US3719537A - Process of making pile fabric floor covering - Google Patents

Process of making pile fabric floor covering Download PDF

Info

Publication number
US3719537A
US3719537A US00092209A US3719537DA US3719537A US 3719537 A US3719537 A US 3719537A US 00092209 A US00092209 A US 00092209A US 3719537D A US3719537D A US 3719537DA US 3719537 A US3719537 A US 3719537A
Authority
US
United States
Prior art keywords
pile
layer
elements
yarn
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00092209A
Inventor
R Wilcox
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3719537A publication Critical patent/US3719537A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H11/00Non-woven pile fabrics
    • D04H11/08Non-woven pile fabrics formed by creation of a pile on at least one surface of a non-woven fabric without addition of pile-forming material, e.g. by needling, by differential shrinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1039Surface deformation only of sandwich or lamina [e.g., embossed panels]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
    • Y10T156/109Embedding of laminae within face of additional laminae

Definitions

  • This invention relates to floor coverings, or the like, in which pile and flat fibrous elements are adhesively secured to a backing.
  • the primary object of the invention is to provide a floor covering having, selectively, such desirable properties as liquid impermeability, durability, and dimensional stability, which are characteristic of conventional hard-surfaced floor coverings (e.g., linoleum, vinyl tile, etc.), coupled with the properties of tread softness, surface texture, style and flexibility associated with conventional pile fabrics and which can be manufactured at a cost substantially less than that of any such prior floor coverings.
  • a floor covering having, selectively, such desirable properties as liquid impermeability, durability, and dimensional stability, which are characteristic of conventional hard-surfaced floor coverings (e.g., linoleum, vinyl tile, etc.), coupled with the properties of tread softness, surface texture, style and flexibility associated with conventional pile fabrics and which can be manufactured at a cost substantially less than that of any such prior floor coverings.
  • yarn segments preponderantly of approximately uniform length are disposed in random orientations in a layer of substantial depth on the upper surface of a thick ply of viscid plastic material (suitably supported on a base fabric backing) in which portions of the yarn segments which are to form pile tufts are then embedded in predetermined spaced areas or regions of depressed plastic and in which portions of other yarn segments forming flat fibrous elements are embedded or adhered, followed by solidification of the plastic ply.
  • Pile surface is formed of certain of the yarn segments, each of which has a substantial portion, including at least one extremity, disposed in an upper level of the yarn layer away from contact with the viscid ply, as by being supported on at least one underlying segment, and a remaining portion compressed into the adjacent depressed plastic region.
  • the extremities of such pile elements are deflected upwardly and supported by contiguous uncompressed yarn segments to present pilelike tufts.
  • the thickness of the plastic ply above the base fabric is sufficient to accommodate the regions of depression, and the pile tufts, in the aggregate, have their extremities splayed outwardly with a bloom substantially to conceal the depressed plastic regions beneath a pile tread surface.
  • some yarn segments in the lowermost level of the yarn layer lie flat and have portions which are at'least partially embedded in the plastic ply.
  • Other segments, not in the lowermost layer, have portions adhered to the plastic and other portions disposed at upper levels, in instances presenting upwardly projecting extremities splayed to form semipile tufts at a lower level than those previously referred to.
  • FIG. 8 is a diagrammatic vertical sectional representation on the line 8-8 of FIG. 7 wherein yarn segments are shown in elevation, the view corresponding to the stage illustrated by FIG. 3;
  • FIG. 9 is a diagrammatic view similar to FIG. 8, but showing the stage of FIG. 4, indicating the presser-plate in pressing engagement with elements'of the yarn layer and forming depressed regions in the upper surface of the plastic ply in embedding portions of the elements therein;
  • FIG. 10 is a diagrammatic view showing the stage of FIG. 5 wherein the pressure-plate is removed to leave the pile elements and other fibrous elements secured in the plastic ply;
  • FIG. 1 1 is a diagrammatic view showing pile tufts and semi-pile tufts splayed following the operations viscid, a layer 15 of pre-cut yarn segments is deposited
  • FIGS. 1 to 6 are schematic views indicating protruding presser-plate elements
  • reference 10 designates a base fabric such as burlap or other coarse material which, during the various steps in the making of the floor covering, is supported on a suitable platform 18 of a width sufficient to accommodate the predetermined width of the fabric and also any auxiliary apparatus employed at the various stages of manufacture, and is of a suitable length.
  • Base fabric 10 may, if desired, be advanced from stage to stage along the platform 18 by suitable feed mechanism as will be understood.
  • a uniform layer 12 of a fluid niass of adhesive polymeric substance is deposited on the upper surface of base fabric 10 as by conventional means, e.g., roller-coating, not shown.
  • a presser-plate 16 positioned above the base fabric with superimposed plastic ply l2 and yarn layer 15, approaches the assembled constituents for pressure engagement therewith.
  • Presser plate 16 is cast or otherwise formed with a predetermined configuration of presser elements 52 integral with and protruding from its lower surface. Dimensions of the protruding elements and these spacings will be described below.
  • a radiation generator-transmitter device 17 (for convenience shown schematically disposed beneath platform 18) affords radiation of frequencies and power appropriately suited to the constitution of the substance of ply 12 so as to accelerate initial setting or polymerization thereof.
  • the device 17 preferably is capable of generating microwave radiation which is so transmitted that it is focused or concentrated in the viscid ply 12, thereby initiating or causing transformation of the substance of the ply from a fluid state to a solid state.
  • device 17 may assume other forms for use with other than thermosetting polymers, or be omitted where the composition is subject to short-time solidification by catalysis as where a short pot-life polyurethane catalytic mixture is used.
  • stage four portions of yarn segments in layer 15 become partially or completely embedded in or otherwise adhered to the plastic ply 12, as will be described in detail hereinafter, and at the same time the plastic ply becomes firmly bonded to the base fabric 10, which desirably is pre-impregnated with the same or a similar plastic to close the pores of the fabric.
  • presser-plate 16 is removed from engagement with the composite fabric to leave upwardly protruding pile segment ends.
  • the exposed yarn surface is brushed by a wire or similar brush 19 sufficiently to splay the free ends of pile and fibrous elements for the desired bloom and also to brush out any non-adhered yarn portions which are conducted away by suitable suction apparatus 60.
  • the construction of the presser will be apparent from FIGS. 7 and 8.
  • the plate 16 itself is cast or otherwise formed with downwardly protruding rib elements 52, which in the embodiment illustrated are of sinuous configuration (FIG. 7) to present a generally random disposition of the ribs which come to bear on a longitudinally random arrangement of fibrous elements. This is my preferred relationship to produce the fabric described below, although for certain special effects part or all of either the yarn segments or the presser ribs or both may be non-random.
  • the approximate segment length l is 10d
  • the spacing S separating presser elements 52 ranges from 10d to d
  • the width R (FIG. 8) of protrusions 52 ranges from d to 3d
  • the uniform height A of the protrusions is about 2d
  • the nominal depth B of the yarn layer 15 is about 4d (i.e., equivalent to about four strata or levels of segments)
  • the thickness C of the viscid ply 12 is not less than d nor greater than 1.5d.
  • an additional dimension D represents the separation between the lowermost surface 51 of protrusions 52 and the upper surface of the base fabric 10 as supported on the pressure resisting platform 18 and is less than the thickness C of the viscid ply as a result of just sufficient downward travel of the plate 16, under the pressure applied in stage four (FIG. 4), to force compressive embedment of yarn portions in the depressed plastic regions.
  • FIG. 8 I have designated certain significant yarn elements as follows: element 72 and its portion 72a, element 74 with its extremities 74a and 74b, element 75, element 76 and its portion 76a, and element 78 and its portion 78a; also element 90 with extremities 90a and 90b and elements 92 and 94.
  • FIGS. 9, 10, and 11 there are included in and enclosed by the areas Y, depressed regions (FIG. 10) formed in the plastic ply 12, in which regions, typically yarn portion 72a, are embedded and compressed beneath other yarn portions 76a and 78a overlying them also in the depressed regions 70.
  • This complete embedment results from the dimensional relationship above discussed wherein the dimension C (FIG. 8) is greater than the dimension D (FIG. 9).
  • the yarns are compacted and the lower stratum of the yarn layer is impressed into the viscid ply 12 at least partially embedding the lowermost yarn portions therein, such as indicated by element 75.
  • Other yarn segments in the areas X having portions superimposed over those embedded as at may still have portions adhered to the viscid ply 12 or, in instances, may be free, in which event they will later be brushed away and removed in stage 6.
  • Still other segments may be entangled with those adhered to the plastic ply and by such entanglement be locked in place against pulling out when subjected to the operations of stage 6.
  • those segments which extend into the two areas such as the segment 74 (also identified in FIG. 8) will be embedded at one portion 74a, will be free of protrusion element pressure at and adjacent the extremity 74b, and will be supported by the solidified upright edge of the depressed plastic region 70 (FIGS. 10 and 11) and usually by an underlying segment adjacently disposed, and this support acts to cause the extremity 74b to be deflected upwardly from its substantially horizontal position shown at 74b in FIG. 8 to its more upstanding position shown at 74b in FIG. 10.
  • segment extremities in forming semi-pile tufts in areas X may be observed by comparing the relative position of segment 90 in FIG. 8, the embedment of its lower portion 90a in the plastic ply by virtue of the overlying portion of segment 92 as compacted and forced downwardly by the presser-plate surface as shown in FIG. 9, the position of its extremity 90b uppermost in the yarn layer as shown in FIG. 10, and the semiupright splayed tuft configuration 90b of FIG. 11. It may also be observed that certain yarn segments lying in an upper stratum of the yarn layer, and positioned so as to be free of engagement with protruding elements 52 of the presser-plate, such as the segment 94 shown in FIG. 8, remain free of adhesion to the ply 12 or entanglement with other adhered segments and are subsequently removed by the operations in stage 6.
  • the novel floor covering herein described may present a predominance of pile tufts in a surface comparable to that of conventional pile fabrics but without apparent rows or courses as is common to prior yarn-pile structures, and that it is inexpensive to manufacture yet affords a combination of the desirable properties of both the soft and hard-surfaced floor coverings heretofore known.
  • the floor covering, in construction is comparable to the two in that the solidified plastic ply 12 may be comparable to hard-surfaced materials while the tufts and other yarn surfaces are comparable to softer pile surfaces. If made of ap limbate materials, the floor covering, of course, is waterproof and may readily be used out of doors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)

Abstract

As an article, and its method of manufacture, a non-woven fabric useful as a floor covering having a composite tread surface structure presenting pile tuft and flat textile elements.

Description

United States Patent Wilcox 1 March 6, 1973 PROCESS OF MAKING PILE FABRIC FLOOR COVERING Inventor: Roger L. Wilcox, P. O. Box 534, Amagansett, N.Y. 11930 Filed: Nov. 23, 1970 Appl. No.: 92,209
Related US. Application Data Division of Ser. No 705,976, Feb. 16, 1968, Pat. No. 3,575,778.
US. Cl. ..l56l72, 156/219, 156/298 Int. Cl; ..D04h 11/00 Field of Search ..161/63, 64, 67, 65, 66, 116, 161/123, 124; 156/72, 435,148, 209, 219,
[56] References Cited UNITED STATES PATENTS 3,459,579 8/1969 Newman ..161/64 OTHER PUBLICATIONS Odenthal, German Auslegeschrift 1,136,088, 9/1962, pp. 156-172.
Primary Examiner-William J. Van Balen AttorneyRichard Whiting As an article, and its method of manufacture, a nonwoven fabric useful as a floor covering having a composite tread surface structure presenting pile tuft and flat textile elements.
ABSTRACT 4 Claims, 11 Drawing Figures PATENTED 6l975 SHEET 2 BF 4 PATENTEDHAR 61915 3,719,537
SHEET 4 OF 4 I l X 7 1 w PROCESS OF MAKING PILE FABRIC FLOOR COVERING" This application is a division of application Ser. No. 705,976, filed Feb. 16, 1968, now US. Pat. No. 3,575,778, granted Apr. 20, 1971.
This invention relates to floor coverings, or the like, in which pile and flat fibrous elements are adhesively secured to a backing.
The primary object of the invention is to provide a floor covering having, selectively, such desirable properties as liquid impermeability, durability, and dimensional stability, which are characteristic of conventional hard-surfaced floor coverings (e.g., linoleum, vinyl tile, etc.), coupled with the properties of tread softness, surface texture, style and flexibility associated with conventional pile fabrics and which can be manufactured at a cost substantially less than that of any such prior floor coverings.
In making a floor covering embodying the preferred construction of this invention, yarn segments preponderantly of approximately uniform length are disposed in random orientations in a layer of substantial depth on the upper surface of a thick ply of viscid plastic material (suitably supported on a base fabric backing) in which portions of the yarn segments which are to form pile tufts are then embedded in predetermined spaced areas or regions of depressed plastic and in which portions of other yarn segments forming flat fibrous elements are embedded or adhered, followed by solidification of the plastic ply.
Pile surface is formed of certain of the yarn segments, each of which has a substantial portion, including at least one extremity, disposed in an upper level of the yarn layer away from contact with the viscid ply, as by being supported on at least one underlying segment, and a remaining portion compressed into the adjacent depressed plastic region. The extremities of such pile elements are deflected upwardly and supported by contiguous uncompressed yarn segments to present pilelike tufts.
The thickness of the plastic ply above the base fabric is sufficient to accommodate the regions of depression, and the pile tufts, in the aggregate, have their extremities splayed outwardly with a bloom substantially to conceal the depressed plastic regions beneath a pile tread surface.
In remaining regions of the composite surface, some yarn segments in the lowermost level of the yarn layer lie flat and have portions which are at'least partially embedded in the plastic ply. Other segments, not in the lowermost layer, have portions adhered to the plastic and other portions disposed at upper levels, in instances presenting upwardly projecting extremities splayed to form semipile tufts at a lower level than those previously referred to.
Further details and modifications of this preferred embodiment will appear from the ensuing description taken in connection with the accompanying drawings in which:
relative thereto an exemplary dispositioning of elements in the yarn layer;
FIG. 8 is a diagrammatic vertical sectional representation on the line 8-8 of FIG. 7 wherein yarn segments are shown in elevation, the view corresponding to the stage illustrated by FIG. 3;
FIG. 9 is a diagrammatic view similar to FIG. 8, but showing the stage of FIG. 4, indicating the presser-plate in pressing engagement with elements'of the yarn layer and forming depressed regions in the upper surface of the plastic ply in embedding portions of the elements therein;
FIG. 10 is a diagrammatic view showing the stage of FIG. 5 wherein the pressure-plate is removed to leave the pile elements and other fibrous elements secured in the plastic ply; and
FIG. 1 1 is a diagrammatic view showing pile tufts and semi-pile tufts splayed following the operations viscid, a layer 15 of pre-cut yarn segments is deposited FIGS. 1 to 6 are schematic views indicating progresconfiguration of protruding presser-plate elements, and
represented in FIG. 6.
With reference to FIGS. 1-6, reference 10 designates a base fabric such as burlap or other coarse material which, during the various steps in the making of the floor covering, is supported on a suitable platform 18 of a width sufficient to accommodate the predetermined width of the fabric and also any auxiliary apparatus employed at the various stages of manufacture, and is of a suitable length. Base fabric 10 may, if desired, be advanced from stage to stage along the platform 18 by suitable feed mechanism as will be understood.
In the first stage (FIG. 1), a uniform layer 12 of a fluid niass of adhesive polymeric substance is deposited on the upper surface of base fabric 10 as by conventional means, e.g., roller-coating, not shown.
In the second stage (FIG. 2), while the layer 12 is still thereon as by simple conventional means, e.g., blower apparatus, not shown, to provide random orientations of the segments, longitudinally of the web, to an approximately uniform depth.
In the third stage (FIG. 3), a presser-plate 16, positioned above the base fabric with superimposed plastic ply l2 and yarn layer 15, approaches the assembled constituents for pressure engagement therewith. Presser plate 16 is cast or otherwise formed with a predetermined configuration of presser elements 52 integral with and protruding from its lower surface. Dimensions of the protruding elements and these spacings will be described below.
In the fourth stage (FIG. 4), while presser-plate 16 is pressed into engagement with the assembled constituents, a radiation generator-transmitter device 17 (for convenience shown schematically disposed beneath platform 18) affords radiation of frequencies and power appropriately suited to the constitution of the substance of ply 12 so as to accelerate initial setting or polymerization thereof. The device 17 preferably is capable of generating microwave radiation which is so transmitted that it is focused or concentrated in the viscid ply 12, thereby initiating or causing transformation of the substance of the ply from a fluid state to a solid state. Since time-conserving means for inducing solidification of the viscid ply shall be suited to the chemical composition of the substance, device 17 may assume other forms for use with other than thermosetting polymers, or be omitted where the composition is subject to short-time solidification by catalysis as where a short pot-life polyurethane catalytic mixture is used.
Accordingly, in stage four, portions of yarn segments in layer 15 become partially or completely embedded in or otherwise adhered to the plastic ply 12, as will be described in detail hereinafter, and at the same time the plastic ply becomes firmly bonded to the base fabric 10, which desirably is pre-impregnated with the same or a similar plastic to close the pores of the fabric.
In the fifth stage (FIG. 5), presser-plate 16 is removed from engagement with the composite fabric to leave upwardly protruding pile segment ends.
In the sixth stage (FIG. 6), the exposed yarn surface is brushed by a wire or similar brush 19 sufficiently to splay the free ends of pile and fibrous elements for the desired bloom and also to brush out any non-adhered yarn portions which are conducted away by suitable suction apparatus 60.
The construction of the presser will be apparent from FIGS. 7 and 8. The plate 16 itself is cast or otherwise formed with downwardly protruding rib elements 52, which in the embodiment illustrated are of sinuous configuration (FIG. 7) to present a generally random disposition of the ribs which come to bear on a longitudinally random arrangement of fibrous elements. This is my preferred relationship to produce the fabric described below, although for certain special effects part or all of either the yarn segments or the presser ribs or both may be non-random.
The manufacturing in these several stages is subject to considerable variation in the specific dimensional relationship of the several elements involved, both of the fabric components and the presser mechanism, depending in part upon the structural characteristics sought in the finished product. As a typical example, I shall describe certain critical relationships which should be adhered to where it is desired to achieve a high incidence of pile tufts among randomly oriented yarn segments while allowing for reasonable freedom in the design of pattern configurations for presser-plate protrusions as lineaments and/or discrete elements, substantial concealment of depressed plastic regions by tufts of adjacently surrounding pile surface regions, and an average pile height substantially greater than the average height or surface level of remaining fibrouselement regions.
Taking the normal yarn diameter d as a dimensional unit, shown full scale in FIG. 7, the approximate segment length l is 10d, the spacing S separating presser elements 52 ranges from 10d to d, the width R (FIG. 8) of protrusions 52 ranges from d to 3d, the uniform height A of the protrusions is about 2d, the nominal depth B of the yarn layer 15 is about 4d (i.e., equivalent to about four strata or levels of segments), and the thickness C of the viscid ply 12 is not less than d nor greater than 1.5d.
With reference to FIG. 9, an additional dimension D represents the separation between the lowermost surface 51 of protrusions 52 and the upper surface of the base fabric 10 as supported on the pressure resisting platform 18 and is less than the thickness C of the viscid ply as a result of just sufficient downward travel of the plate 16, under the pressure applied in stage four (FIG. 4), to force compressive embedment of yarn portions in the depressed plastic regions.
The mode of operation and functions of the parts so relatively dimensioned may be understood by considering the disposition of the pile and other elements in FIGS. 7 and 8 and in the areas designated X and Y in FIGS. 9, 10, and 11.
Considering, first, the dispositions in FIG. 8, I have designated certain significant yarn elements as follows: element 72 and its portion 72a, element 74 with its extremities 74a and 74b, element 75, element 76 and its portion 76a, and element 78 and its portion 78a; also element 90 with extremities 90a and 90b and elements 92 and 94. Referring to FIGS. 9, 10, and 11, there are included in and enclosed by the areas Y, depressed regions (FIG. 10) formed in the plastic ply 12, in which regions, typically yarn portion 72a, are embedded and compressed beneath other yarn portions 76a and 78a overlying them also in the depressed regions 70. This complete embedment results from the dimensional relationship above discussed wherein the dimension C (FIG. 8) is greater than the dimension D (FIG. 9).
In the areas X the yarns are compacted and the lower stratum of the yarn layer is impressed into the viscid ply 12 at least partially embedding the lowermost yarn portions therein, such as indicated by element 75. Other yarn segments in the areas X having portions superimposed over those embedded as at may still have portions adhered to the viscid ply 12 or, in instances, may be free, in which event they will later be brushed away and removed in stage 6. Still other segments may be entangled with those adhered to the plastic ply and by such entanglement be locked in place against pulling out when subjected to the operations of stage 6.
This disposition of yarn elements in the areas X results from randomly oriented depositions thereof in conjunction with the dimensional relationship above discussed in which dimension A is less than the dimension B.
At the margins where areas Y meet or merge with areas X (FIG. 9), those segments which extend into the two areas, such as the segment 74 (also identified in FIG. 8) will be embedded at one portion 74a, will be free of protrusion element pressure at and adjacent the extremity 74b, and will be supported by the solidified upright edge of the depressed plastic region 70 (FIGS. 10 and 11) and usually by an underlying segment adjacently disposed, and this support acts to cause the extremity 74b to be deflected upwardly from its substantially horizontal position shown at 74b in FIG. 8 to its more upstanding position shown at 74b in FIG. 10. When the parts are in their positions of FIG. 9, certain of otherwise upstanding portions such as 74b are depressed under the imposed surface 50 of the presser-plate base and remain thus deflected until the presser-plate is retracted when the extremities spring upwardly for engagement by the brush 19 (FIG. 6) to form the splayed tufts, e. g. 74b, as shown in areas Y of FIG. 11.
It may be observed that substantial portions of yarn segments forming components of areas Y may, 'in preliminary stages (FIGS. 8 and 9), extend into areas X, and also that areas Y are more extensive in the final stage as shown in FIG. 11 than in the previous stage as shown in FIG. 10 as a consequence of tuft blooming functions induced in stage 6.
The typical different aspects and positions assumed by yarn segments and portions thereof in forming upright splayed pile tufts may be observed by comparing the relative positioning and orientation of segments 74, 76, and 78 in FIG. 7, the generally horizontal postures of same in FIG. 8, the upstanding but deflected postures in FIG. 9, erect positions of FIG. 10, and the splayed bloom configurations of FIG. 1 1.
Similarly, different typical aspects assumed by segment extremities in forming semi-pile tufts in areas X may be observed by comparing the relative position of segment 90 in FIG. 8, the embedment of its lower portion 90a in the plastic ply by virtue of the overlying portion of segment 92 as compacted and forced downwardly by the presser-plate surface as shown in FIG. 9, the position of its extremity 90b uppermost in the yarn layer as shown in FIG. 10, and the semiupright splayed tuft configuration 90b of FIG. 11. It may also be observed that certain yarn segments lying in an upper stratum of the yarn layer, and positioned so as to be free of engagement with protruding elements 52 of the presser-plate, such as the segment 94 shown in FIG. 8, remain free of adhesion to the ply 12 or entanglement with other adhered segments and are subsequently removed by the operations in stage 6.
Experiments have shown that random orientation of yarn segments allows a great variety of presser-plate protrusion configurations (including parallel ribs or other geometric arrangements) to be equivalently effective, yet other orientations of yarn segments may be suitable for special effects in the forming of a composite surface structure according to the principles herein elucidated. In all such modifications, the dimensional relationships above described are to be adhered to if the function described is to be achieved.
It will be found that the novel floor covering herein described may present a predominance of pile tufts in a surface comparable to that of conventional pile fabrics but without apparent rows or courses as is common to prior yarn-pile structures, and that it is inexpensive to manufacture yet affords a combination of the desirable properties of both the soft and hard-surfaced floor coverings heretofore known. Indeed, the floor covering, in construction is comparable to the two in that the solidified plastic ply 12 may be comparable to hard-surfaced materials while the tufts and other yarn surfaces are comparable to softer pile surfaces. If made of ap propriate materials, the floor covering, of course, is waterproof and may readily be used out of doors.
Modifications in the construction of the floor covering will readily occur once the principle of the invention is understood. Thus, various color effects can be achieved, not only through selection of various yarn colors, but, if desired, by utilizing the depressed regions for special decorative pattern effects, for which purpose they may be broadened so they are not concealed by overlying tufts and that part of the plastic ply which is visible may be transparent or specially colored by pigment or by embedded yarns or fibers of selected colors.
I claim:
1. In the manufacture of yarn-pile-surfaced floor coverings, or the like, the steps of juxtaposing a layer of plastic material with a backing layer contiguous to one surface and a layer of yarn pile-forming elements contrguous to its opposite surface to form a three-layer assemblage having opposite exposed surfaces, bonding the three layers together by applying pressure to the said opposite surfaces while impressing the surface of the plastic layer contiguous to the pile elements with elongated spaced lanes of depression and simultaneously embedding portions of the pile elements in the lanes of depression and deflecting upwardly other portions of the pile elements to form pile tufts, and thereafter solidifying said plastic layer.
2. In the manufacture of yam-pile-surfaced floor coverings, or the like, the steps of superimposing a layer of a viscid plastic material on a backing, depositing on the exposed surface of the viscid plastic layer a layer of yarn pile elements preponderantly of substantially uniform predetermined length, bonding together the layer of viscid plastic material, the backing and the pile-forming elements by applying pressure thereto, while impressing the surface of the plastic layer on which the pile-forming elements are deposited with elongated spaced lanes of depression and simultaneously embedding portions of the pile elements in the lanes of depression to dispose extremities of a plurality of the pile tufts in a direction diverging from the plane of the pile-forming layer to present pile tufts, and solidifying said plastic layer.
3. The method as defined in claim 2 which includes the further step of splaying the pile tuft extremities to conceal the lanes of depression.
4. In the manufacture of pile-surfaced floor coverings, or the like, the steps of superimposing a layer of viscid plastic material on a backing, depositing a layer of pile elements to lie randomly disposed on the surface of the viscid plastic layer, pressing together the pile forming elements, the viscid plastic material and the backing while applying to the surface of the pile forming elements pressure which is selectively substantially greater in areas defined by elongated spaced lanes than in other areas thereof and simultaneously impressing the plastic layer with conformingly elongated spaced lanes of depression while embedding portions of the pile elements in said lanes of depression and deflecting upwardly other portions of pile elements to form tufts.

Claims (3)

1. In the manufacture of yarn-pile-surfaced floor coverings, or the like, the steps of juxtaposing a layer of plastic material with a backing layer contiguous to one surface and a layer of yarn pile-forming elements contiguous to its opposite surface to form a three-layer assemblage having opposite exposed surfaces, bonding the three layers together by applying pressure to the said opposite surfaces while impressing the surface of the plastic layer contiguous to the pile elements with elongated spaced lanes of depression and simultaneously embedding portions of the pile elements in the lanes of depression and deflecting upwardly other portions of the pile elements to form pile tufts, and thereafter solidifying said plastic layer.
2. In the manufacture of yarn-pile-surfaced floor coverings, or the like, the steps of superimposing a layer of a viscid plastic material on a backing, depositing on the exposed surface of the viscid plastic layer a layer of yarn pile elements preponderantly of substantially uniform predetermined length, bonding together the layer of viscid plastic material, the backing and the pile-forming elements by applying pressure thereto, while impressing the surface of the plastic layer on which the pile-forming elements are deposited with elongated spaced lanes of depression and simultaneously embedding portions of the pile elements in the lanes of depression to dispose extremities of a plurality of the pile tufts in a direction diverging from the plane of the pile-forming layer to present pile tufts, and solidifying said plastic layer.
3. The method as defined in claim 2 which includes the further step of splaying the pile tuft extremities to conceal the lanes of depression.
US00092209A 1968-02-16 1970-11-23 Process of making pile fabric floor covering Expired - Lifetime US3719537A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70597668A 1968-02-16 1968-02-16
US9220970A 1970-11-23 1970-11-23

Publications (1)

Publication Number Publication Date
US3719537A true US3719537A (en) 1973-03-06

Family

ID=22232169

Family Applications (1)

Application Number Title Priority Date Filing Date
US00092209A Expired - Lifetime US3719537A (en) 1968-02-16 1970-11-23 Process of making pile fabric floor covering

Country Status (1)

Country Link
US (1) US3719537A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999047339A1 (en) * 1998-03-19 1999-09-23 Hcd Hygienic Composites Development Gmbh Method for producing surface-structured, film-like semi-finished product from a thermoplastic and semi-finished product produced according to said method
US6185803B1 (en) * 1994-10-18 2001-02-13 Iomega Corporation Fuzzed fabric liner for a disk cartridge
US6317292B1 (en) 1994-10-18 2001-11-13 Iomega Corporation PTFE fiber based liner for flexible high density magnetic media
WO2015028696A1 (en) * 2013-08-29 2015-03-05 Simplicity Works Europe, S.L. Method for producing sheet pieces

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459579A (en) * 1965-04-01 1969-08-05 Kendall & Co Method of producing flocked nonwoven fabric

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459579A (en) * 1965-04-01 1969-08-05 Kendall & Co Method of producing flocked nonwoven fabric

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Odenthal, German Auslegeschrift 1,136,088, 9/1962, pp. 156 172. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185803B1 (en) * 1994-10-18 2001-02-13 Iomega Corporation Fuzzed fabric liner for a disk cartridge
US6317292B1 (en) 1994-10-18 2001-11-13 Iomega Corporation PTFE fiber based liner for flexible high density magnetic media
WO1999047339A1 (en) * 1998-03-19 1999-09-23 Hcd Hygienic Composites Development Gmbh Method for producing surface-structured, film-like semi-finished product from a thermoplastic and semi-finished product produced according to said method
WO2015028696A1 (en) * 2013-08-29 2015-03-05 Simplicity Works Europe, S.L. Method for producing sheet pieces

Similar Documents

Publication Publication Date Title
US4389442A (en) Wall covering fabric with texturized loops
US4230755A (en) Moldable unitary composite carpet structure
US3583890A (en) Underlay for rugs or mats to be placed on a carpet with a deep pile
US4389443A (en) Cut pile fabric with fused carrier and method of making same
US4391866A (en) Cut pile fabric with texturized loops
US3922454A (en) Secondary backing for carpeting
US7425359B2 (en) Textured composite material
US4390582A (en) Cut pile fabric with carrier and texturized loops
US20060183389A1 (en) Fabric-faced composites and methods for making same
US3924040A (en) Embossed needle-bonded fabric wall coverings
GB1500510A (en) Wall and floor coverings
US5547731A (en) Needled carpet and a process for producing it
US4007071A (en) Process for making embossed needle-bonded fabric wall coverings
US3034942A (en) Pile fabric and method for making same
US3719537A (en) Process of making pile fabric floor covering
US2303203A (en) Carpet
US5660911A (en) Tufted carpet and process for producing the same
US2456922A (en) Fabric
US3166465A (en) Bakced pile fabric and method of producing the same
US3404647A (en) Decorative fabric
GB1182458A (en) Nonwoven Textile Pile Material and Method for its Production
US3575778A (en) Pile fabric floor covering
US3871948A (en) Non-woven carpet material with resilient backing
US3695962A (en) Method of making pile fabrics
US2349236A (en) Carpet