US3720090A - Switch with improved means and method for calibration - Google Patents

Switch with improved means and method for calibration Download PDF

Info

Publication number
US3720090A
US3720090A US00114074A US3720090DA US3720090A US 3720090 A US3720090 A US 3720090A US 00114074 A US00114074 A US 00114074A US 3720090D A US3720090D A US 3720090DA US 3720090 A US3720090 A US 3720090A
Authority
US
United States
Prior art keywords
diaphragm
calibration
pressure
stop member
snap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00114074A
Inventor
R Halpert
P Fiore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Application granted granted Critical
Publication of US3720090A publication Critical patent/US3720090A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/24Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow
    • H01H35/34Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow actuated by diaphragm
    • H01H35/343Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow actuated by diaphragm by snap acting diaphragm

Definitions

  • a pressure responsive device including a prlmary subassembly of a casing member having a cavity sealed by [52] U.S. Cl. ..73/4 R a pg i phr gm m m r of either mono or [51] Int. Cl. ..Go1127/oo bi-metalannular calibration-Stop member is 5 Field f Search 73 4 R, 40 200 33 R, 3 5 located adjacent to the diaphragm and is deformed in either of two directions to change the calibration of the diaphragm member. The device is shown operatively connected to an electric switch.
  • This invention relates generally to condition responsive devices, and methods of making them, and in particular with regard to certain more specific features to pressure responsive devices particularly adapted for actuation of electrical switches.
  • pressure responsive devices which are particularly adapted for miniaturization and light weight hermetically sealed constructions, and methods of making the same; the provision of such devices which include improved calibration means while enabling the pressure sensing means to withstand relatively large overpressures without incurring deleterious changes in calibration; the provision of such pressure responsive devices, and methods of making the same, which can be more easily and inexpensively calibrated than prior art devices; the provision of new and improved pressure responsive devices, and methods of making the same, which employ a diaphragm member which seals a compartment or cavity in the device; and a provision of new and improved devices which are responsive to a combination of predetermined pressure and temperature conditions.
  • the invention accordingly comprises the elements and combinations of elements, steps and sequence of steps, features and structures of manipulation, and arrangements of parts, all of which will be exemplified in the structures and methods hereinafter described, and the scope of the application of which will be indicated in the appended claims.
  • a pressure responsive or combined temperature pressure device may be used in connection with an electrical switch or with a valve or other mechanism or device for which actuation is desired in response to predetermined changes in pressure.
  • switch 10 comprises a cylindrical cup-shaped member 112 formed of a conventional molded phenolic material, electrically insulating, and is formed with apertures 14, 16 for reception therein of support member 18 and stationary contact 20 respectively.
  • Arm 22 is formed with a dimple 26, for a purpose to be described below, and mounts on its free end movable contact 30.
  • a boss 28 is formed in the bottom wall of base 12 so that when support member 12 and movable contact arm 22 are inserted through aperture 14, they are biased against the boss to effect a given angle so that a predetermined contact force will exist between contacts 20 and 30.
  • stationary contact 20' which also serves as part of the terminal structure, is preferably provided with a layer 32 of highly conductive material, such as silver alloy.
  • the outer ends of support 18 and stationary contact 20 pass through apertures 34, 36 of terminal members 38, 40 respectively, and are headed over to firmly lock the contact assembly in the housing and to provide electrical connection to the switch via leads L1, L2.
  • Leads L1, L2 are clinched in tabs 42, 44 respectively, which are in turn welded to terminal members 38, 4M) respectively.
  • ribs 46 are formed in base member 12 to prevent tracking of vaporized contact material by providing an arc shadow, a common expedient employed in the art.
  • a disc 50 generally plate-shaped of electrically insulating material, is formed with a seating groove 52 about its periphery and is received in the distal portion of wall 54 of base 12.
  • Disc 50 slidably mounts in a centrally located bore 56 provided with a motion transfer pin 58 of electrically insulating material, such as a ceramic or glass material, and isolates the electrical switch from diaphragm area.
  • Pin 58 may be formed with projection 60 on one end which contacts dimple 26 in movable arm 22 to enhance smooth transfer of motion from pin 58 to movable arm 22.
  • a cavity 64 is formed by recessing disc 50 at 60 and 62 to provide clearance for diaphragm 76 to snap from the position shown to the opposite configuration, and for calibration-stop element 74.
  • Tubular member 66 which may be formed of a conventional metallic material, is formed with a radially outwardly extending flange 68 and is placed over the distal wall 54 of base 12 and attached thereto, as by crimping, at 70. It will be noted that a small flange 72 is provided on distal wall 54 to permit locking of the tubular member 66 to base 12. Mounted on flange 68 are calibration-stop member 74, imperforate circular diaphragm member 76 and cover 78, all hermetically secured at their periphery as by welding at 80.
  • Cover 78 is dished out at 82 to provide a cavity 88 sealed by diaphragm 76 and provided with bore 84 for reception therein of a port fitting 86 which is hermetically attached thereto.
  • Port fitting 86 permits attachment to a pressure source which it is desired to monitor.
  • cover 78, diaphragm 76, calibration-stop member 74 and tubular member 66 be welded together at their marginal periphery, it will be understood that other means may be employed to clamp and seal the diaphragm member between the upper and lower casing members.
  • Diaphragm 76 is shown as a bimetallic member but can also be formed of a monometallic member such as stainless steel.
  • This diaphragm is formed into a snapacting disc by means known in the art; basically, it involves forming a non-developable surface by permanently deforming the disc.
  • the diaphragm will snap back to its original position when the pressure decreases a predetermined amount.
  • This differential i.e., the difference in pressure between that amount at which the diaphragm snaps in a first direction and that amount at which the diaphragm will return to its original position, is controlled by calibrating in the following manner.
  • the device is partly assembled by hermetically attaching cover 78, diaphragm 76, calibration-stop member 74 and tubular member 66 together as by welding about their periphery as described above, with port fitting 86 mounted on cover 78 as by brazing or resistance welding. If it is desirable to increase the differential, that is, to lower the pressure at which the diaphragm will snap back to its original position, sufficient pressure is introduced through port fitting 86 to snap the diaphragm and deform the calibration-stop member 74.
  • the switch mechanism contained in member 12 is fixedly attached to tubular member 66 at 70 by crimping to complete the assembly.
  • a pressure switch built in accordance with the invention is to deactivate an electrical circuit over a particular pressure range.
  • Port fitting 86 is attached to the pressure source to be mounted and when the-pressure rises to a predetermined level, P, diaphragm 76 snaps from the convex curvature shown in the Figure through center to a concave curvature thereby transmitting motion through pin 58 to dimple 26 on movable arm 22, causing movable contact 30 to disengage from stationary contact 20.
  • Calibration-stop member 74 is sufficiently rigid that operating pressures above P, will not affect the calibration of the diaphragm. When the pressure drops to a second level P determined by the amount member 74 was deformed during calibration, the diaphragm will snap back to its convex position shown in the drawing and the spring bias of movable arm 22 will cause contacts 30, 20 to re-engage.
  • stationary contact 20 on the opposite side of movable arm 22 if it is desired to cause circuit closing rather than circuit opening when the diaphragm snaps to the concave configuration, or, if desired, an additional circuit can be controlled (double throw) by placing a stationary contact in base 12 for engagement by movable contact arm 22 when diaphragm 76 snaps to the concave configuration while still maintaining the location of stationary contact 20 as shown.
  • the device will respond to temperature as well as pressure. That is, the diaphragm will snap through center when specific combinations of pressure and temperature conditions exist.
  • the cavities 88, 64 be hermetically sealed from each other, which sealing is advantageously accomplished by the sealing action of the diaphragm member according to the present invention
  • the parts may be sealed and clamped against the marginal periphery of the diaphragm member by means other than welding, e.g., flange 68 could be extended and clamped over the aligned portion of cover 78.
  • a method of calibrating a snap-acting diaphragm comprising the steps of forming a chamber in a housing; except for a port to admit pressure in and out of the chamber, sealing the chamber with a snap-acting diaphragm by attaching it about its periphery to the housing; mounting an annular calibration-stop member next to and face to face with the diaphragm; and deforming the calibration-stop member beyond its elastic limit to change the level of pressure at which the diaphragm will snap back to its original position.
  • a method according to claim 1 including the step of deforming the calibration-stop member by admitting

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

A pressure responsive device including a primary subassembly of a casing member having a cavity sealed by a snap-acting diaphragm member of either mono or bi-metal. An annular calibration-stop member is located adjacent to the diaphragm and is deformed in either of two directions to change the calibration of the diaphragm member. The device is shown operatively connected to an electric switch.

Description

0 United States Patent 11 1 1111 3,72meo llalpert et ai. Will/larch l3, W73
[ SWITCH WKTH HMPROVED MEANS [56} References Cited AND METHQD FOR CALIBRATION UNITED STATES PATENTS [75] Inventors: Robert T. Halpert, Providence;
3,302,269 2/1967 Cooper et al. ..200/83 R Cumberland both of 3,588,395 6/1971 Hersey ....200 83 s 3,239,827 3/1966 Werner et al. ....73 4 R x [73] Assignee: Texas Instruments Incorporated, 3'516'279 6/1970 Maz'arka 1 "73/4 R Dallas Tex. 2,953,929 9/1960 Kautz ..73/4 R X [22] Filed: Feb. 9, 1971 Primary ExaminerLouis R. Prince [21] A l NO 114 074 Assistant Examiner Denis E. Corr pp Attorney-John A. Haug Related US. Application Data [57] ABSTRACT [62] Division of Ser. No. 787,639, Dec. 30, 1968, Pat. No.
3 534 1 3 A pressure responsive device including a prlmary subassembly of a casing member having a cavity sealed by [52] U.S. Cl. ..73/4 R a pg i phr gm m m r of either mono or [51] Int. Cl. ..Go1127/oo bi-metalannular calibration-Stop member is 5 Field f Search 73 4 R, 40 200 33 R, 3 5 located adjacent to the diaphragm and is deformed in either of two directions to change the calibration of the diaphragm member. The device is shown operatively connected to an electric switch.
3 Claims, 1 Drawing Figure SWITCH WITH IMPROVED MEANS AND METHOD FOR CALIBRATION This is a division of application Ser. No. 787,639, filed Dec. 30, 1968 now U.S. Pat. No. 3,584,168.
BACKGROUND OF INVENTION This invention relates generally to condition responsive devices, and methods of making them, and in particular with regard to certain more specific features to pressure responsive devices particularly adapted for actuation of electrical switches.
Among the several objectsof the invention may be noted the provision of pressure responsive devices which are particularly adapted for miniaturization and light weight hermetically sealed constructions, and methods of making the same; the provision of such devices which include improved calibration means while enabling the pressure sensing means to withstand relatively large overpressures without incurring deleterious changes in calibration; the provision of such pressure responsive devices, and methods of making the same, which can be more easily and inexpensively calibrated than prior art devices; the provision of new and improved pressure responsive devices, and methods of making the same, which employ a diaphragm member which seals a compartment or cavity in the device; and a provision of new and improved devices which are responsive to a combination of predetermined pressure and temperature conditions. Other objects will be in part apparent and in part pointed hereinafter.
The invention accordingly comprises the elements and combinations of elements, steps and sequence of steps, features and structures of manipulation, and arrangements of parts, all of which will be exemplified in the structures and methods hereinafter described, and the scope of the application of which will be indicated in the appended claims.
In the accompanying drawings, in which a preferred embodiment of the invention is illustrated, the sole figure is an axial cross-section of a pressure responsive device according to the present invention.
Dimensions of certain of the parts as shown in the drawings, and relative movements between parts, have been modified and/or exaggerated for the purposes of clarity of illustration.
The pressure responsive devices embodying the invention have many useful applications wherein it is desirable to provide a sudden or rapid actuation force whenever the pressure from an independent source reaches either one or two selected limit values. For example, a pressure responsive or combined temperature pressure device according to this invention, may be used in connection with an electrical switch or with a valve or other mechanism or device for which actuation is desired in response to predetermined changes in pressure.-
The relative simplicity and relatively small number of parts comprising the pressure responsive device according to the present invention, advantageously permits miniaturization and light weight construction. Devices of this general type are known in the art and are disclosed and claimed in co-assigned U.S. Pat. Nos. 3,302,269 and 3,365,557 which issued Feb. 7, 1967 and Jan. 23, 1968 respectively. As disclosed in these patents, calibration is effected by employing precisioned formed parts, as by machining. The invention disclosed and claimed herein permits the use of inexpensive stamped parts to effect calibration as will be explained below.
Referring now more particularly to the drawings, switch 10 comprises a cylindrical cup-shaped member 112 formed of a conventional molded phenolic material, electrically insulating, and is formed with apertures 14, 16 for reception therein of support member 18 and stationary contact 20 respectively. Movable contact arm 22 of electrically conductive material having good spring characteristics, such as beryllium nickel, is cantilever mounted to support member 18 as by riveting at 24. Arm 22 is formed with a dimple 26, for a purpose to be described below, and mounts on its free end movable contact 30. A boss 28 is formed in the bottom wall of base 12 so that when support member 12 and movable contact arm 22 are inserted through aperture 14, they are biased against the boss to effect a given angle so that a predetermined contact force will exist between contacts 20 and 30. To improve electrical conductivity while minimizing additional expense, stationary contact 20', which also serves as part of the terminal structure, is preferably provided with a layer 32 of highly conductive material, such as silver alloy. The outer ends of support 18 and stationary contact 20 pass through apertures 34, 36 of terminal members 38, 40 respectively, and are headed over to firmly lock the contact assembly in the housing and to provide electrical connection to the switch via leads L1, L2. Leads L1, L2 are clinched in tabs 42, 44 respectively, which are in turn welded to terminal members 38, 4M) respectively. To mitigate the deleterious effects of arcing, ribs 46 are formed in base member 12 to prevent tracking of vaporized contact material by providing an arc shadow, a common expedient employed in the art.
A disc 50, generally plate-shaped of electrically insulating material, is formed with a seating groove 52 about its periphery and is received in the distal portion of wall 54 of base 12. Disc 50 slidably mounts in a centrally located bore 56 provided with a motion transfer pin 58 of electrically insulating material, such as a ceramic or glass material, and isolates the electrical switch from diaphragm area. Pin 58 may be formed with projection 60 on one end which contacts dimple 26 in movable arm 22 to enhance smooth transfer of motion from pin 58 to movable arm 22.
A cavity 64 is formed by recessing disc 50 at 60 and 62 to provide clearance for diaphragm 76 to snap from the position shown to the opposite configuration, and for calibration-stop element 74.
Tubular member 66 which may be formed of a conventional metallic material, is formed with a radially outwardly extending flange 68 and is placed over the distal wall 54 of base 12 and attached thereto, as by crimping, at 70. It will be noted that a small flange 72 is provided on distal wall 54 to permit locking of the tubular member 66 to base 12. Mounted on flange 68 are calibration-stop member 74, imperforate circular diaphragm member 76 and cover 78, all hermetically secured at their periphery as by welding at 80. Cover 78 is dished out at 82 to provide a cavity 88 sealed by diaphragm 76 and provided with bore 84 for reception therein of a port fitting 86 which is hermetically attached thereto. Port fitting 86 permits attachment to a pressure source which it is desired to monitor.
Although it is preferred that cover 78, diaphragm 76, calibration-stop member 74 and tubular member 66 be welded together at their marginal periphery, it will be understood that other means may be employed to clamp and seal the diaphragm member between the upper and lower casing members.
Diaphragm 76 is shown as a bimetallic member but can also be formed of a monometallic member such as stainless steel. This diaphragm is formed into a snapacting disc by means known in the art; basically, it involves forming a non-developable surface by permanently deforming the disc.
During operation of the device when a monometallic diaphragm 76 is employed, it snaps from the position shown in the figure to the opposite curvature when a predetermined amount of pressure is introduced into chamber 88 through port fitting 86.
The diaphragm will snap back to its original position when the pressure decreases a predetermined amount. This differential, i.e., the difference in pressure between that amount at which the diaphragm snaps in a first direction and that amount at which the diaphragm will return to its original position, is controlled by calibrating in the following manner.
First, the device is partly assembled by hermetically attaching cover 78, diaphragm 76, calibration-stop member 74 and tubular member 66 together as by welding about their periphery as described above, with port fitting 86 mounted on cover 78 as by brazing or resistance welding. If it is desirable to increase the differential, that is, to lower the pressure at which the diaphragm will snap back to its original position, sufficient pressure is introduced through port fitting 86 to snap the diaphragm and deform the calibration-stop member 74. On the other hand, if it is desired to narrow the differential, i.e., increase the amount of pressure at which the diaphragm will snap back to its original position, a force is exerted against the side of member 74 remote from the diaphragm (as by a tool) and it is deformed toward the diaphragm.
It will be understood that the pressure exerted on the diaphragm to effect calibration is far greater than the pressures which the diaphragm will be subjected to during operation of the device, so that member 74 during operation also effectively acts as a stop member preventing a change in the calibration of the diaphragm. Considerable care must be taken to select the proper material for calibration-stop member 74. It has been found that heat treating permits the use of member 74 effectively as a calibration member (so that it can be deformed beyond its elastic limit) as well as a stop member (so that it will retain its configuration during operation). One example which has worked well as A.l.S.l. type 304 stainless steel, hydrogen annealed after being formed to achieve a depth hardness of ll-150 DPH (Diamond Pyramid Hardness) with a 500 gram load. It has also been found preferable to initially form the annular member 74 in a slightly concave configuration (somewhere between the solid and dotted lines shown in the drawings) in applications where a wide differential is desired.
After calibration, the switch mechanism contained in member 12 is fixedly attached to tubular member 66 at 70 by crimping to complete the assembly.
Our use ofa pressure switch built in accordance with the invention is to deactivate an electrical circuit over a particular pressure range. Port fitting 86 is attached to the pressure source to be mounted and when the-pressure rises to a predetermined level, P,, diaphragm 76 snaps from the convex curvature shown in the Figure through center to a concave curvature thereby transmitting motion through pin 58 to dimple 26 on movable arm 22, causing movable contact 30 to disengage from stationary contact 20. Calibration-stop member 74 is sufficiently rigid that operating pressures above P, will not affect the calibration of the diaphragm. When the pressure drops to a second level P determined by the amount member 74 was deformed during calibration, the diaphragm will snap back to its convex position shown in the drawing and the spring bias of movable arm 22 will cause contacts 30, 20 to re-engage.
It is within the purview of the invention to locate stationary contact 20 on the opposite side of movable arm 22 if it is desired to cause circuit closing rather than circuit opening when the diaphragm snaps to the concave configuration, or, if desired, an additional circuit can be controlled (double throw) by placing a stationary contact in base 12 for engagement by movable contact arm 22 when diaphragm 76 snaps to the concave configuration while still maintaining the location of stationary contact 20 as shown.
If a bimetallic diaphragm (as shown) is employed in the device, the device will respond to temperature as well as pressure. That is, the diaphragm will snap through center when specific combinations of pressure and temperature conditions exist.
While it is preferred that the cavities 88, 64 be hermetically sealed from each other, which sealing is advantageously accomplished by the sealing action of the diaphragm member according to the present invention, it should be understood that there may be some cases in which these two cavities need only be adequately sealed against entry of the pressure creating medium during the calibration operation. In such cases, the parts may be sealed and clamped against the marginal periphery of the diaphragm member by means other than welding, e.g., flange 68 could be extended and clamped over the aligned portion of cover 78.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained. The cost of making devices employing marginally held diaphragms is materially reduced and assembly greatly facilitated since the calibration-stop member 74 is merely a stamped part compared to the precision machined elements used for calibration in prior art devices.
It is to be understood that the invention is not limited in its application to the details of construction and arrangement of parts illustrated in the accompanying drawings, since the invention is capable of other embodiments and of being practiced or carried out in various ways. Also, it is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation.
As many changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings, shall be interpreted as illustrative and not in a limiting sense, and it is also intended that the appended claims shall cover all such equivalent variations as come within the true spirit and scope of the invention.
lclaim:
l. A method of calibrating a snap-acting diaphragm comprising the steps of forming a chamber in a housing; except for a port to admit pressure in and out of the chamber, sealing the chamber with a snap-acting diaphragm by attaching it about its periphery to the housing; mounting an annular calibration-stop member next to and face to face with the diaphragm; and deforming the calibration-stop member beyond its elastic limit to change the level of pressure at which the diaphragm will snap back to its original position.
2. A method according to claim 1 including the step of deforming the calibration-stop member by admitting

Claims (3)

1. A method of calibrating a snap-acting diaphragm comprising the steps of forming a chamber in a housing; except for a port to admit pressure in and out of the chamber, sealing the chamber with a snap-acting diaphragm by attaching it about its periphery to the housing; mounting an annular calibration-stop member next to and face to face with the diaphragm; and deforming the calibration-stop member beyond its elastic limit to change the level of pressure at which the diaphragm will snap back to its original position.
1. A method of calibrating a snap-acting diaphragm comprising the steps of forming a chamber in a housing; except for a port to admit pressure in and out of the chamber, sealing the chamber with a snap-acting diaphragm by attaching it about its periphery to the housing; mounting an annular calibration-stop member next to and face to face with the diaphragm; and deforming the calibration-stop member beyond its elastic limit to change the level of pressure at which the diaphragm will snap back to its original position.
2. A method according to claim 1 including the step of deforming the calibration-stop member by admitting sufficient fluid pressure into the chamber through the port and transmitting the force to the calibration-stop member through the diaphragm member, thereby lowering the level of pressure at which the diaphragm will snap back to its original position.
US00114074A 1968-12-30 1971-02-09 Switch with improved means and method for calibration Expired - Lifetime US3720090A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US78763968A 1968-12-30 1968-12-30
US11407471A 1971-02-09 1971-02-09

Publications (1)

Publication Number Publication Date
US3720090A true US3720090A (en) 1973-03-13

Family

ID=26811803

Family Applications (1)

Application Number Title Priority Date Filing Date
US00114074A Expired - Lifetime US3720090A (en) 1968-12-30 1971-02-09 Switch with improved means and method for calibration

Country Status (1)

Country Link
US (1) US3720090A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2703283A1 (en) * 1976-02-03 1977-08-18 Smiths Industries Ltd PRESSURE SENSITIVE CHART
US4469923A (en) * 1982-12-10 1984-09-04 Texas Instruments Incorporated Pressure responsive switch with discrete pressure responsive unit
US4573398A (en) * 1984-11-05 1986-03-04 Ranco Incorporated Pressure control device and method of making the same
US4588886A (en) * 1983-11-14 1986-05-13 Thermo-O-Disc Incorporated Fiber optics condition sensor and method of making same
US4638721A (en) * 1980-07-24 1987-01-27 Texas Instruments Incorporated Pressure responsive device
US4718278A (en) * 1986-04-30 1988-01-12 Hi-Stat Manufacturing Co., Inc. Pressure transducer with improved calibration
EP0501759A1 (en) * 1991-02-26 1992-09-02 Texas Instruments Incorporated Dual condition responsive switch apparatus
US5198631A (en) * 1991-09-11 1993-03-30 General Electric Company Pressure responsive control device
EP1030335A2 (en) * 1999-02-17 2000-08-23 Fujikoki Corporation Pressure switch
US6170316B1 (en) * 1999-04-21 2001-01-09 Clinton L. Aldrich Pressure and vacuum switch testing tool
US6343414B1 (en) 1999-09-22 2002-02-05 General Electric Company Snap-disk formation process and machine
US20020096151A1 (en) * 1999-11-19 2002-07-25 Siemens Canada Limited Integrated pressure management system for a fuel system
US20020096152A1 (en) * 1999-11-19 2002-07-25 Siemens Canada Limited Fuel system with integrated pressure management
US6450153B1 (en) 1999-11-19 2002-09-17 Siemens Canada Limited Integrated pressure management apparatus providing an on-board diagnostic
US6453942B1 (en) 1999-11-19 2002-09-24 Siemens Canada Limited Housing for integrated pressure management apparatus
US6470908B1 (en) 1999-11-19 2002-10-29 Siemens Canada Limited Pressure operable device for an integrated pressure management apparatus
US6470861B1 (en) 1999-11-19 2002-10-29 Siemens Canada Limited Fluid flow through an integrated pressure management apparatus
US6474313B1 (en) 1999-11-19 2002-11-05 Siemens Canada Limited Connection between an integrated pressure management apparatus and a vapor collection canister
US6478045B1 (en) 1999-11-19 2002-11-12 Siemens Canada Limited Solenoid for an integrated pressure management apparatus
US6484555B1 (en) 1999-11-19 2002-11-26 Siemens Canada Limited Method of calibrating an integrated pressure management apparatus
US6502560B1 (en) 1999-11-19 2003-01-07 Siemens Canada Limited Integrated pressure management apparatus having electronic control circuit
US6505514B1 (en) 1999-11-19 2003-01-14 Siemens Canada Limited Sensor arrangement for an integrated pressure management apparatus
US6640620B2 (en) 1998-03-27 2003-11-04 Siemens Canada Limited Automotive evaporative leak detection system
US6672138B2 (en) 1997-10-02 2004-01-06 Siemens Canada Limited Temperature correction method and subsystem for automotive evaporative leak detection systems
US6708552B2 (en) 2001-06-29 2004-03-23 Siemens Automotive Inc. Sensor arrangement for an integrated pressure management apparatus
US20040173263A1 (en) * 2003-03-07 2004-09-09 Siemens Vdo Automotive Corporation Poppet for an integrated pressure management apparatus and fuel system and method of minimizing resonance
US6931919B2 (en) 2001-06-29 2005-08-23 Siemens Vdo Automotive Inc. Diagnostic apparatus and method for an evaporative control system including an integrated pressure management apparatus
US6983641B1 (en) 1999-11-19 2006-01-10 Siemens Vdo Automotive Inc. Method of managing pressure in a fuel system
US20070119225A1 (en) * 2005-02-07 2007-05-31 Mcfarland Richard D Portable Pressure Switch Calibration and Diagnostic Tool
CN105161362A (en) * 2015-10-23 2015-12-16 曲阜天博汽车零部件制造有限公司 Explosive motor and oil pressure switch thereof
US9309898B2 (en) 2012-02-22 2016-04-12 King Nutronics Corporation Multi-fluid precision calibration pressure source
US9640344B2 (en) 2014-02-07 2017-05-02 Good Day Tools Llc Portable pressure switch calibration and diagnostic tool
WO2019137940A1 (en) * 2018-01-10 2019-07-18 Bartec Technor As Enclosure for an electrical component in a potentially hazardous environment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953929A (en) * 1958-09-26 1960-09-27 Honeywell Regulator Co Differential adjustment
US3239827A (en) * 1960-01-12 1966-03-08 Rosemount Eng Co Ltd High precision pressure standard
US3302269A (en) * 1965-02-02 1967-02-07 Texas Instruments Inc Methods of making condition responsive devices
US3516279A (en) * 1967-02-23 1970-06-23 Alphamatic Corp Method for adjusting a pressure operated switch utilizing the nonlinear properties of a biasing means
US3588395A (en) * 1968-09-27 1971-06-28 Ranco Inc Fluid pressure responsive device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953929A (en) * 1958-09-26 1960-09-27 Honeywell Regulator Co Differential adjustment
US3239827A (en) * 1960-01-12 1966-03-08 Rosemount Eng Co Ltd High precision pressure standard
US3302269A (en) * 1965-02-02 1967-02-07 Texas Instruments Inc Methods of making condition responsive devices
US3516279A (en) * 1967-02-23 1970-06-23 Alphamatic Corp Method for adjusting a pressure operated switch utilizing the nonlinear properties of a biasing means
US3588395A (en) * 1968-09-27 1971-06-28 Ranco Inc Fluid pressure responsive device

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2703283A1 (en) * 1976-02-03 1977-08-18 Smiths Industries Ltd PRESSURE SENSITIVE CHART
US4638721A (en) * 1980-07-24 1987-01-27 Texas Instruments Incorporated Pressure responsive device
US4469923A (en) * 1982-12-10 1984-09-04 Texas Instruments Incorporated Pressure responsive switch with discrete pressure responsive unit
US4588886A (en) * 1983-11-14 1986-05-13 Thermo-O-Disc Incorporated Fiber optics condition sensor and method of making same
US4573398A (en) * 1984-11-05 1986-03-04 Ranco Incorporated Pressure control device and method of making the same
US4718278A (en) * 1986-04-30 1988-01-12 Hi-Stat Manufacturing Co., Inc. Pressure transducer with improved calibration
EP0501759A1 (en) * 1991-02-26 1992-09-02 Texas Instruments Incorporated Dual condition responsive switch apparatus
US5300741A (en) * 1991-09-11 1994-04-05 General Electric Company Pressure responsive control device
US5198631A (en) * 1991-09-11 1993-03-30 General Electric Company Pressure responsive control device
US5524333A (en) * 1991-09-11 1996-06-11 General Electric Company Method of assembling a pressure responsive control device
US7086276B2 (en) 1997-10-02 2006-08-08 Siemens Vdo Automotive Inc. Temperature correction method and subsystem for automotive evaporative leak detection systems
US20040237630A1 (en) * 1997-10-02 2004-12-02 Siemens Canada Limited Temperature correction method and subsystem for automotive evaporative leak detection systems
US6672138B2 (en) 1997-10-02 2004-01-06 Siemens Canada Limited Temperature correction method and subsystem for automotive evaporative leak detection systems
US6640620B2 (en) 1998-03-27 2003-11-04 Siemens Canada Limited Automotive evaporative leak detection system
EP1030335A2 (en) * 1999-02-17 2000-08-23 Fujikoki Corporation Pressure switch
EP1030335A3 (en) * 1999-02-17 2002-03-27 Fujikoki Corporation Pressure switch
US6170316B1 (en) * 1999-04-21 2001-01-09 Clinton L. Aldrich Pressure and vacuum switch testing tool
US6343414B1 (en) 1999-09-22 2002-02-05 General Electric Company Snap-disk formation process and machine
US6502560B1 (en) 1999-11-19 2003-01-07 Siemens Canada Limited Integrated pressure management apparatus having electronic control circuit
US6840232B2 (en) 1999-11-19 2005-01-11 Siemens Vdo Automotive Inc. Fluid flow through an integrated pressure management apparatus
US6470908B1 (en) 1999-11-19 2002-10-29 Siemens Canada Limited Pressure operable device for an integrated pressure management apparatus
US6470861B1 (en) 1999-11-19 2002-10-29 Siemens Canada Limited Fluid flow through an integrated pressure management apparatus
US6474314B1 (en) 1999-11-19 2002-11-05 Siemens Canada Limited Fuel system with intergrated pressure management
US6474313B1 (en) 1999-11-19 2002-11-05 Siemens Canada Limited Connection between an integrated pressure management apparatus and a vapor collection canister
US6478045B1 (en) 1999-11-19 2002-11-12 Siemens Canada Limited Solenoid for an integrated pressure management apparatus
US6484555B1 (en) 1999-11-19 2002-11-26 Siemens Canada Limited Method of calibrating an integrated pressure management apparatus
US6453942B1 (en) 1999-11-19 2002-09-24 Siemens Canada Limited Housing for integrated pressure management apparatus
US6505514B1 (en) 1999-11-19 2003-01-14 Siemens Canada Limited Sensor arrangement for an integrated pressure management apparatus
US6585230B2 (en) 1999-11-19 2003-07-01 Siemens Canada Limited Housing for an integrated pressure management apparatus
US6450153B1 (en) 1999-11-19 2002-09-17 Siemens Canada Limited Integrated pressure management apparatus providing an on-board diagnostic
US20020096149A1 (en) * 1999-11-19 2002-07-25 Siemens Canada Limited Integrated pressure management system for a fuel system
US20020096151A1 (en) * 1999-11-19 2002-07-25 Siemens Canada Limited Integrated pressure management system for a fuel system
US7040301B2 (en) 1999-11-19 2006-05-09 Siemens Vdo Automotive Inc. Fuel system with integrated pressure management
US7025084B2 (en) 1999-11-19 2006-04-11 Siemens Vdo Automotive Inc. Integrated pressure management system for a fuel system
US20020096152A1 (en) * 1999-11-19 2002-07-25 Siemens Canada Limited Fuel system with integrated pressure management
US6460566B1 (en) 1999-11-19 2002-10-08 Siemens Canada Limited Integrated pressure management system for a fuel system
US6910500B2 (en) 1999-11-19 2005-06-28 Siemens Vdo Automotive Inc. Integrated pressure management system for a fuel system
US6983641B1 (en) 1999-11-19 2006-01-10 Siemens Vdo Automotive Inc. Method of managing pressure in a fuel system
US6931919B2 (en) 2001-06-29 2005-08-23 Siemens Vdo Automotive Inc. Diagnostic apparatus and method for an evaporative control system including an integrated pressure management apparatus
US6708552B2 (en) 2001-06-29 2004-03-23 Siemens Automotive Inc. Sensor arrangement for an integrated pressure management apparatus
US6948481B2 (en) 2003-03-07 2005-09-27 Siemens Vdo Automotive Inc. Electrical connections for an integrated pressure management apparatus
US20040226544A1 (en) * 2003-03-07 2004-11-18 Vdo Automotive Corporation Electrical connections for an integrated pressure management apparatus
US20040173263A1 (en) * 2003-03-07 2004-09-09 Siemens Vdo Automotive Corporation Poppet for an integrated pressure management apparatus and fuel system and method of minimizing resonance
US7121267B2 (en) 2003-03-07 2006-10-17 Siemens Vdo Automotive, Inc. Poppet for an integrated pressure management apparatus and fuel system and method of minimizing resonance
US20070119225A1 (en) * 2005-02-07 2007-05-31 Mcfarland Richard D Portable Pressure Switch Calibration and Diagnostic Tool
US7441439B2 (en) 2005-02-07 2008-10-28 Richard Dean Mc Farland Portable pressure switch calibration and diagnostic tool
US9309898B2 (en) 2012-02-22 2016-04-12 King Nutronics Corporation Multi-fluid precision calibration pressure source
US10385835B2 (en) 2012-02-22 2019-08-20 King Nutronics Corporation Multi-fluid precision calibration pressure source
US11913439B2 (en) 2012-02-22 2024-02-27 King Nutronics, Llc Multi-fluid precision calibration pressure source
US9640344B2 (en) 2014-02-07 2017-05-02 Good Day Tools Llc Portable pressure switch calibration and diagnostic tool
CN105161362A (en) * 2015-10-23 2015-12-16 曲阜天博汽车零部件制造有限公司 Explosive motor and oil pressure switch thereof
WO2019137940A1 (en) * 2018-01-10 2019-07-18 Bartec Technor As Enclosure for an electrical component in a potentially hazardous environment

Similar Documents

Publication Publication Date Title
US3720090A (en) Switch with improved means and method for calibration
US3584168A (en) Fluid pressure operated diaphragm switch with improved means and method for calibration
US3302269A (en) Methods of making condition responsive devices
US3816685A (en) Pressure responsive device having improved means for calibration
US4296287A (en) Weatherproofed condition responsive switch
US4616114A (en) Pressure responsive switch having little or no differential between actuation release pressure levels
JP2519560B2 (en) Thermal switch
US4145588A (en) Condition responsive apparatus having freely disposed disc
US3585328A (en) Pressure switch with a plurality of snap acting metal diaphragms coated with metallic oxide
US4667069A (en) Multiple disc pressure responsive control device
US6154117A (en) Thermal switch
US3378656A (en) Adjustment means for electrical switch
US4794214A (en) Fluid pressure responsive electrical switch
US4469923A (en) Pressure responsive switch with discrete pressure responsive unit
US2496229A (en) Thermal switch
US3335242A (en) Condition responsive devices
US4342887A (en) Normally closed pressure responsive switch with improved compact structure
US4231010A (en) Thermostatic switch employing a stud member for calibration of the switch
US4121074A (en) Condition responsive apparatus with motion transfer member to movable contact arm
US3146329A (en) Snap-acting electrical switch
US5870817A (en) Fluid pressure responsive electric switch and method for assembling same
US3005076A (en) Thermostatic device
US3365557A (en) Pressure responsive diaphragm operated device
US4633579A (en) Method for making a pressure responsive switch
US3864537A (en) Pressure responsive apparatus including valve actuating means