US3723402A - Composition comprising polypropylene and an organosilicon compound - Google Patents
Composition comprising polypropylene and an organosilicon compound Download PDFInfo
- Publication number
- US3723402A US3723402A US00056659A US3723402DA US3723402A US 3723402 A US3723402 A US 3723402A US 00056659 A US00056659 A US 00056659A US 3723402D A US3723402D A US 3723402DA US 3723402 A US3723402 A US 3723402A
- Authority
- US
- United States
- Prior art keywords
- polypropylene
- radical
- carbon atoms
- alkyl
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 12
- -1 polypropylene Polymers 0.000 title abstract description 81
- 239000004743 Polypropylene Substances 0.000 title abstract description 41
- 229920001155 polypropylene Polymers 0.000 title abstract description 41
- 150000003961 organosilicon compounds Chemical class 0.000 title abstract description 21
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 22
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 10
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 9
- 238000001125 extrusion Methods 0.000 abstract description 9
- 230000015556 catabolic process Effects 0.000 abstract description 8
- 238000006731 degradation reaction Methods 0.000 abstract description 8
- 229930195733 hydrocarbon Natural products 0.000 abstract description 8
- 125000000217 alkyl group Chemical group 0.000 abstract description 6
- 125000003342 alkenyl group Chemical group 0.000 abstract description 5
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 2
- 125000003118 aryl group Chemical group 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 229910000077 silane Inorganic materials 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 150000003254 radicals Chemical class 0.000 description 9
- 239000000155 melt Substances 0.000 description 8
- 239000000835 fiber Substances 0.000 description 6
- 238000002074 melt spinning Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- 150000005840 aryl radicals Chemical class 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 150000001282 organosilanes Chemical class 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000005375 organosiloxane group Chemical group 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- SLRMQYXOBQWXCR-UHFFFAOYSA-N 2154-56-5 Chemical compound [CH2]C1=CC=CC=C1 SLRMQYXOBQWXCR-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 108010021119 Trichosanthin Proteins 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000004171 alkoxy aryl group Chemical group 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000006232 ethoxy propyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000004970 halomethyl group Chemical group 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- RSNQKPMXXVDJFG-UHFFFAOYSA-N tetrasiloxane Chemical compound [SiH3]O[SiH2]O[SiH2]O[SiH3] RSNQKPMXXVDJFG-UHFFFAOYSA-N 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- ZQTYRTSKQFQYPQ-UHFFFAOYSA-N trisiloxane Chemical compound [SiH3]O[SiH2]O[SiH3] ZQTYRTSKQFQYPQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/544—Silicon-containing compounds containing nitrogen
Definitions
- ABSTRACT The production oi shaped polypropylene articles by melt extrusion of thermally degraded isotactic polypropylene can be carried forward at lower temperatures than were heretofore required by incorporating in the polypropylene prior to thermal degradation thereof, from 0.01 to 5 percent by weight, based on the weight of the polypropylene, or (a) a silane or siloxane having at least one SiCI-I NR group where R is hydrogen or a hydrocarbon radical, (b) an organosilicon compound of the general formula wherein R, R and R' are each a hydrogen atom, an alkyl radical of 1-18 carbon atoms, an aralkyl radical of less than 19 carbon atoms or O SiCl-l where Q is alkyl, alkenyl or aryl of less than 19 carbon atoms, at leastone R', R" or R being Q SiCl'l or (c) mixture of (a) and (b).
- filaments of polypropylene by the melt spinning of crystalline, that is isotactic, polypropylene.
- filaments of polypropylene having high tenacities may be produced by degrading the polypropylene by drastic thermal treatment, that is by exposure to temperatures of about 260C or above, prior to extrusion through the filament-forming orifice.
- This invention provides a process for the production of a shaped article by the melt extrusion of thermallydegraded isotactic polypropylene wherein the thermal degradation of the polypropylene is carried out in the presence of from 0.01 to 5 percent by weight based on the weight of polypropylene, of (a)'an organosilicon compound which is an organosilane or organosiloxane having at least one silicon-bonded group of the general formula --Ci-l NR wherein each R represents a hydrogen atom or a monovalent-hydrocarbon radical, (b) an organosilicon compound of the general formula wherein R, R" and R each represent a hydrogen atom, an alkyl radical having up to 18 carbon atoms, an aralkyl radical having up to 18 carbon atoms or a Q, SiCl-I, group, wherein 0 represents an alkyl, alkenyl or aryl radical having up to 18 carbon atoms, at least one of R, R" andR being the Q, Si
- the invention also includes a thermally-degradable composition comprising isotactic polypropylene and from 0.01 to 5 percent by weight of one or more of the specified organosilicon compounds (a) and (b).
- each R represents a hydrogen atom or monovalent hydrocarbon radical, for example the methyl, ethyl, t-butyl, hexyl, octadecyl, vinyl, phenyl, tolyl or benzyl radical.
- organosilicon compounds (a) are the organosilanes and the sub stantially linear polydiorganosiloxanes of low molecular weight, for example the di triand tetrasiloxanes having therein the specified -CH, NR groups, any other substituents on the silicon atoms being monovalent hydrocarbon or halohydrocarbon radicals and oxygen atoms present as siloxane (Si O Si) linkages.
- organosilicon compounds (a) have the general formula wherein each A represents a radical having from 1 to 18 carbon atoms and is a monovalent hydrocarbon radical, an alkoxy radical, an alkoxyalkyl radical, an alkoxyaryl radical or an alkoxyalkoxy radical, n is 0, l, 2 or 3 but is preferably 3 and R is as hereinabove defined.
- alkyl radicals for example methyl, ethyl, propyl, butyl, decyl and octadecyl, alltenyl radicals such as vinyl and allyl and aryl radicals such as phenyl, naphthy], tolyl and benzyl.
- the A radicals can also comprise alkoxy radicals, for example methoxy, ethoxy and propoxy radicals and alkoxy alkyl, alkoxyaryl and alkoxyalkoxy radicals for example methoxyethyl, ethoxypropyl, methoxyphenyl and methoxyethoxy radicals.
- A is an alkyl radical having less than 9 carbon atoms or a phenyl radical.
- organosilicon compounds should be compatible, at least to some extent, with the isotactic polypropylene and some adjustment of the compatibility of the particular type of compound chosen can be achieved by variation of the A radicals.
- organosilicon compounds (a) employed in the process of this invention are well-known materials and others can be prepared according to the method described in U.S. Pat. No.3,504,007.
- organosilicon compounds (b) which can be employed to assist in the degradation of polypropylene according to this invention may be broadly termed as silyl-substituted phenols. They are more particularly described by the general formula wherein R, R" and R' each represent a hydrogen atom or an alkyl or aralkyl radical having up to 18 carbon atoms, for example the methyl, ethyl, propyl, t-butyl, hexyl, dodecyl, benzyl or 2-phenyl ethyl radical, or a Q SiCl-i group wherein each Q represents an alkyl, alkenyl or aryl radical having up to 18 carbon atoms.
- At least one of R, R" and R' should be the Q SiCH radical, examples of which are the trimethylsilylmethyl, diphenylmethylsilylmethyl, vinyldimethyl silylmethyl and dimethylbenzylsilylmethyl radicals.
- the preferred compounds (b) are those wherein the radicals represented by R, R" R' and Q are selected from alltyl radicals having less than 9 carbon atoms and phenyl radicals.
- organosilicon compounds (b) can be prepared, for example, by the reaction in the presence of magnesium of a phenolic compound having substituted therein a halomethyl group with an organosilicon compound Q Sil-lal wherein Q is as hereinabove defined and Hal represents a halogen atom, preferably the chlorine or bromine atom.
- the process of this invention finds particular application in the formation of fibers and filaments of polypropylene by melt spinning.
- the fibers or filaments can be quenched following spinning and are then subjected to drawing at elevated temperatures to being about orientation of the fiber or filament to provide the desired high tensile properties.
- the organosilicon compounds (a) and (b) employed herein also function to stabilize the polypropylene against oxidation at temperatures up to about 120 150 C.
- the use of the organosilicon compounds according to this invention therefore performs the dual function of assisting in the formation of high tenacity fibers and films during the melt spinning operation and subsequently serves to protect the spun fiber against oxidation at lower temperatures.
- Example 1 To a series of 2 kg. samples of isotactic polypropylene granules were added 25 ml. solutions in pentane of the following compounds, the concentration of the solutions being such as to deposit on the granules by evaporation of the pentane 1.0 percent of their weight of compound.
- Example 2 The compound (CH SiCl-l,Nl-l.C l-l was employed to treat two samples isotactic polypropylene granules in polypropylene.
- melt index values of the sample containing 0.1 per cent of compound was performed after 3 minutes and 13 minutes in the manner described in Example 1. Values of 2.8 and 5.0 were obtained. When similar measurements were performed after 3 minutes and 4 minutes on the 1.0 per cent sample values of melt index of 2.7 and 20.0 were obtained. When the compound (Cl-1 C CH,NH.Ph was similarly tested at the 0.1 percent level for comparative purposes melt index values of 2.3 and 2.6 were obtained after 3 minutes and 13 minutes respectively.
- each Q is an alkyl radical having less than 9 carbon atoms or a phenyl radical.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Artificial Filaments (AREA)
Abstract
WHEREIN R'', R'''' and R'''''' are each a hydrogen atom, an alkyl radical of 1-18 carbon atoms, an aralkyl radical of less than 19 carbon atoms or O3SiCH2 - where Q is alkyl, alkenyl or aryl of less than 19 carbon atoms, at least one R'', R'''' or R'''''' being Q3SiCH2-, or (c) mixture of (a) and (b).
The production of shaped polypropylene articles by melt extrusion of thermally degraded isotactic polypropylene can be carried forward at lower temperatures than were heretofore required by incorporating in the polypropylene prior to thermal degradation thereof, from 0.01 to 5 percent by weight, based on the weight of the polypropylene, or (a) a silane or siloxane having at least one *SiCH2NR2 group where R is hydrogen or a hydrocarbon radical, (b) an organosilicon compound of the general formula
Description
" [58]" Field nrs'earen nited States Patent [191 Owen et al.
154] COMPOSITION COMPRISING POLYPROPYLENE AND AN ORGANOSILICON COMPOUND [75] Inventors: William J. Owen, Penarth; Bryan E.
Cooper, Bridgend, both of Wales [7 3] Assignee: Midland Silicones Limited, Reading,
Berkshire, England [22] Filed: July 20, 1970 [21] Appl. No.: 56,659
[30] Foreign Application Priority Data 52 user ..260/93.7, 260/45.7 R, zoo 94.9 013, 260/949 on 51 Int. Cl ..c0sr 29 9 2, 00 45/58, cosr 45/60 260/949 GD, 93.7, 45.7 R, 94.7 N
I 1- ar. 27,1973
FOREIGN PATENTS OR APPLICATIONS 246,827 11/1969 U.S.S.R ..260/94.9 (i D Primary Examiner-James A. Seidleck Assistant Examiner-William F. Hamro'ck Attorney-Robert F. Fleming, Jr., Laurence R. l-lobey and Howard W. Hermann [57] ABSTRACT The production oi shaped polypropylene articles by melt extrusion of thermally degraded isotactic polypropylene can be carried forward at lower temperatures than were heretofore required by incorporating in the polypropylene prior to thermal degradation thereof, from 0.01 to 5 percent by weight, based on the weight of the polypropylene, or (a) a silane or siloxane having at least one SiCI-I NR group where R is hydrogen or a hydrocarbon radical, (b) an organosilicon compound of the general formula wherein R, R and R' are each a hydrogen atom, an alkyl radical of 1-18 carbon atoms, an aralkyl radical of less than 19 carbon atoms or O SiCl-l where Q is alkyl, alkenyl or aryl of less than 19 carbon atoms, at leastone R', R" or R being Q SiCl'l or (c) mixture of (a) and (b). i
3 Claims, No Drawings COMPOSITION COMPRISING POLYPROPYLENE AND AN ORGANOSILICON COMPOUND This invention relates to improvements in or relating to the melt extrusion of polypropylene and relates in particular to the melt spinning of polypropylene having a stereoregular structure.
It is well-known to prepare shaped articles by the melt extrusion of polypropylene. In particular it is known to prepare filaments of polypropylene by the melt spinning of crystalline, that is isotactic, polypropylene. In order to improve the tensile characteristics of the filament it is usual to subject the filament after melt spinning and quenching to drawing at elevated temperatures to orient the filament. It is also known that filaments of polypropylene having high tenacities may be produced by degrading the polypropylene by drastic thermal treatment, that is by exposure to temperatures of about 260C or above, prior to extrusion through the filament-forming orifice. The use of such high temperatures however introduces considerable processing difficulties since they approximate closely to the temperature at which the polypropylene chars and is rendered unsuitable for use. We have now discovered that certain organosilicon compounds have the effect of lowering the temperature at which a given degree of degradation occurs in polypropylene, thereby permitting the melt spinning of polypropylene into high tenacity fibers and filaments under less severe thermal conditions.
It is an object of this invention to introduce an improved method for melt extruding polypropylene. Another object is a method for melt extrusion of polypropylene wherein the required polypropylene degradations can be carried forward at a lower temperature than heretofore required. Other objects and advantages of the invention are detailed in, or will be apparent from the disclosure and claims following.
This invention provides a process for the production of a shaped article by the melt extrusion of thermallydegraded isotactic polypropylene wherein the thermal degradation of the polypropylene is carried out in the presence of from 0.01 to 5 percent by weight based on the weight of polypropylene, of (a)'an organosilicon compound which is an organosilane or organosiloxane having at least one silicon-bonded group of the general formula --Ci-l NR wherein each R represents a hydrogen atom or a monovalent-hydrocarbon radical, (b) an organosilicon compound of the general formula wherein R, R" and R each represent a hydrogen atom, an alkyl radical having up to 18 carbon atoms, an aralkyl radical having up to 18 carbon atoms or a Q, SiCl-I, group, wherein 0 represents an alkyl, alkenyl or aryl radical having up to 18 carbon atoms, at least one of R, R" andR being the Q, SiCH, group, or (c) mixtures of(a) and (b).
In a further aspect the invention also includes a thermally-degradable composition comprising isotactic polypropylene and from 0.01 to 5 percent by weight of one or more of the specified organosilicon compounds (a) and (b).
As the organosilicon compound there can be employed any organosilane or organosiloxane containing the grouping Cl-l NR bonded to at least one silicon atom. In said group, each R represents a hydrogen atom or monovalent hydrocarbon radical, for example the methyl, ethyl, t-butyl, hexyl, octadecyl, vinyl, phenyl, tolyl or benzyl radical. Preferred as the organosilicon compounds (a) are the organosilanes and the sub stantially linear polydiorganosiloxanes of low molecular weight, for example the di triand tetrasiloxanes having therein the specified -CH, NR groups, any other substituents on the silicon atoms being monovalent hydrocarbon or halohydrocarbon radicals and oxygen atoms present as siloxane (Si O Si) linkages.
Most preferably the organosilicon compounds (a) have the general formula wherein each A represents a radical having from 1 to 18 carbon atoms and is a monovalent hydrocarbon radical, an alkoxy radical, an alkoxyalkyl radical, an alkoxyaryl radical or an alkoxyalkoxy radical, n is 0, l, 2 or 3 but is preferably 3 and R is as hereinabove defined. As the A radicals in the general formula there may be present one or more of alkyl radicals, for example methyl, ethyl, propyl, butyl, decyl and octadecyl, alltenyl radicals such as vinyl and allyl and aryl radicals such as phenyl, naphthy], tolyl and benzyl. The A radicals can also comprise alkoxy radicals, for example methoxy, ethoxy and propoxy radicals and alkoxy alkyl, alkoxyaryl and alkoxyalkoxy radicals for example methoxyethyl, ethoxypropyl, methoxyphenyl and methoxyethoxy radicals. Preferably however A is an alkyl radical having less than 9 carbon atoms or a phenyl radical.
For optimum results it is believed that the organosilicon compounds should be compatible, at least to some extent, with the isotactic polypropylene and some adjustment of the compatibility of the particular type of compound chosen can be achieved by variation of the A radicals.
Some of the organosilicon compounds (a) employed in the process of this invention are well-known materials and others can be prepared according to the method described in U.S. Pat. No.3,504,007.
The organosilicon compounds (b) which can be employed to assist in the degradation of polypropylene according to this invention may be broadly termed as silyl-substituted phenols. They are more particularly described by the general formula wherein R, R" and R' each represent a hydrogen atom or an alkyl or aralkyl radical having up to 18 carbon atoms, for example the methyl, ethyl, propyl, t-butyl, hexyl, dodecyl, benzyl or 2-phenyl ethyl radical, or a Q SiCl-i group wherein each Q represents an alkyl, alkenyl or aryl radical having up to 18 carbon atoms. At least one of R, R" and R' should be the Q SiCH radical, examples of which are the trimethylsilylmethyl, diphenylmethylsilylmethyl, vinyldimethyl silylmethyl and dimethylbenzylsilylmethyl radicals. The preferred compounds (b) are those wherein the radicals represented by R, R" R' and Q are selected from alltyl radicals having less than 9 carbon atoms and phenyl radicals.
organosilicon compounds (b) can be prepared, for example, by the reaction in the presence of magnesium of a phenolic compound having substituted therein a halomethyl group with an organosilicon compound Q Sil-lal wherein Q is as hereinabove defined and Hal represents a halogen atom, preferably the chlorine or bromine atom. Such a method is more completely described in our co-pending U.S. application Ser. No. 752,790, filed Aug. 15,1968.
Although applicable in the production of any shaped article such as sheets, by melt extrusion, the process of this invention finds particular application in the formation of fibers and filaments of polypropylene by melt spinning. In common with known techniques the fibers or filaments can be quenched following spinning and are then subjected to drawing at elevated temperatures to being about orientation of the fiber or filament to provide the desired high tensile properties.
In addition to assisting the thermal degradation of polypropylene at temperatures above about 180C the organosilicon compounds (a) and (b) employed herein also function to stabilize the polypropylene against oxidation at temperatures up to about 120 150 C. The use of the organosilicon compounds according to this invention therefore performs the dual function of assisting in the formation of high tenacity fibers and films during the melt spinning operation and subsequently serves to protect the spun fiber against oxidation at lower temperatures.
The following examples illustrate the invention.
Example 1 To a series of 2 kg. samples of isotactic polypropylene granules were added 25 ml. solutions in pentane of the following compounds, the concentration of the solutions being such as to deposit on the granules by evaporation of the pentane 1.0 percent of their weight of compound.
Compound! 7 7 0H oH;)ac--cm Compound 13 0H (CH3)aSiCH2-@CH1 l CH2 Compound C (DE cHl)is1cH1-(\ -cm 3)a Compound D 0H (CH1)sSlCH2- CH2Sl(CH3)5 l C(CHs);
Compound E (p CflHgNII'" The melt index of each of the treated samples was then measured according to British Standard 2782, Part 1, 1965, Method C using a 2.16 Kg load, a reservoir temperature of 230C and a 0.0825 in. orifice, the measurements being carried out at periods of 3 minutes and 13 minutes after introduction of the sample into the heated reservoir. Each measurement of the quantity extruded through the orifice was taken over 0.5 minutes and the value obtained converted to give a figure for the prescribed 10 minute extrusion period. The melt index, that is the amount of polypropylene in grams extruded over a 10 minute period, for each of the samples is given in the following table, together with a control measurement carried out on an untreated polypropylene sample.
Compound Melt Index 3 Min. 13 Min. Control 2.1 2.5 A 1.9 2.0 B 2.7 7.4 C 2.9 4.2 d 4.0 11.0 E 2.6 3.9
Compounds A and E were included for comparative purposes and the melt index value for Compound A indicated that it was ineffective in assisting degradation of the polypropylene at 230C. On the other hand Compounds B, C and D all increased the melt index value significantly and were at least as effective as Compound E which is a commercially available peptlser.
Example 2 The compound (CH SiCl-l,Nl-l.C l-l was employed to treat two samples isotactic polypropylene granules in polypropylene.
Measurements of the melt index of the sample containing 0.1 per cent of compound was performed after 3 minutes and 13 minutes in the manner described in Example 1. Values of 2.8 and 5.0 were obtained. When similar measurements were performed after 3 minutes and 4 minutes on the 1.0 per cent sample values of melt index of 2.7 and 20.0 were obtained. When the compound (Cl-1 C CH,NH.Ph was similarly tested at the 0.1 percent level for comparative purposes melt index values of 2.3 and 2.6 were obtained after 3 minutes and 13 minutes respectively.
That which is claimed is:
l. A composition consisting essentially of isotactic polypropylene and from 0.01 to 5 percent by weight, based on the weight of polypropylene, of (a) an organosilane of the general formula A,,Si(CH,NR,) in which R is a hydrogen atom or a monovalent hydrocarbon radical, A represents a radical having from 1 to 18 carbon atoms and is a monovalent hydrocarbon radical, an alkoxy radical, an alkoxyalkyl radical, an alkoxyaryl radical or an alkoxyalkoxy radical and n is 0, l, 2 or 3, or a disiloxane, trisiloxane or tetrasiloxane having therein at least one silicon-bonded group of the general formula CH NR wherein R is as defined hereinabove, any remaining substituents on the silicon atoms being monovalent hydrocarbon radicals, monovalent halogenated hydrocarbon radicalsor oxygen atoms present in siloxane linkages, (b) an organosilicon compound of the general formula wherein R', R" and R' each represent a hydrogen atom, an alkyl radical having up to 18 carbon atoms, an aralkyl radical having up to 18 carbon atoms or a Q SiCl-1, group, wherein Q represents an alkyl, alkenyl or aryl radical having up to 18 carbon atoms, at least one of R, R" and 11" being the Q siCl-l group, or (c) both (a) and (b).
2. A composition as claimed in claim 1 wherein each A represents an alkyl radical having less than 9 carbon atoms or a phenyl radical and n is 3.
3. A composition as claimed in claim 1 wherein each Q is an alkyl radical having less than 9 carbon atoms or a phenyl radical.
Claims (2)
- 2. A composition as claimed in claim 1 wherein each A represents an alkyl radical having less than 9 carbon atoms or a phenyl radical and n is 3.
- 3. A composition as claimed in claim 1 wherein each Q is an alkyl radical having less than 9 carbon atoms or a phenyl radical.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB3705769 | 1969-07-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3723402A true US3723402A (en) | 1973-03-27 |
Family
ID=10393397
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00056659A Expired - Lifetime US3723402A (en) | 1969-07-23 | 1970-07-20 | Composition comprising polypropylene and an organosilicon compound |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3723402A (en) |
| DE (1) | DE2035970A1 (en) |
| FR (1) | FR2055502A5 (en) |
| GB (1) | GB1311855A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4274996A (en) * | 1979-11-01 | 1981-06-23 | Phillips Petroleum Company | Thermally stabilizing polymers of ethylene |
| US5336707A (en) * | 1992-11-06 | 1994-08-09 | Kimberly-Clark Corporation | Surface segregation through the use of a block copolymer |
| US5518730A (en) * | 1992-06-03 | 1996-05-21 | Fuisz Technologies Ltd. | Biodegradable controlled release flash flow melt-spun delivery system |
| US5641822A (en) * | 1989-09-18 | 1997-06-24 | Kimberly-Clark Corporation | Surface-segregatable compositions and nonwoven webs prepared therefrom |
| US5696191A (en) * | 1989-09-18 | 1997-12-09 | Kimberly-Clark Worldwide, Inc. | Surface-segregatable compositions and nonwoven webs prepared therefrom |
| US6060584A (en) * | 1998-05-13 | 2000-05-09 | Eastman Chemical Company | Process for the degradation of polyolefins |
| US6433133B1 (en) | 1999-11-16 | 2002-08-13 | Eastman Chemical Company | Process for reducing the weight average molecular weight and melt index ratio of polyethylenes and polyethylene products |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU246827A1 (en) * | В. Е. Гуль , В. Я. Булгаков | METHOD OF MODIFICATION OF POLYOLEPHINES | ||
| US2985604A (en) * | 1957-03-05 | 1961-05-23 | Union Carbide Corp | Shaped resins |
| US3137720A (en) * | 1961-05-19 | 1964-06-16 | Gen Electric | Trimethylsilyl substituted phenols |
| US3296190A (en) * | 1961-04-25 | 1967-01-03 | Bayer Ag | Stabilization of polyesters with a combination of carbodiimides and organosilicon compounds |
| US3366612A (en) * | 1965-07-13 | 1968-01-30 | Exxon Research Engineering Co | Moisture curable one component mastic or castable rubber formed by the reaction between a halogenated butyl rubber and a silane containing a functional group and hydrolyzable substituents |
| US3471440A (en) * | 1965-08-26 | 1969-10-07 | Gen Electric | Curable compositions of diolefin polymers |
-
1969
- 1969-07-23 GB GB3705769A patent/GB1311855A/en not_active Expired
-
1970
- 1970-07-20 US US00056659A patent/US3723402A/en not_active Expired - Lifetime
- 1970-07-20 DE DE19702035970 patent/DE2035970A1/en active Pending
- 1970-07-22 FR FR7027122A patent/FR2055502A5/fr not_active Expired
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU246827A1 (en) * | В. Е. Гуль , В. Я. Булгаков | METHOD OF MODIFICATION OF POLYOLEPHINES | ||
| US2985604A (en) * | 1957-03-05 | 1961-05-23 | Union Carbide Corp | Shaped resins |
| US3296190A (en) * | 1961-04-25 | 1967-01-03 | Bayer Ag | Stabilization of polyesters with a combination of carbodiimides and organosilicon compounds |
| US3137720A (en) * | 1961-05-19 | 1964-06-16 | Gen Electric | Trimethylsilyl substituted phenols |
| US3366612A (en) * | 1965-07-13 | 1968-01-30 | Exxon Research Engineering Co | Moisture curable one component mastic or castable rubber formed by the reaction between a halogenated butyl rubber and a silane containing a functional group and hydrolyzable substituents |
| US3471440A (en) * | 1965-08-26 | 1969-10-07 | Gen Electric | Curable compositions of diolefin polymers |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4274996A (en) * | 1979-11-01 | 1981-06-23 | Phillips Petroleum Company | Thermally stabilizing polymers of ethylene |
| US5641822A (en) * | 1989-09-18 | 1997-06-24 | Kimberly-Clark Corporation | Surface-segregatable compositions and nonwoven webs prepared therefrom |
| US5696191A (en) * | 1989-09-18 | 1997-12-09 | Kimberly-Clark Worldwide, Inc. | Surface-segregatable compositions and nonwoven webs prepared therefrom |
| US5518730A (en) * | 1992-06-03 | 1996-05-21 | Fuisz Technologies Ltd. | Biodegradable controlled release flash flow melt-spun delivery system |
| US5336707A (en) * | 1992-11-06 | 1994-08-09 | Kimberly-Clark Corporation | Surface segregation through the use of a block copolymer |
| US6060584A (en) * | 1998-05-13 | 2000-05-09 | Eastman Chemical Company | Process for the degradation of polyolefins |
| US6433133B1 (en) | 1999-11-16 | 2002-08-13 | Eastman Chemical Company | Process for reducing the weight average molecular weight and melt index ratio of polyethylenes and polyethylene products |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1311855A (en) | 1973-03-28 |
| FR2055502A5 (en) | 1971-05-07 |
| DE2035970A1 (en) | 1971-04-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3334067A (en) | Method of making one component room temperature curing siloxane rubbers | |
| KR100853368B1 (en) | Room temperature curable organopolysiloxane composition | |
| US4935063A (en) | Fillers and pigments possessing organic polymer stabilizing properties and a process for their preparation | |
| US4100136A (en) | Fluorocarbon siloxane compositions | |
| CA1219396A (en) | Integrated cross-linkers and scavengers for rtv silicone rubber compositions | |
| US3723402A (en) | Composition comprising polypropylene and an organosilicon compound | |
| US3907954A (en) | Production of fibers containing silicon-oxygen bonds | |
| US3944519A (en) | Curable organopolysiloxane compositions | |
| CA1193082A (en) | Stabilizer compositions, their use for stabilizing thermoplastic polycarbonates and stabilized thermoplastic polycarbonates | |
| DE69814494T2 (en) | Flame retardant based on polysiloxane for aromatic polymers | |
| US5102707A (en) | Diorganopolysiloxanes containing benzotriazole functional groups | |
| US4742101A (en) | Curable fluorosilicone rubber composition | |
| GB1265098A (en) | ||
| US4800221A (en) | Silicon carbide preceramic polymers | |
| US3842153A (en) | Polypropylene | |
| US3862082A (en) | Flame retardant silicone rubber compositions | |
| US4375525A (en) | Use of organic silicon compounds for stabilizing and brightening polycarbonates which are free from phosphites and free from boric acid esters | |
| US3287310A (en) | Random siloxane copolymers containing phenylene and phenyl ether chain linkages | |
| US2997456A (en) | Stabilization of polymers of 1-olefins | |
| JPH10508574A (en) | Process for producing silicon carbide ceramic material and starting composition used in this process | |
| US3328350A (en) | Stabilized organosilicon polymers | |
| EP0019217A1 (en) | Use of organic silicium compounds in combination with oxetane compounds, dioxanes or tetrahydrofuranes for the stabilisation and brightening of polycarbonates free from phosphites and boric acid esters | |
| EP1036820A1 (en) | Storage-stable organopolysiloxane compositions, curable into elastomers by elimination of alcohols | |
| US3288879A (en) | Vulcanization of rubber with an organohydrogen polysiloxane and a chloroplatinic acidcompound | |
| CA1114538A (en) | Flame proofing polymers with tri-esters of phosphorus and a haloalkylarylether |