unit 45 and brake unit 46 to await the next cycle.
  • the cam may be located so that motions on either side of the line may be easily and directly taken therefrom.
  • pivot 74 which is typical, includes a socket 122 secured to cross member 80 and aligned with a corresponding bore 125 therein, and containing a ball 124 urged to the right as viewed in FIG. 4 by means of a compression spring 126.
  • a bushing 127 may be included to lessen wear and maintain an accurate fit with the ball 124.
  • a pivot post 128 Disposed juxtaposed to the ball 124 is a pivot post 128 having a base portion 130 formed with a generally dished depression 132, normally disposed with the ball 124 centered therein.
  • the pivot post 128 is maintained against the cross member 80 by means of a slotted bracket 136 secured to the cross member 80 and formed with an opening 138 so as to allow limited movement of the pivot post in the plane of its abutment with the cross member 80, while preventing movement out of this plane.
  • the link 90 is rotatably supported on a reduced end portion 140 of the pivot post 128, and retained thereon by means of a thrust washer 142 and a pneumatic fitting 144 threadedly engaging the end portion 140.
  • a source of pneumatic pressure 146 connected thereto via line 148, which communicates via the fitting 144 with a central passage 150 formed in the pivot post member 128, leading into the center of the dished depression 132.
  • the source 146 is also connected via the fitting 144 and a line 145 with a pressure switch 152 which is arranged to control the clutch unit 45 and brake unit 46 by means of a solenoid valve 154 which is operatively connected thereto and serves to control communications of the pneumatic source 156 which in turn controls the application of the clutch 45 and brake 46 to discontinue drum movement.
  • the solenoid valve 154 also may serve as the primary cycle control during normal operations.
  • An indicator 158 may also be operated by the pressure switch 152.
  • the indicator 158 is also activated thereby so that an operator may be apprised of the shutdown.
  • this arrangement is sensitive to overload conditions in the individual link mechanisms and acts to immediately relieve the excessive forces as well as to shut down all further activity at the station, and hence, providing a solution to the problem of detecting the individual jams. Furthermore, since the pivots are the locations where the excessive force levels are detected, the shifting mechanical advantage of the cam groove sections and the cam follower does affect its function, and hence this arrangement also eliminates this source of error.
  • each link mechanism 70, 72, 74, 76, and 78 also may be individually tailored by controlling the bias force applied to the ball by the compression spring and/or the ramp angle of the associated dished depression.
  • the positioning mechanism 119 referred to operated by the linkage 70.
  • This mechanism serves to receive a part 160, such as a seal or bearing from the feed mechanism 1 18, into a holding member 162, and transport it into a proper position with respect to the workpiece 34 for emplacement by the press mechanism 120.
  • the holding member 162 must accurately be brought into registry in these positions with respect to the feed mechanism 118, the press mechanism 120 and the workpiece 34.
  • the arrangement provided for accomplishing this includes a stationary block 164 fixed to the housing 58 and a pair of rods 166, 168 slidably disposed in bores formed in the block 164.
  • the rods 166, 168 are connected at one end to an end plate 170 in turn connected to the holding member 162, and at the other end to end plate 172.
  • the end plate is adapted to be driven by the link 86 by means of an overtravel link 174 pinned at 176 to the link 86 and at 178 to the end plat 172.
  • An adjustable positive stop 188 is threaded into the end plate 170, while a cooperating adjustable positive stop 190 is similarly threaded into the block 164.
  • An adjustable stop 192 is threaded into end plate 172 and a cooperating stop 194 is threaded into the block 164.
  • the overtravel link 174 is adapted to provide a resilient limited lost motion connection between the link 86 and the end plate 172, and includes a pair of end rods 196 and 198 adapted to be pinned to the link 86 and end plate 172, respectively.
  • End rod 196 is threadedly connected to a rod 200, extending into a housing 202 and received into an opening 204 formed in a cup member 204.
  • the cup member 204 is threaded to the end rod 198.
  • a compression spring 206 Surrounding rod 200 and disposed in the housing 202 is a compression spring 206, bearing at one end against a shoulder 208 in the housing 202 and at the other end on a compression washer 210.
  • Compression washer 210 is forced thereby against the end 212 of the cup member 204, which in turn is abutting an internal shoulder 216 of a cap 218 threaded on the end of the housing 202.
  • Movement of the rod 200 in the housing 202 is limited by means of a compression washer 220 abutting the housing end 222 and adjusting lock nut 224.
  • the compression spring 206 also acts on the rod 200 via a pair of protuberances 226 and 228 slidably received in a pair of slots 230, 232, in the cup member 204, with the compression washer 210 extending inwardly to engage the protuberances 226 and 228.
  • a lost motion clearance l is provided between the rod 200 and the cup member 204, which allows relative movement between the end rods 196, 198 until the rod 200 abuts the bottom of the opening
  • the end plate 172 and connected rods 166, 168, end plate 170 and holding member 162 are stroked to the right via the driving connection of the overtravel link 174 acting through its compression spring 206, until the stops 188, 190 contact each other.
  • This point is selected to be at the precise registry point required by adjusting one or the other or both of the stops 188, 190.
  • the rod 200 is free to move relative to the cup member 204, if the contact of the stops 192, 194 does not precisely coincide with this stoppage or reversal of counter-clockwise pivotal movement the rod 200 is free to continue moving to the left as viewed in FIG. 5 until the spring 206 reaches its fully compressed length, and hence the registry of the holding member may be precisely adjusted independently of the linkage motion within the limits of this overtravel.
  • Additional thrust washers 210 orwashers of differing thickness thereof may be utilized, as well as springs of varying rates in order to control the relative stiffness of the overtravel link 174 to provide the proper response for the particular velocities, masses, etc., involved in the particular motion.
  • An overtravel link comprising:
  • a housing slidably receiving said first and second end rods
  • a first abutment means limiting relative movement between said housing and said first end rod
  • resilient means drivingly connected to said housing and one of said end rods, whereby resilient overtravel of both said end rods is provided.
  • the link of claim 2 further including a third abutment means limiting relative movement between said first and second end rod in a second direction opposite said first direction along a line of action.
  • An arrangement for accurately positioning a member in a first and second position by an operating mechanism comprising:
  • resilient connection means interposed between said member and said operating mechanism allowing resilient lost motion in both directions along said line of movement, whereby accurate position at both stop positions is provided.
  • connection means includes an overtravel link comprising:
  • resilient means drivingly connected to said housing a first abutment means llmltmg relative movement and one of said end rods, whereby resilient overbetween said housing and said first end rod; travel of both Said end rods is provided a second abutment means limiting relative movement between said second end rod and said hous-

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Assembly (AREA)

Abstract

A station for an automatic nonsynchronous multistation assembly machine is described which is operated by a cam shaft extending transversely to the line of movement of the parts in the transport system, featuring an arrangement for accurately locating the members positioned by the cam mechanism.

Description

United States Patent 91 Graham et al.
11 3,724,052 1 Apr. 3, 1973 [54] OVER TRAVEL LINKAGE FOR ASSEMBLY MACHINE STATION [75] inventors: James T. Graham, Birmingham;
[56] References Cited .UNITED STATES PATENTS 11/1969 Wise ..29/2OO D A station for an automatic nonsynchronous multistation assembly machine is described which is operated by a cam shaft extending transversely to the line of movement of the parts in the transport system, featuring an arrangement for accurately locating the mem- 6 Claims, 6 Drawing Figures Fred W. Haekstock, Sterling Heights, both of Mich. 3,475,807 [73] Assignee: The Bendix Corporation, Southfield, Primary Examinepirhoma-s H. Eager Mich. Attorney-John R. Benefiel [22] Filed: Dec. 3, 1971 [21] Appl. No.: 204,755 [57] ABSTRACT Related US. Application Data [62] Division of Ser. No. 62,228, Aug. 3, 1970, Pat. No.
[52] US. Cl ..29/200 P 51 rm. Cl. ..B23p 19/00 by mechan'sm [58] Field of Search .29/200 D, 200 P, 208 C, 208 R, 29/200 A IPAIENTEBAPRS I975 (3.724.052
sum 1 [IF 1 *FIGJ OVER TRAVEL LINKAGE FOR ASSEMBLY MACHINE STATION This is a division of application Ser. No. 62,228, filed Aug. 3, 1970, now U.S. Pat. No. 3,648,346 granted Mar. 14, 1972 BACKGROUND OF THE INVENTION 1. Field of the Invention This invention concerns an operating mechanism for an automatic assembly machine station, and more specifically relates to an over travel linkage for such operating mechanisms.
2. Description of the Prior Art In mechanisms such as cam operated automatic assembly machines, problems are encountered in controlling and maintaining accurate registry of members positioned by the cam member, since in relatively long linkages operated by a cam and cam follower, development of play. in the pivot points and between the cam and cam follower, deformation of the links, and wear all tend to produce inaccuracies of registry and also to make initial adjustments difficult.
Therefore it is an object of the present invention to provide improved linkage mechanisms for such machines in which accurate registry of members is provided and damage due to jamming of the individual linkages is effectively prevented.
SUMMARY OF THE INVENTION These and other objects which will become apparent upon a reading of the following specification and claims are accomplished by providing an arrangement for precision registry of an associated member located by a motion linkage by means of a resilient lost motion in the linkage combined with positive stops for the associated member.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a multiple station nonsynchronous automatic assembly machine.
DESCRIPTION OF THE PREFERRED EMBODIMENT In the following detailed description, certain specific terminology will be utilized for the sake of clarity and a specific embodiment described in order to provide a full and clear understanding of the invention, but it is to be understood that the invention is not so limited and may be practiced in a variety of forms and embodiments thereof.
Referring to the drawings, and particularly FIG. 1, a multistation automatic assembly machine is depicted. The machine includes a plurality of assembly stations 12 interconnected by sections of power and free transport conveyor 14 and may also include manual stations (not shown) for various operations which are better suited for manual performance.
As seen in FIG. 2, the conveyor system includes an inner and an outer roller chain 16, 18 which are con tinuously advanced by means of sprockets 20 and 22 at some point in the system (FIG. 1). The roller chains 16 and 18 are supported on bars 24, 26 and carry fixed thereto on their upper surface portion, plates 28, 30 which serve to support and frictionally engage a pallet 32 upon which the workpiece 34 is located. Inasmuch as the details of this system do not form a part of the present invention and are themselves known to those skilled in the art, it is not felt necessary to describe this in great detail.
In operation, base members such as housings of the workpiece 34 to be assembled are placed on a pallet 32, which advances successively to each station 12, each of which may add parts from a supply and feed mechanism 36, to the assembly or may merely manipulate elements previously added thereto.
Referring to FIG. 3, astation 12 with an operating mechanism according to the present invention is shown in some detail. This station is adapted to receive pallets 32 which are carried into the station by the roller chains 16, 18.
The station 12 includes a locating fixture 38. The pallet 32 is adapted to be stopped and located with respect to the fixture 38 immediately after it comes into approximate registry with the station 12, by means of a rough stop mechanism (not shown).
At this point a series of actions take place all controlled and operated by means of a transversely extending drum cam assembly 40 which is driven by a motor 42, speed reducer 44 and clutch unit 45 and brake unit 46, preferably pneumatically operated, which actions are initiated by suitable controls, in order to intermittently rotate the cam assembly 40.
The cam assembly 40 includes a drum member 48 which is supported by means of bearings 50, 52 mounted on partitions 54, 56, respectively, supported in the station base 58. Secured to the drum 48 are a plurality of cam groove sections 60, 62, 64, 66, and 68 which may be constructed of standardized segments individually bolted or otherwise secured to the drum member 48. Associated with each respective segment 60, 62, 64, 66, 68 is a linkage assembly 70, 72, 74, 76, and 78 for performing a specific motion with regard to the workpiece or in locating or providing auxiliary support for the pallet 32. Each linkage assembly 70, 72, 74, 78 is supported by a cross member 80 which is in turn supported by partitions 54, 56 as well as partition 82, while linkage assembly 76 is supported by a plate 84 in turn supported by appropriate bracketry.
Each linkage assembly 70, 72, 74', 76 and 78 includes an associated link 86, 88, 90, 92, and 94 rotatably supported by pivots 96, 98, 100, 102, 104. Each link 86, 88, 90, 92, 94 has an associated cam follower 105, 107, 109, 111, 113 disposed in its respective cam groove so as to constrain it to move in conformity with the particular contours thereof.
Each link 86, 88, 90, 92, 94 is drivingly associated with a mechanism designed to perform some motion function which is associated with the specific operation to be performed at the particular station 12.
For example, link 88 is adapted to operate a wedge pin device 114 which serves to locate the pallet and workpiece with respect to the registry fixture 38, link 92 is adapted to drive an auxiliary support clamp mechanism 116, link 88 is adapted to operate a bearing or seal feed mechanism 118, link 86 operates a bearing positioning mechanism 1 19, while link 94 drives a press mechanism 120, arranged to press a bearing or seal into the workpiece 34.
Inasmuch as the details of the particular motion mechanisms are not in themselves a part of the present invention and may be any of a great variety of such known movements, it is not felt necessary to describe these in great detail.
Suffice it to say that each of these mechanisms are operated in a sequence and in a manner determined by the particular contour of its associated cam groove to accomplish the intended station operation, after which time the cam drive is discontinued via a control arrangement (not shown) cooperating with the clutch unit 45 and brake unit 46 to await the next cycle.
From this description, it can be appreciated that the space occupied by the cam mechanism and its associated linkages occupies substantially less length of assembly line than a corresponding parallel disposed cam mechanism. Indeed in this arrangement, the several cam operated linkages occupy very little more space than a single such linkage, and hence the number of motions available is not dependent on the line space available and substantially more motions are possible at each station.
In addition, the cam may be located so that motions on either side of the line may be easily and directly taken therefrom. I
As shown in FIG. 4, pivot 74, which is typical, includes a socket 122 secured to cross member 80 and aligned with a corresponding bore 125 therein, and containing a ball 124 urged to the right as viewed in FIG. 4 by means of a compression spring 126. A bushing 127 may be included to lessen wear and maintain an accurate fit with the ball 124.
Disposed juxtaposed to the ball 124 is a pivot post 128 having a base portion 130 formed with a generally dished depression 132, normally disposed with the ball 124 centered therein. The pivot post 128 is maintained against the cross member 80 by means of a slotted bracket 136 secured to the cross member 80 and formed with an opening 138 so as to allow limited movement of the pivot post in the plane of its abutment with the cross member 80, while preventing movement out of this plane.
The link 90 is rotatably supported on a reduced end portion 140 of the pivot post 128, and retained thereon by means of a thrust washer 142 and a pneumatic fitting 144 threadedly engaging the end portion 140.
Associated with the fitting 144 is a source of pneumatic pressure 146 connected thereto via line 148, which communicates via the fitting 144 with a central passage 150 formed in the pivot post member 128, leading into the center of the dished depression 132. The source 146 is also connected via the fitting 144 and a line 145 with a pressure switch 152 which is arranged to control the clutch unit 45 and brake unit 46 by means of a solenoid valve 154 which is operatively connected thereto and serves to control communications of the pneumatic source 156 which in turn controls the application of the clutch 45 and brake 46 to discontinue drum movement. The solenoid valve 154 also may serve as the primary cycle control during normal operations.
An indicator 158 may also be operated by the pressure switch 152.
In operation, if a jam or other overload condition occurs in any one of the linkage assemblies as for example the linkage 74, the reaction force at the pivot will cause the associated link 90 acting through the pivot post 128 and the dished depression 132 will cause the ball 124 to be cammed to the left as viewed in FIG. 4 against the bias of the compression spring 126, allowing the link 90 to move away from its pivot point in the direction tending to relieve the overload condition.
At this point, the passage is vented since the ball 124 no longer is centered in the depression 132 which in turn causes a pressure reduction in line 145 and pressure switch 152, which is arranged to deactivate the clutch 45 and apply the brake 46, and cease further rotation of the cam assembly 40.
The indicator 158 is also activated thereby so that an operator may be apprised of the shutdown.
From this description, it can be appreciated that this arrangement is sensitive to overload conditions in the individual link mechanisms and acts to immediately relieve the excessive forces as well as to shut down all further activity at the station, and hence, providing a solution to the problem of detecting the individual jams. Furthermore, since the pivots are the locations where the excessive force levels are detected, the shifting mechanical advantage of the cam groove sections and the cam follower does affect its function, and hence this arrangement also eliminates this source of error.
The overload level of each link mechanism 70, 72, 74, 76, and 78 also may be individually tailored by controlling the bias force applied to the ball by the compression spring and/or the ramp angle of the associated dished depression.
As noted above, a problem has existed in accurately locating a member by means of cam and linkage mechanisms clue to the play involved therein and the effects of wear. An example of this type of situation is the positioning mechanism 119 referred to operated by the linkage 70. This mechanism serves to receive a part 160, such as a seal or bearing from the feed mechanism 1 18, into a holding member 162, and transport it into a proper position with respect to the workpiece 34 for emplacement by the press mechanism 120. Thus, the holding member 162 must accurately be brought into registry in these positions with respect to the feed mechanism 118, the press mechanism 120 and the workpiece 34.
The arrangement provided for accomplishing this includes a stationary block 164 fixed to the housing 58 and a pair of rods 166, 168 slidably disposed in bores formed in the block 164. The rods 166, 168 are connected at one end to an end plate 170 in turn connected to the holding member 162, and at the other end to end plate 172. The end plate is adapted to be driven by the link 86 by means of an overtravel link 174 pinned at 176 to the link 86 and at 178 to the end plat 172.
An adjustable positive stop 188 is threaded into the end plate 170, while a cooperating adjustable positive stop 190 is similarly threaded into the block 164. An adjustable stop 192 is threaded into end plate 172 and a cooperating stop 194 is threaded into the block 164.
The overtravel link 174, as shown in more detail in FIGS. 5 and 6, is adapted to provide a resilient limited lost motion connection between the link 86 and the end plate 172, and includes a pair of end rods 196 and 198 adapted to be pinned to the link 86 and end plate 172, respectively. End rod 196 is threadedly connected to a rod 200, extending into a housing 202 and received into an opening 204 formed in a cup member 204. The cup member 204 is threaded to the end rod 198.
Surrounding rod 200 and disposed in the housing 202 is a compression spring 206, bearing at one end against a shoulder 208 in the housing 202 and at the other end on a compression washer 210.
Compression washer 210 is forced thereby against the end 212 of the cup member 204, which in turn is abutting an internal shoulder 216 of a cap 218 threaded on the end of the housing 202.
Movement of the rod 200 in the housing 202 is limited by means ofa compression washer 220 abutting the housing end 222 and adjusting lock nut 224. The compression spring 206 also acts on the rod 200 via a pair of protuberances 226 and 228 slidably received in a pair of slots 230, 232, in the cup member 204, with the compression washer 210 extending inwardly to engage the protuberances 226 and 228.
In the position shown with the cup member 204 abutting the spacer washer 214 and the compression washer 220, a lost motion clearance l is provided between the rod 200 and the cup member 204, which allows relative movement between the end rods 196, 198 until the rod 200 abuts the bottom of the opening In operation, as the link 86 is pivoted in a clockwise direction as viewed in FIG. 3, the end plate 172 and connected rods 166, 168, end plate 170 and holding member 162 are stroked to the right via the driving connection of the overtravel link 174 acting through its compression spring 206, until the stops 188, 190 contact each other. This point is selected to be at the precise registry point required by adjusting one or the other or both of the stops 188, 190. At this point, the cup member 204 becomes relatively fixed, and the end rod 196 (acting through the compression washer 220) moves against the bias of the compression spring 206 to the right until the cam motion begins to pivot the link 86 in the return direction. Since a lost motion clearance l is provided, the cam motion and linkage does not need to be precisely adjusted and maintained to begin the return motion at the precise moment when the stops 188 and 190 come into contact.
Upon movement of the link 86 counter-clockwise, the end plate 172 is stroked by the overtravel link 174 to the left, together with the connected rods 166, 168, end plate 170, and holding member 162 until the stops 192, 194 contact each other, at which time the cup member 204 becomes fixed relative to rod 200. At that point, the rod 200 moves against the bias of the spring 206 acting thereon through the protuberances 228 and 226 and the thrust washer 210 (to the left as viewed in FIG. 5) until the link 86 is caused to either stop or reverse its pivotal motion by the cam groove section 60. Since the rod 200 is free to move relative to the cup member 204, if the contact of the stops 192, 194 does not precisely coincide with this stoppage or reversal of counter-clockwise pivotal movement the rod 200 is free to continue moving to the left as viewed in FIG. 5 until the spring 206 reaches its fully compressed length, and hence the registry of the holding member may be precisely adjusted independently of the linkage motion within the limits of this overtravel.
Additional thrust washers 210 orwashers of differing thickness thereof may be utilized, as well as springs of varying rates in order to control the relative stiffness of the overtravel link 174 to provide the proper response for the particular velocities, masses, etc., involved in the particular motion.
From the above detailed description, it can be appreciated that a particularly advantageous precision registry arrangement which is accurate, relatively simple to adjust initially, and which requires a minimum of maintenance to keep in the proper adjustment has been provided. I
What is claimed is:
1. An overtravel link comprising:
a first end rod;
a second end rod;
a housing slidably receiving said first and second end rods;
a first abutment means limiting relative movement between said housing and said first end rod;
a second abutment means limiting relative movement between said second end rod and said housing; and
resilient means drivingly connected to said housing and one of said end rods, whereby resilient overtravel of both said end rods is provided.
2. The link of claim 1 wherein said first and second abutment means limits said relative movement in a first direction along a line of action.
3. The link of claim 2 further including a third abutment means limiting relative movement between said first and second end rod in a second direction opposite said first direction along a line of action.
4. An arrangement for accurately positioning a member in a first and second position by an operating mechanism comprising:
a first stop means along a line of movement of said member positioned by said operating means positively locating said member;
second stop means along said line ofmovement positively locating said member at a position spaced from said first stop means position;
resilient connection means interposed between said member and said operating mechanism allowing resilient lost motion in both directions along said line of movement, whereby accurate position at both stop positions is provided.
5. The arrangement of claim 4 further including means positively limiting the extent of resilient lost motion between said member and said operating mechanism.
6. The arrangement of claim 5 wherein said connection means includes an overtravel link comprising:
a first end rod;
a second end rod;
a housing slidably receiving said first and second end ing; and
rPdS; resilient means drivingly connected to said housing a first abutment means llmltmg relative movement and one of said end rods, whereby resilient overbetween said housing and said first end rod; travel of both Said end rods is provided a second abutment means limiting relative movement between said second end rod and said hous-

Claims (6)

1. An overtravel link comprising: a first end rod; a second end rod; a housing slidably receiving said first and second end rods; a first abutment means limiting relative movement between said housing and said first end rod; a second abutment means limiting relative movement between said second end rod and said housing; and resilient means drivingly connected to said housing and one of said end rods, whereby resilient overtravel of both said end rods is provided.
2. The link of claim 1 wherein said first and second abutment means limits said relative movement in a first direction along a line of action.
3. The link of claim 2 further including a third abutment means limiting relative movement between said first and second end rod in a second direction opposite said first direction along a line of action.
4. An arrangement for accurately positioning a member in a first and second position by an operating mechanism comprising: a first stop means along a line of movement of said member positioned by said operating means positively locating said member; second stop means along said line of movement positively locating said member at a position spaced from said first stop means position; resilient connection means interposed between said member and said operating mechanism allowing resilient lost motion in both directions along said line of movement, whereby accurate position at both stop positions is provided.
5. The arrangement of claim 4 further including means positively limiting the extent of resilient lost motion between said member and said operating mechanism.
6. The arrangement of claim 5 wherein said connection means includes an overtravel link comprising: a first end rod; a second end rod; a housing slidably receiving said first and second end rods; a first abutment means limiting relative movement between said housing and said first end rod; a second abutment means limiting relative movement between said second end rod and said housing; and resilient means drivingly connected to said housing and one of said end rods, whereby resilient overtravel of both said end rods is provided.
US00204755A 1970-08-03 1971-12-03 Over travel linkage for assembly machine station Expired - Lifetime US3724052A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6222870A 1970-08-03 1970-08-03
US20475571A 1971-12-03 1971-12-03

Publications (1)

Publication Number Publication Date
US3724052A true US3724052A (en) 1973-04-03

Family

ID=26742002

Family Applications (1)

Application Number Title Priority Date Filing Date
US00204755A Expired - Lifetime US3724052A (en) 1970-08-03 1971-12-03 Over travel linkage for assembly machine station

Country Status (1)

Country Link
US (1) US3724052A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791010A (en) * 1971-12-03 1974-02-12 Bendix Corp Overload mechanism for cam operated linkages in a multistation assembly machine
US4941563A (en) * 1986-10-03 1990-07-17 Otmar Fahrion Conveying device
US5078254A (en) * 1988-02-22 1992-01-07 Cargill Detroit Corporation Nonsynchronous polygon manufacturing system
US5230407A (en) * 1990-06-22 1993-07-27 Applied Power Inc. Linkage rod with shock absorbing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475807A (en) * 1966-12-19 1969-11-04 Bethlehem Steel Corp Convertible machine unit and method of converting same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475807A (en) * 1966-12-19 1969-11-04 Bethlehem Steel Corp Convertible machine unit and method of converting same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791010A (en) * 1971-12-03 1974-02-12 Bendix Corp Overload mechanism for cam operated linkages in a multistation assembly machine
US4941563A (en) * 1986-10-03 1990-07-17 Otmar Fahrion Conveying device
US5078254A (en) * 1988-02-22 1992-01-07 Cargill Detroit Corporation Nonsynchronous polygon manufacturing system
US5230407A (en) * 1990-06-22 1993-07-27 Applied Power Inc. Linkage rod with shock absorbing

Similar Documents

Publication Publication Date Title
CA1097584A (en) Pallet registry system
US4844231A (en) Roller conveyer system
US6141861A (en) Apparatus and method for control of roller chain assembly
US3648346A (en) Transverse cam operated station for an automatic nonsynchronous multistation assembly machine
JPS6225325Y2 (en)
KR850000299A (en) Devices for carrying in and out of presses or similar workpiece processing machines
US3724052A (en) Over travel linkage for assembly machine station
US4428300A (en) Vehicle precision stop assembly
US4394897A (en) Pallet registry mechanism and transfer lift system
US3155217A (en) Transfer machine
US4715113A (en) Machine component installation device
US3754316A (en) Automatic gaging apparatus of modular construction and method of manufacture
JPH10180378A (en) Lift and clamp device of transfer feeder
US3791010A (en) Overload mechanism for cam operated linkages in a multistation assembly machine
US4173426A (en) Apparatus for the automatic loading of a continuously working machine
US3939544A (en) Assembly machine having improved tooling mounting
US3871206A (en) Continuous rotary press
US3410161A (en) Stock feeding apparatus for punch presses and the like
US3684059A (en) Chain lubricating apparatus
US3376968A (en) Loading fixture
EP0104008A1 (en) Machine tool spindle stop and tool release mechanism
US2840045A (en) Control for hydrodynamic machines
US4161893A (en) Rotary indexing mechanism
US3940839A (en) High accuracy positive positioning mechanism for an assembly machine
US3677383A (en) Part meter

Legal Events

Date Code Title Description
AS Assignment

Owner name: CROSS COMPANY, THR, 17801 FOURTEEN MILE ROAD, FRAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE OCTOBER 1, 1984;ASSIGNOR:BENDIX MACHINE TOOL CORPORATION;REEL/FRAME:004348/0603

Effective date: 19841001