US3719597A - Acyl-amino-pr opyl-dialkylammonium dialkyl phosphates as textile finishing agents - Google Patents

Acyl-amino-pr opyl-dialkylammonium dialkyl phosphates as textile finishing agents Download PDF

Info

Publication number
US3719597A
US3719597A US00098966A US3719597DA US3719597A US 3719597 A US3719597 A US 3719597A US 00098966 A US00098966 A US 00098966A US 3719597D A US3719597D A US 3719597DA US 3719597 A US3719597 A US 3719597A
Authority
US
United States
Prior art keywords
alkyl
textile
carbon atoms
comparison
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00098966A
Inventor
A Wegerhoff
F Schmitz
C Macura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzona Inc
Original Assignee
Akzona Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1968G0052442 external-priority patent/DE1719543B2/en
Application filed by Akzona Inc filed Critical Akzona Inc
Application granted granted Critical
Publication of US3719597A publication Critical patent/US3719597A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • D06M13/405Acylated polyalkylene polyamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/08Ammonium or amine salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
    • D06M13/295Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof containing polyglycol moieties; containing neopentyl moieties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M7/00Treating fibres, threads, yarns, fabrics, or fibrous goods made of other substances with subsequent freeing of the treated goods from the treating medium, e.g. swelling, e.g. polyolefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/46Textile oils
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/01Wetting, emulsifying, dispersing, or stabilizing agents
    • Y10S516/07Organic amine, amide, or n-base containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/905Agent composition per se for colloid system making or stabilizing, e.g. foaming, emulsifying, dispersing, or gelling
    • Y10S516/907The agent contains organic compound containing phosphorus, e.g. lecithin

Definitions

  • ABSTRACT Acyl-amino-propyl-dialkylammonium dialkyl phosphates as surface active agents and their application to textile materials, especially polyester and polyamide fibrous materials, as a finishing agent, for example, in combination with an aqueous emulsion of a textile lubricating agent.
  • amine salts of polyethoxyalkyl phosphoric acid esters of the formula W as anti-electrostatic finishing agents for polyethylene terephthalate filaments and fibers has been described in German Pat. specification No. 1,084,231.
  • the amine portion of this phosphoric acid ester salt consists of a monoamine, e.g. an alkyl amine or an alkylol amine.
  • Diethanolamine salts of mixtures of alkyl esters of pentavalent phosphorous acids or acid anhydrides, characterized by the presence of -P--OP-- linkages, are described in U. S. Pat. specification No. 2,742,379 as having antistatic properties in their application to hydrophobic textile materials.
  • N-substituted diamines can form the cation of the quaternary ammonium salts ll of the formula:
  • the radical R is an aliphatic or alicyclic hydrocarbon of at least seven carbon atoms
  • two of the primed Rs may be a lower alkyl but at least one is a monohydroxyalkyl of two or three carbon atoms
  • Y is the anion of an inorganic acid.
  • One object of the present invention is to provide a class of organic compounds which are highly useful in a finishing or lubricating composition for textile materials, and to provide a process for treating such textile materials to achieve an improved antistatic effect.
  • Another object of the invention is to provide an antistatic agent which can also function as an emulsifying agent for textile lubricants and which possesses a number of desirable properties for this use or similar applications.
  • R represents a lower alkyl radical of two to four carbon atoms
  • R represents an alkyl radical of two to 18 carbon atoms, preferably a primary n-alkyl group.
  • phosphoric acid ester amine salts which may be identified as l-lauramidopropyl-dimethylammonium- (3)-ethyl primary-n-alkyl phosphates which have the structural formula:
  • R is alkyl and preferably the primary n-alkyl group of about two to 18 and preferably four to 14 carbon atoms.
  • the amine salts used in accordance with the invention are either cationically-active or anionically-active, or may be both cationically and anionically active.
  • the efiectiveness of these compounds is not limited to the improved electrostatic properties imparted to polyester and polyamide yarns, filaments or fibers and to textiles containing these materials, but also extends to other filaments and fibers so as to greatly facilitate their mechanical handling during drawing or carding operations or in knitting and weaving machinery.
  • the amino phosphoric acid ester salts of the formulas II] or IV when used according to the invention, thus reduce the static and sliding friction of a wide variety of natural and synthetic fibers and also that of metal or rubber, so as to be generally useful as an antistatic agent.
  • the finishing or antistatic agents of the invention are also extremely resistant to heat.
  • the phosphate compounds of the invention do not cause any yellowing of the fibrous material finished emulsions of mineral oil or similar hydrocarbon lubricants in water. ln this respect, these phosphates are generally useful as emulsifiers or dispersing agents beyond textile applications, especially where a good antistatic effect is also desired.
  • the amine salts according to the invention When applied to unalloyed steel components, e.g. by vaporization of a 1 percent aqueous solution on a steel plate, the amine salts according to the invention actually prevent rust formation.
  • the dialkyl phosphates listed in Table 1 below have a notable corrosion-inhibiting action.
  • the quaternary ammonium salts II according to U. S. Pat. No. 3,082,227 are not too satisfactory in this respect, and in fact, the salts of strong inorganic acids as disclosed in this patent actually promote the formation of rust.
  • the anti-electrostatic effect is particularly pronounced with the l-lauramidopropyl-dimethylammonium-(3)-ethyl primary-n-alkyl phosphates of the structural formula IV, especially when these amine salts form a thin surface layer on polyesters, e.g. polyethylene terephthalate, or on polyamide (nylon) yarns, filaments or fibers, including fabrics or other textile products.
  • Those salts having R of two up to six carbon atoms, e.g. the primary n-C H group are fully soluble in water. With larger alkyl radicals R e.g. up to 18 carbon atoms, they can still be dispersed in water, so that the impregnation of any materials to be treated is best accomplished in an aqueous solution or dispersion.
  • Strips of a polycaprolactam fabric which have been treated under controlled conditions with aqueous solutions of these phosphates, then dried and rubbed over stainless steel pins, show a distinctly lower electrostatic charging than a comparison strip of polycaprolactam fabric which has a surface film or coating of the sodium salt of the copolymer of styrene and maleic acid which is a well known antistatic agent (see Example 1 below).
  • the lauramidopropyl-dimethylammonium-dialkyl phosphates IV are soluble both in water and hydrocarbon solvents, e.g. turpentines or socalled white spirit as well as mineral oils in general, and exhibit especially good emulsifying properties because of their boundary surface activity.
  • hydrocarbon solvents e.g. turpentines or socalled white spirit as well as mineral oils in general
  • emulsifier system is formed which permits mineral oils or similar lubricants to be emulsified in water.
  • Aqueous emulsions of these components are particularly suitable for use as finishing and lubricating compositions in the processing of synthetic yarns, filaments or fibers, since they lower the friction and protect steel contact surfaces from rust formation, as well as decreasing the electrostatic charging.
  • ammonium dialkyl phosphates Ill alone, mixtures of these compounds with other emulsifiers are also feasible.
  • mixtures of V and VI have been found especially useful as. dressings for the processing of polyester staple fibers.
  • the addition of the ethoxylated oleyl alcohol VI to the amine phosphate salt V increases the slippability as compared to fibers dressed only with the salt V.
  • Mixtures of 1 part by weight of the dialkylphosphate V to about I to 2 parts by weight of the ethoxylated oleyl alcohol VI also provide good finishing agents for those polyester or polyamide fibers which are processed on cards or by the converter method.
  • Such finishing compositions reduce the static and sliding friction of the fibers both relative to one another and also tometal or rubber. This makes it possible to process these fibers satisfactorily, for example, on a Rieter converter, followed by machines which are customary in the spinning of combed yarn.
  • the tertiary amines with an acid amide group which are required as the intermediate product for the preparation of the acylated tertiary ammonium dialkyl phosphates III, can be produced in accordance with the following procedure, generally by reacting higher fatty acids with dimethylamino-propylamine:
  • dialkyl phosphoric acids used for neutralizing this amine intermediate are obtained by methods generally well known and similar to that given in German Pat. specification No. 1,084,231 for the production of polyethoxy ethyl phosphoric acids.
  • equimolar quantities of amine and dialkyl phosphoric acid are stirred together at 50 to 60C. for about 15 minutes.
  • EXAMPLE I Strips measuring 5 X 85 cm. of a polycaprolactam woven fabric are dipped at room temperature into various baths of an 0.5 percent aqueous solution of a number of the different l-lauramido-propyldimethylammonium-( 3 )-ethyl primary-n-alkyl phosphates IV (see Table l).
  • the amine salts which are used differ only in the length of the alkyl radical R in the phosphate anion.
  • the fabric strips are then wrung out until they contain about 100 percent moisture, dried for hours in air and rubbed on stainless steel pins. The rubbing movement can be effected using a suitable mechanical device, always under the same mechanical conditions. With an atmosphere of 44 percent relative humidity at 23C., the maximum charges listed in Table l are measured with a Feldmuhle instrument, with a spacing being provided between the fabric and the measuring head of the instrument of 30 mm.
  • Table 1 also gives the charges prior to the rubbing operation, designated as pre-charge", and the discharge times.
  • The-determination of the applied amounts of the antistatic agent is effected by weighing the untreated and impregnated fabric strips, and the amount is set forth as percentage by weight with reference to the dry fabric.
  • the Copolymer A is the sodium salt of the copolymer of styrene and maleic acid which is a readily available commercial product normally used as an antistatic agent for polyamides, and which is used for a comparison of the anti-electrostatic effects.
  • the discharge of the strips of polycaprolactam fabric, finished with the ammonium dialkyl phosphates IV, takes place substantially more quickly than with the substrate treated with the sodium salt of the copolymer.
  • Example I fabric strips of polyethylene terephthalate fibers were examined in the same way as in Example 1. The results are given in Table 2. Serving as a comparison product was the stearamidopropyl-dimethyl-B- hydroxyethylammonium-(3)- phosphate VII, which is known and is also obtainable commercially as an antistatic agent.
  • Finishing agent C H A R GIN G Amine salt IV Amount Pre- Maximum discharge with R as applied charging charging time listed below. (kV/m) (kV/m) (sec.) -nC I-I, 0.66 0.04 0.08 l nC.Hm 0.47 0.04 0.l0 l n-C,,H.-, 0.49 0.05 0.08 1 -n-C,,,l-l, 0.54 0.04 0.14 l nC,,H 0.72 0.04 0.06 l --nC I-I,, 0.52 0.04 0.04 l VlI(Comparison) 0.70 0.03 1.4 l
  • EXAMPLE 3 A mixture which proved suitable for use as a dressing or finishing agent for polyethylene terephthalate fibers is a mixture of equal parts by weight of l-lauramidopropyl-dimethylammonium-( 3 )-ethyl primaryconcentrations which are used are giyen in Table 3. After centrifuging to about 7 percent absorption of the bath solution, the fibers are dried for minutes at 100C. with air circulation and conditioned for 24 hours in an atmosphere of air maintained at 54 to 58 percent relative humidity and a temperature of 22 to 24 C. A commercially available finishing agent for polyester fibers, based on an ethoxylated stearic acid ester is used as the comparison substance.
  • the finished fibrous flocks are carded and the electrostatic charges on the resulting non-woven fiber fleece are measured with a Feldmuhle instrument under the same conditions.
  • the results are given in Table 3, together with the bath concentrations and the electrical resistivities measured on the fibrous flocks at 65 percent relative humidity and C.
  • the capacity of the fibers for carding is quite suitable in all three cases. It is known that electrostatic charges below about 10,000 V/m represent a limiting value for this purpose. With the comparison example, a
  • fabric strips of polyethylene terephthalate fibers (Example 4) and polycaprolactam fibers (Example 5) were impregnated by the method described in Example 1 with the l -lauramidopropyl-dirnethyl-arnrnonium-( 3 )ethyl primary-n-alkyl phosphates IV and, after drying in air, they were conditioned for 24 hours in air:
  • the radical R in the cation of the dialkylphosphate IV was selected as n-heryl-(l), noctyl-(i) and n-decyl- (1), respectively in order to test three different compounds of the invention.
  • the electrostatic charge was produced, always under the same mechanical conditions, by rubbing on stainless steel pins, and the same procedure was used for estimating the antistatic efficiency as in Examples 1 and 2. This charge was measured with a Feldmuhle measuring instrument under the atmospheric conditions indicated, the distance between the fabric and measuring head being 30 mm.
  • Comparison Products I, II and III were also tested in the same way for their antistatic effectiveness.
  • Electro- Amine salt iv Amount atmospheric static premaximum with R, as applied conditions charging charging listed below.
  • C/% rel.hum. (kV/m) (kV/m) n-c,n,, 0.46 20/30 0.02 4 nC,,l-l, 0.34 20/30 0.02 0.5 o 1
  • Atmospheric Electro- Discharge Finishing agent Amount conditions static Pre-maxitime to Amine salt IV with applied C ./percent char ing mum charge 5:0.5 kv./m. R4 as listed below (percent) rel. hum.) (kv. m.) (kv./m.) (sec.)
  • finishing agent of the invention i.e. compounds III
  • concentration of the finishing agent of about 0.5 to 10 percent by weight.
  • finishing or emulsifying agents such as the ethoxylated oleyl alcohol may also be added to the bath, e.g. in a concentration of about 1 to 5 percent by weight.
  • a suitable lubricating agent such as the known material oils, may generally be added to the aqueous finishing composition in amounts of about 1 to l5 percent by weight, with reference to the water. Since these lubricating agents are usually water-insoluble and relatively instable when emulsified in water, the compositions of the present invention are especially valuable in providing highly stable emulsions which even remain clear with up to about l percent by weight of a mineral oil emulsified in water. In addition to their emulsifying properties, the finishing agents of the invention also have good corrosion-inhibiting properties so as to be especially useful as a preparatory or dressing agent where the textile filaments, yarns, threads, etc., are conducted through many textile operations in contact with steel machinery. The capacity of the textile material to be worked mechanically is also improved.
  • the primary-n-alkyl groups are generally designated simply as -n-alkyl with the empirical formula for the particular alkyl group, e.g. -primary n-hexyl is given as -n-C H
  • -n-C H These straight chain alkyl radicals are generally preferred for purposes of the present invention, either wherein:
  • R and R each represent alkyl of one to three carbon atoms; R represents alkyl of two to four carbon atoms; and R represents alkyl of two to 18 carbon atoms.
  • a composition as claimed in claim 1 which also contains an ethoxylated oleyl alcohol emulsifier.
  • a composition as claimed in claim 1 wherein said phosphate has the formula in which R, is a primary n-alkyl group of two to 18 carbon atoms. 7
  • composition as claimed in claim 1 which also contains an e thoxylated oleyl alcohol emulsifier.
  • Copolynler A (comparison) 0 71
  • Example 50 5 A composition as claimed in claim 4 wherein said A stable aqueous emulsion is prepared as follows: To 3 to 6 ppw mineral oil (viscosity 6.0-6.8 c?
  • a composition for treatment of a textile mineral consisting essentially of an aqueous emulsion of a hydrocarbon textile lubricating agent containing as an essential emulsifying agent at least one phosphate of the formula phosphate has the formula 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Acyl-amino-propyl-dialkylammonium dialkyl phosphates as surface active agents and their application to textile materials, especially polyester and polyamide fibrous materials, as a finishing agent, for example, in combination with an aqueous emulsion of a textile lubricating agent.

Description

United States Patent 1 March 6, 1973 Wegerhoff et a1.
ACYL-AMINO-PR OPYL- DIALKYLAMMONIUM DIALKYL PHOSPHATES AS TEXTILE FINISHING AGENTS lnventors: Arno Wegerhoff, Worth am Main; Franz-Josef Schmitz, Erlenbach; Carl Macura, Klingenberg, all of Germany Assignee: Akzona Incorporated, Asheville,
Filed: Dec. 16, 1970 Appl. No.: 98,966
Related US. Application Data Division of Ser. No. 799,999, Feb. 17, 1969, Pat. No. 3,634,1 11.
US. Cl. ..252/8.8, 117/1388 F, 117/138.8 N, 117/139.5 CQ, 252/8.9, 252/312, 252/357 Int. Cl. ..D06m 13/44, D06m 13/26 Field of Search ..'.1l7/l39.5 CQ, 138.8 F, 117/1388 N; 25218.8, 8.9, 357, 312
Primary Examiner--l-lerbert B. Guynn Attorney-Johnston, Root, OKeeffe, Keil, Thompson & Shurtleff [57] ABSTRACT Acyl-amino-propyl-dialkylammonium dialkyl phosphates as surface active agents and their application to textile materials, especially polyester and polyamide fibrous materials, as a finishing agent, for example, in combination with an aqueous emulsion of a textile lubricating agent.
7 Claims, No Drawings ACYL-AMINO-PR OPYL-DIALKYLAMMONIUM DIALKYL PHOSPHATES AS TEXTILE FINTSHING AGENTS The present application is a division of application Ser. No. 799,999, which was filed on Feb. 17, 1969 nowU.S. PaLNo. 3,634,117.
The use of amine salts of polyethoxyalkyl phosphoric acid esters of the formula W as anti-electrostatic finishing agents for polyethylene terephthalate filaments and fibers has been described in German Pat. specification No. 1,084,231. The amine portion of this phosphoric acid ester salt consists of a monoamine, e.g. an alkyl amine or an alkylol amine. Diethanolamine salts of mixtures of alkyl esters of pentavalent phosphorous acids or acid anhydrides, characterized by the presence of -P--OP-- linkages, are described in U. S. Pat. specification No. 2,742,379 as having antistatic properties in their application to hydrophobic textile materials.
N-substituted diamines can form the cation of the quaternary ammonium salts ll of the formula:
which also have antistatic properties (see US. Pat. No. 3,082,227). in these salts of the formula II, the radical R is an aliphatic or alicyclic hydrocarbon of at least seven carbon atoms, two of the primed Rs may be a lower alkyl but at least one is a monohydroxyalkyl of two or three carbon atoms, and Y is the anion of an inorganic acid.
There are literally thousands of organic compounds in addition to those mentioned above which possess antistatic properties and which have therefore been suggested for application to hydrophobic synthetic polymer products, especially textile materials, in order to reduce the electrostatic charging of these products as they are being processed and/or during subsequent use. It is extremely difficult, however, to find suitable antistatic agents which are fully compatible with other finishing agents such as lubricants, sizes, emulsifiers and the like. Moreover, many antistatic agents possess other properties which make them relatively unsatisfactory in such applications, e.g. where the antistatic agent contributes to the corrosion of machinery used in processing the treated textile materials or where it is not stable or resistant to subsequent heat treatment steps. These and similar problems as well as the desirability of improving the antistatic effect must be taken into consideration in attempting to provide satisfactory finishing agents of this type.
One object of the present invention is to provide a class of organic compounds which are highly useful in a finishing or lubricating composition for textile materials, and to provide a process for treating such textile materials to achieve an improved antistatic effect.
Another object of the invention is to provide an antistatic agent which can also function as an emulsifying agent for textile lubricants and which possesses a number of desirable properties for this use or similar applications.
Still other objects and advantages of the invention are explained in greater detail hereinafter.
It has now been found, in accordance with the invention, that especially improved results can be achieved in terms of antistatic effect with a finishing agent and compositions containing the same by means of a phosphate of the formula Ill, especially when applied as a preparatory and finishing agent for fibrous or filamentary polyester and polyamide textile materialsyin which formula R represents a primary n-alkyl group of five to 17 carbon atoms, ie an alkyl group of from C l-l to C17H35; R, and R each represent a lower alkyl radical of one to three carbon atoms;
R represents a lower alkyl radical of two to four carbon atoms; and
R represents an alkyl radical of two to 18 carbon atoms, preferably a primary n-alkyl group.
Of particular technical and commercial significance are the phosphoric acid ester amine salts which may be identified as l-lauramidopropyl-dimethylammonium- (3)-ethyl primary-n-alkyl phosphates which have the structural formula:
in which R, is alkyl and preferably the primary n-alkyl group of about two to 18 and preferably four to 14 carbon atoms.
Depending on the length of the alkyl chains in the cation and anion, respectively, the amine salts used in accordance with the invention are either cationically-active or anionically-active, or may be both cationically and anionically active.
The efiectiveness of these compounds is not limited to the improved electrostatic properties imparted to polyester and polyamide yarns, filaments or fibers and to textiles containing these materials, but also extends to other filaments and fibers so as to greatly facilitate their mechanical handling during drawing or carding operations or in knitting and weaving machinery. The amino phosphoric acid ester salts of the formulas II] or IV, when used according to the invention, thus reduce the static and sliding friction of a wide variety of natural and synthetic fibers and also that of metal or rubber, so as to be generally useful as an antistatic agent. The finishing or antistatic agents of the invention are also extremely resistant to heat. For example, during the heat fixing or setting of synthetic thermoplastic filaments, the phosphate compounds of the invention do not cause any yellowing of the fibrous material finished emulsions of mineral oil or similar hydrocarbon lubricants in water. ln this respect, these phosphates are generally useful as emulsifiers or dispersing agents beyond textile applications, especially where a good antistatic effect is also desired.
When applied to unalloyed steel components, e.g. by vaporization of a 1 percent aqueous solution on a steel plate, the amine salts according to the invention actually prevent rust formation. Thus, the dialkyl phosphates listed in Table 1 below have a notable corrosion-inhibiting action. By comparison, the quaternary ammonium salts II according to U. S. Pat. No. 3,082,227 are not too satisfactory in this respect, and in fact, the salts of strong inorganic acids as disclosed in this patent actually promote the formation of rust.
The anti-electrostatic effect is particularly pronounced with the l-lauramidopropyl-dimethylammonium-(3)-ethyl primary-n-alkyl phosphates of the structural formula IV, especially when these amine salts form a thin surface layer on polyesters, e.g. polyethylene terephthalate, or on polyamide (nylon) yarns, filaments or fibers, including fabrics or other textile products. Those salts having R of two up to six carbon atoms, e.g. the primary n-C H group, are fully soluble in water. With larger alkyl radicals R e.g. up to 18 carbon atoms, they can still be dispersed in water, so that the impregnation of any materials to be treated is best accomplished in an aqueous solution or dispersion.
Strips of a polycaprolactam fabric, which have been treated under controlled conditions with aqueous solutions of these phosphates, then dried and rubbed over stainless steel pins, show a distinctly lower electrostatic charging than a comparison strip of polycaprolactam fabric which has a surface film or coating of the sodium salt of the copolymer of styrene and maleic acid which is a well known antistatic agent (see Example 1 below).
With medium length alkyl radicals R e.g. six to eight carbon atoms, the lauramidopropyl-dimethylammonium-dialkyl phosphates IV are soluble both in water and hydrocarbon solvents, e.g. turpentines or socalled white spirit as well as mineral oils in general, and exhibit especially good emulsifying properties because of their boundary surface activity. For example, when the ethyl primary-n-hexylphosphate V is combined with an ethoxylated oleyl alcohol VI which contains about 2 ethylene oxide groups per alcohol molecule, an emulsifier system is formed which permits mineral oils or similar lubricants to be emulsified in water. An optimum emulsifying action has been produced when parts by weight of the ethoxylated oleyl alcohol VI are used to l3 parts by weight of the amine salt V. With a ratio by weight of this emulsifier system to mineral oil of 23:30, a 10 percent by weight emulsion of the mineral oil in water is transparent. With increasing mineral oil content, the aqueous emulsions assume a milky cloudiness because of particle enlargement. In a comparison sample using only the ethoxylated oleyl alcohol, mineral oil and water, and in which no ammonium phosphate such as compound V is present, it is not possible to obtain a stable emulsion.
Aqueous emulsions of these components are particularly suitable for use as finishing and lubricating compositions in the processing of synthetic yarns, filaments or fibers, since they lower the friction and protect steel contact surfaces from rust formation, as well as decreasing the electrostatic charging. In addition to the use of the ammonium dialkyl phosphates Ill alone, mixtures of these compounds with other emulsifiers are also feasible. In particular, mixtures of V and VI have been found especially useful as. dressings for the processing of polyester staple fibers. The addition of the ethoxylated oleyl alcohol VI to the amine phosphate salt V increases the slippability as compared to fibers dressed only with the salt V. With a composition consisting of equal parts by weight of V and VI, addition of about 0.1 percent by weight to a dried 3-denier polyethylene terephthalate fibrous material is sufficient in order to almost completely eliminate electrostatic charging during carding. By comparison, when using a commercial product which is an ethoxylated stearic acid ester, the electrostatic charging is substantially higher even after application of four times as much of the active agent (see Example 3 below).
Mixtures of 1 part by weight of the dialkylphosphate V to about I to 2 parts by weight of the ethoxylated oleyl alcohol VI also provide good finishing agents for those polyester or polyamide fibers which are processed on cards or by the converter method. Such finishing compositions reduce the static and sliding friction of the fibers both relative to one another and also tometal or rubber. This makes it possible to process these fibers satisfactorily, for example, on a Rieter converter, followed by machines which are customary in the spinning of combed yarn. Mixtures of phosphoric acid ester amine salts of the structural formula IV and ethoxylated oleyl alcohol Vl do not cause any yellowing of polyethylene terephthalate fibers or other thermoplastic fibers after these have been set or heat treated for 1 hour at C. Furthermore, the electrical and mechanical properties of such fibers or filaments are not modified by this heat treatment.
A comparison of the salts III of the acylated ldimethyl-amino-3-propylamine and dialkyl phosphoric acids according to the invention with the phosphoric acid ester diethanolamine salts described in U.S. Pat. No. 2,742,379 shows the decided superiority of the salts III over the known diethanolamine salts of the cited patent, particularly as finishing agents with an anti-electrostatic effect. Thus, the l-lauramidopropyldimethylammonium-( 3 )-ethyl primary-n-alkyl phosphates IV, at relatively low atmospheric humidities, have a better anti-electrostatic action on fabrics consisting of polyamide or polyester fibers than the compounds according to U.S. Pat. No. 2,742,379. Also, the anti-electrostatic effect of the amine salts III used according to the present invention on woven fabrics, e.g. consisting of polyester fibers, has been proven to be more heat resistant than that of the prior art compounds.
The tertiary amines with an acid amide group, which are required as the intermediate product for the preparation of the acylated tertiary ammonium dialkyl phosphates III, can be produced in accordance with the following procedure, generally by reacting higher fatty acids with dimethylamino-propylamine:
3.8 kg. (19 mols) of lauric acid and 2.54 kg. (25 mols) of dimethylamino-propylamine are heated for 1 hour at 145C. and the mixture is boiled gently. Within another 4 hours, the temperature is slowly raised to 200C. The excess amine is then distilled off, together with the water produced in the reaction. The last residues of the dimethylamino-propylamine can also be removed under vacuum, the pressure being slowly reduced within an hour to 13 to mm. Hg. The residue of l-lauramidopropyl-3-dimethylamine, which is similar to a grain or curd soap, melts at 335 to 355C.
The dialkyl phosphoric acids used for neutralizing this amine intermediate are obtained by methods generally well known and similar to that given in German Pat. specification No. 1,084,231 for the production of polyethoxy ethyl phosphoric acids. For neutralization purposes, i.e. to produce the amine salt Ill, equimolar quantities of amine and dialkyl phosphoric acid are stirred together at 50 to 60C. for about 15 minutes.
The invention is further illustrated but not limited by the following examples. All parts and percentages are by weight unless otherwise indicated.
EXAMPLE I Strips measuring 5 X 85 cm. of a polycaprolactam woven fabric are dipped at room temperature into various baths of an 0.5 percent aqueous solution of a number of the different l-lauramido-propyldimethylammonium-( 3 )-ethyl primary-n-alkyl phosphates IV (see Table l). The amine salts which are used differ only in the length of the alkyl radical R in the phosphate anion. The fabric strips are then wrung out until they contain about 100 percent moisture, dried for hours in air and rubbed on stainless steel pins. The rubbing movement can be effected using a suitable mechanical device, always under the same mechanical conditions. With an atmosphere of 44 percent relative humidity at 23C., the maximum charges listed in Table l are measured with a Feldmuhle instrument, with a spacing being provided between the fabric and the measuring head of the instrument of 30 mm.
In addition to the maximum charges, Table 1 also gives the charges prior to the rubbing operation, designated as pre-charge", and the discharge times. In
5 those cases where the electrostatic charge was low, the
discharge was generally so quick that the field decay could not be accurately controlled with the measuring arrangement being used. Such a rapid field decay is given in all of the Tables 1, 2, 4, 5 and 6 below as a time reading of l second, i.e. less than one second. With a slower field decay which can be clearly measured, the discharge times are set forth as being measured from the termination of the rubbing movement, at which time it has reached the maximum charge, until there has been a discharge to +0.5 or 0.5 kV/m or to the indicated value.
The-determination of the applied amounts of the antistatic agent is effected by weighing the untreated and impregnated fabric strips, and the amount is set forth as percentage by weight with reference to the dry fabric. The Copolymer A is the sodium salt of the copolymer of styrene and maleic acid which is a readily available commercial product normally used as an antistatic agent for polyamides, and which is used for a comparison of the anti-electrostatic effects. The discharge of the strips of polycaprolactam fabric, finished with the ammonium dialkyl phosphates IV, takes place substantially more quickly than with the substrate treated with the sodium salt of the copolymer.
Table 1 Maximum charging and discharge capacity of strips of polycaprolactam fabric, impregnated with the salts IV of l-lauramidopropyl-dimethylamine-(3) and ethyl primary-n-alkyl phosphoric acids, and with Copolymer A (the sodium salt of the copolymer of styrene and maleic acid)'as a comparison substance:
Example I, fabric strips of polyethylene terephthalate fibers were examined in the same way as in Example 1. The results are given in Table 2. Serving as a comparison product was the stearamidopropyl-dimethyl-B- hydroxyethylammonium-(3)- phosphate VII, which is known and is also obtainable commercially as an antistatic agent.
As will be seen from Table 2, the fabric strips treated with the dialkyl phosphates lV become charged to a substantially smaller degree than those finished with the comparison substance. There is no difference with regards to the speed of the discharge.
Table 2 Maximum charging and discharging capacity of fabric strips of polyethylene terephthalate fibers, impregnated with the salts IV of l-lauramidopropyldimethylamine-( 3) and ethyl primary-n-alkyl phosphoric acids, and the quaternary ammonium phosphate VII as a comparison substance, respectively:
Finishing agent: C H A R GIN G Amine salt IV Amount Pre- Maximum discharge with R as applied charging charging time listed below. (kV/m) (kV/m) (sec.) -nC I-I, 0.66 0.04 0.08 l nC.Hm 0.47 0.04 0.l0 l n-C,,H.-, 0.49 0.05 0.08 1 -n-C,,,l-l, 0.54 0.04 0.14 l nC,,H 0.72 0.04 0.06 l --nC I-I,, 0.52 0.04 0.04 l VlI(Comparison) 0.70 0.03 1.4 l
EXAMPLE 3 A mixture which proved suitable for use as a dressing or finishing agent for polyethylene terephthalate fibers is a mixture of equal parts by weight of l-lauramidopropyl-dimethylammonium-( 3 )-ethyl primaryconcentrations which are used are giyen in Table 3. After centrifuging to about 7 percent absorption of the bath solution, the fibers are dried for minutes at 100C. with air circulation and conditioned for 24 hours in an atmosphere of air maintained at 54 to 58 percent relative humidity and a temperature of 22 to 24 C. A commercially available finishing agent for polyester fibers, based on an ethoxylated stearic acid ester is used as the comparison substance. The finished fibrous flocks are carded and the electrostatic charges on the resulting non-woven fiber fleece are measured with a Feldmuhle instrument under the same conditions. The results are given in Table 3, together with the bath concentrations and the electrical resistivities measured on the fibrous flocks at 65 percent relative humidity and C. With the exception of the comparison sample, the capacity of the fibers for carding is quite suitable in all three cases. It is known that electrostatic charges below about 10,000 V/m represent a limiting value for this purpose. With the comparison example, a
bath concentration of more than 6 percent had to be used in order to produce an adequate antielectrostatic effect. However, the larger application of such a textile auxiliary has been found from experience to impair the working properties of the fibers because the static friction on metal and rubber is too great.
Table 3 Electrical resistivities of finished polyethylene terephthalate fibrous flocks and electrostatic charges,
measured during carding of the non-woven fibrous fleece material:
Electrostatic Comparison tests were made in these examples with the anti-electrostatic finishing agents according to the invention and U.S. Pat. No. 2,742,379.
The phosphoric acid ester amine salts lll according to the invention were prepared as set forth herein, and the comparison products were obtained according to US. Pat. No. 2,742,379.
An examination of the antistatic effects of the preparations under different air humidity conditions was carried out.
For the investigation of the antistatic effects, fabric strips of polyethylene terephthalate fibers (Example 4) and polycaprolactam fibers (Example 5) were impregnated by the method described in Example 1 with the l -lauramidopropyl-dirnethyl-arnrnonium-( 3 )ethyl primary-n-alkyl phosphates IV and, after drying in air, they were conditioned for 24 hours in air:
at 20C. and 30 percent relative humidity, and
at 20C. and 65 percent relative humidity. The radical R in the cation of the dialkylphosphate IV was selected as n-heryl-(l), noctyl-(i) and n-decyl- (1), respectively in order to test three different compounds of the invention.
The electrostatic charge was produced, always under the same mechanical conditions, by rubbing on stainless steel pins, and the same procedure was used for estimating the antistatic efficiency as in Examples 1 and 2. This charge was measured with a Feldmuhle measuring instrument under the atmospheric conditions indicated, the distance between the fabric and measuring head being 30 mm.
The substances described in Examples I, II and III of U. S. Pat. No. 2,742,379 (hereinafter referred to as Comparison Products I, II and III) were also tested in the same way for their antistatic effectiveness. The
results are given in Tables 4 and 5, together with the amounts applied The determination of the amounts electrostatic charges before the rubbing operation, as well as the discharge times (see Example 1 TABLE 4 Maximum charging and discharge capacity of fabric strips of polyethylene terephthalate, impregnated with the salts IV of l-lauramidopropyl-dimethylamine-(3) and ethyl primary-n-alkyl phosphoric acids, and with the Comparison Products I, II and III, respectively. Discharge time with all specimens 1 second.
Finishing agent: Electro- Amine salt iv Amount atmospheric static premaximum with R, as applied conditions charging charging listed below. (C/% rel.hum.) (kV/m) (kV/m) n-c,n,, 0.46 20/30 0.02 4 nC,,l-l, 0.34 20/30 0.02 0.5 o 1| 0.31 20130 0.03 0.1 comparison prod. I 0.32 20/30 0.04 l5 n 0.24 20/30 +0.02 14 III 0.24 20/30 0.02 8 n-C H,;, 0.46 20/65 0.02 0.02 nC,,H, 0.34 20/65 0.02 0.02 nC H, 0.31 20/65 0.02 0.02 comparison pr'od.
I 0.32 -20/65,+ 0.02 0.02 II 0.24 20/65 0.02 0.1 lll 0.24 20/65 0.03 0.3 nC,H 0.45 20/30 0.03 0.l nC,,H 0.64 20/30 0.03 0.08 n-C, H,, 0.65 20/30 0.04 0.04 comparison prod. l 0.83 20/30 0.03 i 0 ll 0.76 20/30 0.04 0.8 lll 0.58 20/30 0.03 0.3 nC H, 0.45 20/65 0.0l 0.01 nC,,H 0.64 20/65 0.01 0.01 n-C ,H,, 0.65 20/65 0.02 0.025 comparison prod. l 0.83 20/65 0. i 0. II 0.76 20/65 0.02 0.02 lll 0.58 20/65 i 0. I 0.
values listed in Table 4 were established using fabric strips with applications of 0.2 to 0.8 percent, while the determination of the hot air stability on fabric strips took place with applications of about l percent and more. After the hot air treatment, the values given in Table 6 were obtained.
Atmospheric Electro- Discharge Finishing agent: Amount conditions static Pre-maxitime to Amine salt IV with applied C ./percent char ing mum charge 5:0.5 kv./m. R4 as listed below (percent) rel. hum.) (kv. m.) (kv./m.) (sec.)
ll-CuHui 0.51 /30 +0. 04 -1. 3 1 ll-CsHn; 0. 81 20/30 +0. 04 0. 2 r i U-CmHz 0. 68 20/30 +0. 04 -0. 2 Comparisonz...
Product I. 0.53 20/30 +0. 03 12 138 Product II. 0. 54 20/30 +0. 02 18 41 Product III 0. 51 20/30 +0.05 6 I) nC Hia 0.51 20/65 +0.02 +0.02 A '-l'l-"C3Hl7 0. 81 20/65 +0. 02 +0.02 nC1uH21 0. 68 20/65 +0. 02 +0. 02 Comparison:
Product I 0.53 20/66 +0. 01 0. 2 Product II. 0. 54 20/65 +0. 03 +1. 5 1 Product III. 0.51 20/65 +0. 02 +0. 2
The comparison of the electrostatic effectiveness of the amine salts IV with the Comparison Products I, II and III shows that, when taking into account the applied quantities, the fabrics finished with the amine salts IV acquire a decidedly lower electrostatic charge than the fabric strips treated with the comparison products I, II and III. As shown in Tables 4 and 5, the improvement in the antistatic effectiveness thus produced is established for polyethylene terephthalate fabrics and also for polycaprolactam fabrics. At 20C. and 30 percent relative humidity, the effect is more apparent than at 20C. and 65 percent relative humidity. Whereas the amine salts IV, at 20C. and 30 percent relative humidity, were more effective antistatically on both polyethylene terephthalate fabrics and polycaprolactam fabrics than the Comparison Products I to III, this difference could only be established in the case of polycaprolactam fabric at 20C. and 65 percent relative humidity. As already mentioned, the comparison of the charging values listed in Tables 4 and 5 were made, taking into account the applied quantities.
' EXAMPLE 6 Tests of the heat stability of the antistatic effect of the preparations were made.
In order to check the heat stability of the antistatic effect of the preparations, strips of polyethylene terephthalate fabric were impregnated with the amine salts IV and with the Comparison Products I, II and III,
as described in the previous Examples 4 and 5, and after being dried at room temperature, were treated for minutes with hot air at 140C. The change in the antistatic effect was tested'b'y measuring the charges by the method described in Example 1, and after 24 hours conditioning in air at'20C. and 30 percent relative air humidity, before and after the hot air treatment.
Before the hot air treatment, the maximum electrostatic charges, both with the amine salts IV and with the Comparison Products I, II and III, with values in the region of V/m, were approximately equal to the precharging, so that charging differences could not be Table 6 Maximum charge and discharging capacity of fabric strips of polyethylene terephthalate, impregnated with amine salts IV of l-lauramidopropyl-dimethylamine- (3) and ethyl primary-n-alkyl phosphoric acids and with the Comparison Products I, II and III, respectively, after hot air treatment for 45 minutes at C, atmospheric conditions: 20C./30 percent relative hu- It can be seen from the values of Table 6 that the antistatic efficiency of the Comparison Products I, II and III is considerably lessened after hot air treatment, whereas the antistatic effect is only slightly reduced in the case of the amine salts IV. It must also be appreciated that, as already stated, approximately the same good antistatic effect exists before the hot air treatment.
In carrying out numerous tests in accordance with the preceding examples, it has been found that one can generally employ the finishing agent of the invention, i.e. compounds III, in an aqueous bath having a concentration of the finishing agent of about 0.5 to 10 percent by weight. The amount of this finishing agent applied to textile fibers, i.e. as filaments, yarns, fabrics or the like, should ordinarily be about 0.05 to 1 percent by weight, taken with reference to the dry fibers (after evaporation of the water).
Other finishing or emulsifying agents, such as the ethoxylated oleyl alcohol may also be added to the bath, e.g. in a concentration of about 1 to 5 percent by weight.
A suitable lubricating agent, such as the known material oils, may generally be added to the aqueous finishing composition in amounts of about 1 to l5 percent by weight, with reference to the water. Since these lubricating agents are usually water-insoluble and relatively instable when emulsified in water, the compositions of the present invention are especially valuable in providing highly stable emulsions which even remain clear with up to about l percent by weight of a mineral oil emulsified in water. In addition to their emulsifying properties, the finishing agents of the invention also have good corrosion-inhibiting properties so as to be especially useful as a preparatory or dressing agent where the textile filaments, yarns, threads, etc., are conducted through many textile operations in contact with steel machinery. The capacity of the textile material to be worked mechanically is also improved.
In all of the examples herein, the primary-n-alkyl groups are generally designated simply as -n-alkyl with the empirical formula for the particular alkyl group, e.g. -primary n-hexyl is given as -n-C H These straight chain alkyl radicals are generally preferred for purposes of the present invention, either wherein:
R and R each represent alkyl of one to three carbon atoms; R represents alkyl of two to four carbon atoms; and R represents alkyl of two to 18 carbon atoms. 2. A composition as claimed in claim 1 which also contains an ethoxylated oleyl alcohol emulsifier.
3. A composition as claimed in claim 1 wherein said phosphate has the formula in which R, is a primary n-alkyl group of two to 18 carbon atoms. 7
4. A composition as claimed in claim 1 which also contains an e thoxylated oleyl alcohol emulsifier.
[Maximum charging and discharge capacity of fabric strips of mlycapmlactam] Dischargu tlma Compound lll Amount Maxlmum to 0.!l Example appllml charge KV./m Numbar It In It: Iii lh (pare-ant) (KV./m.) (sum) ll-(lgllu (llla (llln ("2H5 lI-(lmlln (l. 31 lI-C7ll15 (3H3 (Illa (2H5 ll-Cmllg 0.33 ll-C13H 7 (lllu (lllg Czllg; ll-(lwll (1.38 ll-(lnllms (Illa (Illa Cgll ll-Crnllzl 0.35 1141 11 Il H n-Cdl n-Cmil 0.40
Copolymcr A (comparison) 0.33
n-C5H 1 CH3 CH3 CzI-I lI-CmI-Iz (l. 76 n-C7H CH CH CzH IbCwHtt 0. 73 l\-C 3H27 CH3 CH3 CzH5 ll-C oH21 0. 81 1l-C 7H 5 CH3 CH3 C2115 lI-CmHn 0. 75 Il-C 1H23 CH3 CH3 ll-C Ho n-CmHn O. 72
Copolynler A (comparison) 0 71 Example 50 5. A composition as claimed in claim 4 wherein said A stable aqueous emulsion is prepared as follows: To 3 to 6 ppw mineral oil (viscosity 6.0-6.8 c? at C, boiling range: 270335C at 760 mm) are added 2 ppw of an ethoxilated lauryl alcohol which contains about 5 ethylene oxid groups per alcohol molecule, and l ppw 1-lauramidpropyl-dimethylammonium-( 3 )-ethyl-ndecyl-( l phosphate (in formula III R=n-C H R =R =CH R =C H R nC l-l The mixture is heated under stirring to -60C. By this manner a clear oil is received. The emulsion is made by adding under stirring 1 to 20 ppw of this oil to 80 ppw water at room temperature.
The invention is hereby claimed as follows:
1. A composition for treatment of a textile mineral consisting essentially of an aqueous emulsion of a hydrocarbon textile lubricating agent containing as an essential emulsifying agent at least one phosphate of the formula phosphate has the formula 7. A composition as claimed in claim 6 wherein said 1 textile lubricating agent is a mineral oil.
mg? UNITED STATES PATENT armies CER'NHCATE l @C'REQ'H Patent 3,719,597 Damd March 5,, 1975 Inventofle) Arno wegerhoff et a1 It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:
If l
First page, left-hand column, insert [50] Foreign Application Priority Date February 17, 1968 Germany P 17 .19 545.6
Column 9, lines 8 to ll, "Electro- Pre-maxistatic mum charge charging (kv./m. (kv.pfim.
should read Electrostatic Maximum Pre-dharging Charge (kv./m. (km/m.
Column 11, line 56, "l-lauramidpropyl" should read l-lauramidopropyl a Column 12, line. 40, claim 4, "claim l should read claim 3 Signed and sealed this 19th day of February 197A.
(SEAL) Attesti I 7 I EDWARD M.FLETCHER,JR. I c. MARSHALL DANN Atte sting Officer Commissioner of Patents mg UNITED STATES PATENT eTTTeE CERTIFICATE OF @CRRECHCN Patent 3,719,597 Dated March 6. 1973 Inventofls) Arno Wegerhoff et a1 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby con'ected as shown below:
First page, left-hand column, insert [50] Foreign Application Priority Data February 17, 1968 Germany P l7 l9 5H5.6
Column 9, lines 8 to ll, "Electro- Pre-maxistatic mum charge charging (kv./m. (kvqflm.
should read Electrostatic Maximum Pre-clharging Charge (kv./m. (km/m.
Column 11, line 56, "l-lauramidpropyl" should read l-lauramidopropyl Column 12, linev 40, claim 4, "claim l should read claim 5 Signed and sealed this 19th day of February 1971;.
(SEAL) Attest: V U V v EDWARD M.FLETCI'IER,JR. C. MARSHALL DANN Atte sting Officer Commissioner of Patents

Claims (6)

1. A composition for treatment of a textile mineral consisting essentially of an aqueous emulsion of a hydrocarbon textile lubricating agent containing as an essential emulsifying agent at least one phosphate of the formula wherein: R represents a primary n-alkyl group of five to 17 carbon atoms; R1 and R2 each represent alkyl of one to three carbon atoms; R3 represents alkyl of two to four carbon atoms; and R4 represents alkyl of two to 18 carbon atoms.
2. A composition as claimed in claim 1 which also contains an ethoxylated oleyl alcohol emulsifier.
3. A composition as claimed in claim 1 wherein said phosphate has the formula in which R4 is a primary n-alkyl group of two to 18 carbon atoms.
4. A composition as claimed in claim 1 which also contains an ethoxylated oleyl alcohol emulsifier.
5. A composition as claimed in claim 4 wherein said phosphate has the formula and said ethoxylated oleyl alcohol is the etherified product of approximately 2 mols of ethylene oxide to 1 mol of oleyl alcohol.
6. A composition as claimed in claim 5 which contains from about 0.5 to 2 parts by weight of said ethoxylated oleyl alcohol to 1 part by weight of said phosphate.
US00098966A 1968-02-17 1970-12-16 Acyl-amino-pr opyl-dialkylammonium dialkyl phosphates as textile finishing agents Expired - Lifetime US3719597A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1968G0052442 DE1719543B2 (en) 1968-02-17 1968-02-17 PROCESS FOR ANTI-ELECTROSTATIC EQUIPMENT OF FABRICS, FIBERS AND TEXTILES MADE OF POLYESTER OR POLYAMIDE
US9896670A 1970-12-16 1970-12-16

Publications (1)

Publication Number Publication Date
US3719597A true US3719597A (en) 1973-03-06

Family

ID=25978923

Family Applications (1)

Application Number Title Priority Date Filing Date
US00098966A Expired - Lifetime US3719597A (en) 1968-02-17 1970-12-16 Acyl-amino-pr opyl-dialkylammonium dialkyl phosphates as textile finishing agents

Country Status (1)

Country Link
US (1) US3719597A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956144A (en) * 1974-09-16 1976-05-11 Sandoz, Inc. Flame-retardant softening agents
US3959156A (en) * 1973-12-06 1976-05-25 Sandoz, Inc. Fabric softener
US3969231A (en) * 1974-09-16 1976-07-13 Sandoz, Inc. Flame-retardant softening agents
US4069160A (en) * 1975-01-20 1978-01-17 Hoechst Fibers Industries, Division Of American Hoechst Corporation Texturing finish for synthetic filaments
US5980772A (en) * 1997-02-25 1999-11-09 Takemoto Yushi Kabushiki Kaisha Lubricants for and methods of processing synthetic fibers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959156A (en) * 1973-12-06 1976-05-25 Sandoz, Inc. Fabric softener
US3956144A (en) * 1974-09-16 1976-05-11 Sandoz, Inc. Flame-retardant softening agents
US3969231A (en) * 1974-09-16 1976-07-13 Sandoz, Inc. Flame-retardant softening agents
US4069160A (en) * 1975-01-20 1978-01-17 Hoechst Fibers Industries, Division Of American Hoechst Corporation Texturing finish for synthetic filaments
US5980772A (en) * 1997-02-25 1999-11-09 Takemoto Yushi Kabushiki Kaisha Lubricants for and methods of processing synthetic fibers

Similar Documents

Publication Publication Date Title
US2842462A (en) Antistatic synthetic textile material
US3096207A (en) Process of imparting oil-repellency to solid materials
US3972855A (en) Quaternary ammonium compounds and treatment of plastic and other materials therewith
US2676122A (en) Antistatic treatment of hydrophobic fiber
US2717842A (en) Antistatic treatment and treated products
US2742379A (en) Treatment of textile fibers with antistatic agent and product thereof
US3634117A (en) A textile material coated with an ammonium dialkyl phosphate antistatic agent
US2695270A (en) Oil soluble cationic textile antistatic agent
US3518184A (en) Textile fiber finish composition
US5352242A (en) Formaldehyde-free easy care finishing of cellulose-containing textile material
US2809159A (en) Antistatic and rewetting treatment of textile material
US2318296A (en) Antistatic agent and its application
US3719597A (en) Acyl-amino-pr opyl-dialkylammonium dialkyl phosphates as textile finishing agents
US4297407A (en) Finish composition for the spinning of highly crimped cellulose fibers using a composition cont. fatty acid ester, organic phosphoric acid ester, fatty acid ethylene oxide cond. prod. and fatty acid salt
GB1116150A (en) Amine-epichlorhydrin reaction products and compositions containing same for use in the treatment of textiles
US3775446A (en) Acyl-amino-propyl-dialkylammonium dialkyl phosphates
US4975091A (en) Textile drawing aids for fiber materials containing polyester
US4296165A (en) Antistatic natural and synthetic textile materials which have been treated with salts of orthophosphoric or polyphosphoric acid
US4164535A (en) Antistatic textile materials
US2197930A (en) Method of treating cellulose organic derivative cut staple fibers
US3170877A (en) Antistatic treating solution for polyacrylonitrile fibers and method
US5190676A (en) High-speed spinning oil composition containing an organophosphoric ester salt and an oxyalkylene polymer
CH444809A (en) Use of salts as anti-static agents
US2805992A (en) Textile conditioning agent
US2717877A (en) Antistatic compositions