US3716632A - Test composition and method for the in vitro determination of thyroid function - Google Patents
Test composition and method for the in vitro determination of thyroid function Download PDFInfo
- Publication number
- US3716632A US3716632A US00032396A US3716632DA US3716632A US 3716632 A US3716632 A US 3716632A US 00032396 A US00032396 A US 00032396A US 3716632D A US3716632D A US 3716632DA US 3716632 A US3716632 A US 3716632A
- Authority
- US
- United States
- Prior art keywords
- indicator
- composition
- blue
- thyroid
- test composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 28
- 210000001685 thyroid gland Anatomy 0.000 title claims abstract description 15
- 239000000203 mixture Substances 0.000 title claims description 31
- 238000000034 method Methods 0.000 title claims description 21
- 238000000338 in vitro Methods 0.000 title abstract description 4
- 230000002285 radioactive effect Effects 0.000 claims abstract description 21
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 claims abstract description 18
- ABIUHPWEYMSGSR-UHFFFAOYSA-N bromocresol purple Chemical compound BrC1=C(O)C(C)=CC(C2(C3=CC=CC=C3S(=O)(=O)O2)C=2C=C(Br)C(O)=C(C)C=2)=C1 ABIUHPWEYMSGSR-UHFFFAOYSA-N 0.000 claims abstract description 17
- 210000002966 serum Anatomy 0.000 claims abstract description 16
- 239000007793 ph indicator Substances 0.000 claims abstract description 15
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 12
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 12
- 238000001179 sorption measurement Methods 0.000 claims abstract description 10
- 239000005495 thyroid hormone Substances 0.000 claims abstract description 8
- 229940036555 thyroid hormone Drugs 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 5
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 claims description 15
- NUHCTOLBWMJMLX-UHFFFAOYSA-N bromothymol blue Chemical compound BrC1=C(O)C(C(C)C)=CC(C2(C3=CC=CC=C3S(=O)(=O)O2)C=2C(=C(Br)C(O)=C(C(C)C)C=2)C)=C1C NUHCTOLBWMJMLX-UHFFFAOYSA-N 0.000 claims description 13
- 229940035722 triiodothyronine Drugs 0.000 claims description 9
- FRPHFZCDPYBUAU-UHFFFAOYSA-N Bromocresolgreen Chemical compound CC1=C(Br)C(O)=C(Br)C=C1C1(C=2C(=C(Br)C(O)=C(Br)C=2)C)C2=CC=CC=C2S(=O)(=O)O1 FRPHFZCDPYBUAU-UHFFFAOYSA-N 0.000 claims description 8
- 239000000872 buffer Substances 0.000 claims description 8
- WWAABJGNHFGXSJ-UHFFFAOYSA-N chlorophenol red Chemical compound C1=C(Cl)C(O)=CC=C1C1(C=2C=C(Cl)C(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 WWAABJGNHFGXSJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- -1 polyethylene Polymers 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 abstract description 11
- 238000009601 thyroid function test Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 230000007423 decrease Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 13
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000013068 control sample Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229920002307 Dextran Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920005654 Sephadex Polymers 0.000 description 3
- 239000012507 Sephadex™ Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000012085 test solution Substances 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229940034208 thyroxine Drugs 0.000 description 2
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 206010020850 Hyperthyroidism Diseases 0.000 description 1
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 1
- 102000009488 Thyroxine-Binding Proteins Human genes 0.000 description 1
- 108010048889 Thyroxine-Binding Proteins Proteins 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002085 enols Chemical class 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 208000003532 hypothyroidism Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
- G01N33/78—Thyroid gland hormones, e.g. T3, T4, TBH, TBG or their receptors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/804—Radioisotope, e.g. radioimmunoassay
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/826—Additives, e.g. buffers, diluents, preservatives
Definitions
- thyroxine-binding proteins are the primary binding sites for the hormones produced by the thyroid gland. Since the TBF have a strong affinity for thyroid hormone, they will bind any free thyroid hormone available until they become saturated. In this test, such hormone is made available to the TB? in a sample of the-patients serum and a secondary binding site consisting of a resin powder or crosslinked dextran (Sephadex) is provided to take up any of the added radioactive triiodothyronine or thyroxine (hereinafter referred to as T or T respectively) not bound by the TBP.
- T or T radioactive triiodothyronine
- the main object of the present invention is to provide a thyroid function test solution containing a pH indicator which possesses the three fold advantage of (1) providing a color change when the serum sample is added thereto (2) inhibiting the formation of free iodide from radioactive iodinated T and (3) decreasing the adsorption of radioactive iodinated T to the walls of the vessel containing the same.
- thyroid function tests may be performed in many different ways, one common method involves adding an appropriate amount ofa buffered aqueous solu tion of radioactive triiodothyronine or thyroxine and serum to a column of ion exchange resin such as Amberlite IRA 400 made by Rohm and Haas Co. of Philadelphia, Pa. or a cross linked dextran such as Sephadex G-25 made by Pharmacia Corp. of Uppsala, Sweden.
- the column is then drained and the radioactivity measured in a gamma ray counting instrument for 1 minute.
- the column is thereafter eluted with distilled water and the radioactivity remaining on the column is again measured for 1 minute.
- the percent retention is then calculated by comparing the two readings. Retentions of 41 percent to 6l percent are considered normal with cross-linked dextran (Sephadex) columns and 25 percent to 35 percent with resin columns.
- the pH indicator employed in the present invention is of the protein error type which changes color in the presence of albumin without a significant actual change in pH.
- an indicator is added in a concentration of about 5. to micrograms per milliliter of aqueous I -T reagent buffered at a pH of 5 the reagent changes from its initial color to a second color when the serum is added.
- This second color acts as a marker which will appear at varying heights on the resin or dextrancolumndepending on the last operation step completed in the test procedure, since the color will move with the solvent front.
- a preferred indicator is bromcresol purple which changes color from yellow to purple within the pH range of 5.2 to 6.8.
- the yellow-orange color will turn to a grey-green color when serum is added at a ratio of 0.05 milliliter of serum to 0.45 milliliter of reagent mixture.
- the green color indicates the presence of the serum.
- the improved T test reagent with pH indicator of this invention will contain the following:
- a buffered aqueous solution of T containing 60 micrograms of bromcresol purple per milliliter prepared as shown in the foregoing example was stored under various conditions in a polyethylene container and the percent of free iodide formed was compared with a similar solution containing no pH indicator.
- the initial solutions employed contained about 2 percent free iodide.
- the radioactive T solution containing the indicator showed 2.25 percent free iodide compared to 5.2 percent free iodide in the control sample containing no indicator.
- the T test solution with pH indicator contained 4.25 percent free iodide, whereas the control sample had a free iodide content of 9.0 percent.
- a still further advantage of the use of a pH indicator in T test solution is to inhibit the adsorption of radioactive T to the walls of a plastic or glass container.
- Propylene glycol and albumin have been used in the past to reduce such adsorption but these additives interfere with the thyroid function test.
- aqueous radioactive T solutions containing one of several indicators at a concentration of 60 micrograms per milliliter of solution were rotated on a wheel in a polyethylene container for 14 days and the percent activity remaining was compared with a control sample containing no indicator.
- prewashed means contacting (such as by rinsing, soaking or flushing) the interior surfaces of said containers with an aqueous, buffered solution of one of the pH indicators hereinbefore disclosed.
- Bromcresol purple or bromthymol blue are the preferred indicators. These are employed at a concentration of from 50 to 70 micrograms per milliliter of water buffered to a pH of about 5.
- T employed in the test compositions of this invention can be made radioactive with either F or 1", although l is preferred, since it has a half-life of 56 days compared to 1"" which has a half-life of 8 days.
- a test composition for determining thyroid function comprising a radioactive thyroid hormone and a buffer for establishing the pH of thecomposition in a predetermined range
- the improvement which comprises adding to the composition a color responsive is used to maintain the pH of the composition at about 5 3.
- the indicator is selected from the group consistin of bromcresol purple, chlorphenol red, tetrabromp enol blue,
- bromphenol blue bromcresol green and bromthymol blue.
- test composition as in claim 1 wherein the indicator is bromcresol purple.
- a test composition as in claim 1 wherein the indicator is bromthymol blue.
- a test composition as in claim 1 wherein the thyroid substance is triiodothyronine.
- a method as in claim 8 wherein the indicator is selected from the group consisting of bromcresol purple, chlorphenol red, tetrabromphenol blue, bromphenol blue, bromcresol green and bromthymol blue.
- a method as in claim 8 wherein the thyroid substance is triiodothyronine.
- a method of inhibiting the adsorption of radioactive triiodothyronine from an aqueous solution thereof on the walls of a polyethylene container which comprises adding to said aqueous solution an adsorption inhibiting amount of a protein error type pH indicator.
- a method as in claim 13 wherein the indicator is selected from the group consisting of bromcresol purple, chlorphenol red, tetrabromphenol blue, bromphenol blue, bromcresol green and bromthymol blue.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Endocrinology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The thyroid hormone content of blood serum can be readily determined by using an in vitro radioactive thyroid function test system containing a ''''protein error'''' pH indicator such as bromcresol purple. Such a ''''protein error'''' indicator provides color and detects the presence of the test sample, inhibits the formation of free iodide and decreases the adsorption of radioactive tagged thyroid substance to the walls of the container enclosing same.
Description
Fade et I 51 Feb. 13,1973
[54] TEST COMPOSITION AND METHOD FOR THE IN VTTRO DETERMINATION OF THYROID FUNCTION [75] Inventors: Marshall Lloyd Fader; James Edward Christner, both of Elkhart, Ind.
[73] Assignee: Miles Laboratories, Inc., Elkhart, I11.
[22] Filed: April 27, 1970 [211 App]. No.: 32,396
[52] U.S. Cl. ..424/1, 23/230 B, 252/30l.1 R [51] int. Cl. ..A6lk 27/04 [58] Field of Search ..424/l 2, 7; 252/30l.1;
[56] References Cited UNITED STATES PATENTS 12/1969 Keston ..23/230 B 4/1970 Murty et al. ..424/] X 6/1970 Murty et al. ..424/l X Primary ExaminerBenjamin R. Padgett Attorney-Joseph C. Schwalbach, Michael A. Kondzella, Louis E. Davidson and Harry T. Stephenson [57] ABSTRACT 16 Claims, No Drawings TEST COMPOSITION AND METHOD FOR THE IN VITRO DETERMINATION OF TI'IYROID FUNCTION BACKGROUND OF THE INVENTION Numerous tests have recently been developed to determine thyroid function in vitro without exposure of the patient to ionizing radiation. For example, specific plasma proteins known as thyroxine-binding proteins or TBP are the primary binding sites for the hormones produced by the thyroid gland. Since the TBF have a strong affinity for thyroid hormone, they will bind any free thyroid hormone available until they become saturated. In this test, such hormone is made available to the TB? in a sample of the-patients serum and a secondary binding site consisting of a resin powder or crosslinked dextran (Sephadex) is provided to take up any of the added radioactive triiodothyronine or thyroxine (hereinafter referred to as T or T respectively) not bound by the TBP. Thus, the test provides an estimation of the saturation level of the TB? in a given serum sample which is an indirect but reliable indication of thyroid function. A large resin uptake indicates hyperthyroidism whereas a small resin uptake indicates hypothyroidism.
Two such tests for thyroid function are described in US. Pat. Nos. 3,206,602 and 3,451,777. Since no color change is involved in either test, the operator can become confused if the procedural steps are interrupted. In addition, the decomposition of radioactive iodinated T to the free iodide form, combined with considerable adsorption of the aqueous buffered radioactive T solution to glass or plastic containers, produces a significant error in the determination of the thyroid hormone content of the serum sample.
SUMMARY OF THE INVENTION The main object of the present invention is to provide a thyroid function test solution containing a pH indicator which possesses the three fold advantage of (1) providing a color change when the serum sample is added thereto (2) inhibiting the formation of free iodide from radioactive iodinated T and (3) decreasing the adsorption of radioactive iodinated T to the walls of the vessel containing the same.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Although thyroid function tests may be performed in many different ways, one common method involves adding an appropriate amount ofa buffered aqueous solu tion of radioactive triiodothyronine or thyroxine and serum to a column of ion exchange resin such as Amberlite IRA 400 made by Rohm and Haas Co. of Philadelphia, Pa. or a cross linked dextran such as Sephadex G-25 made by Pharmacia Corp. of Uppsala, Sweden. The column is then drained and the radioactivity measured in a gamma ray counting instrument for 1 minute. The column is thereafter eluted with distilled water and the radioactivity remaining on the column is again measured for 1 minute. The percent retention is then calculated by comparing the two readings. Retentions of 41 percent to 6l percent are considered normal with cross-linked dextran (Sephadex) columns and 25 percent to 35 percent with resin columns.
It has now been found that by adding a protein error" pH indicator to an aqueous radioactive T solution prior to combining with the serum sample or by adding same to the combined T solution and serum sample, one can achieve a highly improved test system.
The pH indicator employed in the present invention is of the protein error type which changes color in the presence of albumin without a significant actual change in pH. When such an indicator is added in a concentration of about 5. to micrograms per milliliter of aqueous I -T reagent buffered at a pH of 5 the reagent changes from its initial color to a second color when the serum is added. This second color acts as a marker which will appear at varying heights on the resin or dextrancolumndepending on the last operation step completed in the test procedure, since the color will move with the solvent front.
A preferred indicator is bromcresol purple which changes color from yellow to purple within the pH range of 5.2 to 6.8. When mixed with aqueous radioactive T solution, the yellow-orange color will turn to a grey-green color when serum is added at a ratio of 0.05 milliliter of serum to 0.45 milliliter of reagent mixture. Thus, the green color indicates the presence of the serum. Other satisfactory indicators which can be employed depending on the pH of the buffer system are (I) chlorphenol red, which changes from red to violet at a pH of 6.5 (2) tetrabromphenol blue, which changes from yellow to blue at a pH of 3.0 (3)bromphenol blue, which changes from yellow to purple at a pH of 3.0 (4) bromcresol green, which changes color from yellow to blue at a pH of 3.0 and (5) bromthymol blue, which changes from green to yellow at a pH of 6.5. In practice, the colors of the color change are not important as long as a difference can be easily seen.
Preferably, the improved T test reagent with pH indicator of this invention will contain the following:
l triiodothyronine Triiodothyronine unlabelled Bromcresol purple Distilled water q.s. to
4.0 micrograms 26.0 micrograms 0.18 grams 3.0 liters In addition to the color change which occurs in the use of a pH indicator of the type disclosed, another advantage resides in the unforeseen property of the indicator to inhibit the formation of free iodide from the I -T employed in the T reagent. This is important, since the gamma counters cannot distinguish between I -T and free I and all of the dose I is counted initially during the test procedure. Washing with water removes any free I from the column, since only the hormonal materials remain thereon. Thus, if the percent of free iodide is above 5 percent of the total dose counts, the T ratio is subject to a significant error of from 5 percent to 10 percent.
In a series of tests, a buffered aqueous solution of T containing 60 micrograms of bromcresol purple per milliliter prepared as shown in the foregoing example was stored under various conditions in a polyethylene container and the percent of free iodide formed was compared with a similar solution containing no pH indicator. The initial solutions employed contained about 2 percent free iodide. After 90 days at room temperature, the radioactive T solution containing the indicator showed 2.25 percent free iodide compared to 5.2 percent free iodide in the control sample containing no indicator. After 60 days at 40 C., the T test solution with pH indicator contained 4.25 percent free iodide, whereas the control sample had a free iodide content of 9.0 percent.
A still further advantage of the use of a pH indicator in T test solution is to inhibit the adsorption of radioactive T to the walls of a plastic or glass container. Propylene glycol and albumin have been used in the past to reduce such adsorption but these additives interfere with the thyroid function test. In actual tests, aqueous radioactive T solutions containing one of several indicators at a concentration of 60 micrograms per milliliter of solution were rotated on a wheel in a polyethylene container for 14 days and the percent activity remaining was compared with a control sample containing no indicator. The results obtained showed that over 90 percent of the radioactivity (after correction for physical decay) remained in those solutions containing bromthymol blue, chlorphenol red, bromcresol purple and tetrabromphenol blue, whereas with solutions containing phenol red or bromcresol green, 80 percent of the radioactivity remained, while those containing bromphenol blue retained 70 percent of the radioactivity in solution. Under the same test conditions, the control sample not containing one of the mentioned indicators retained only 32% of the radioactivity in solution. Similar results are obtained with glass containers.
Decreased adsorption oflike magnitude has been observed when plastic or glass containers are prewashed prior to filling with radioactive -T;, reagent devoid of indicator. The term prewashed" means contacting (such as by rinsing, soaking or flushing) the interior surfaces of said containers with an aqueous, buffered solution of one of the pH indicators hereinbefore disclosed. Bromcresol purple or bromthymol blue are the preferred indicators. These are employed at a concentration of from 50 to 70 micrograms per milliliter of water buffered to a pH of about 5.
It is to be understood that the T employed in the test compositions of this invention can be made radioactive with either F or 1", although l is preferred, since it has a half-life of 56 days compared to 1"" which has a half-life of 8 days.
What is claimed is:
1. In a test composition for determining thyroid function comprising a radioactive thyroid hormone and a buffer for establishing the pH of thecomposition in a predetermined range, the improvement which comprises adding to the composition a color responsive is used to maintain the pH of the composition at about 5 3. A test composition as in claim 1 wherein the indicator is selected from the group consistin of bromcresol purple, chlorphenol red, tetrabromp enol blue,
bromphenol blue, bromcresol green and bromthymol blue.
4. A test composition as in claim 1 wherein the indicator is bromcresol purple.
5. A test composition as in claim 1 wherein the indicator is bromthymol blue.
6. A test composition as in claim 1 wherein the indicator is present in a concentration of about 60 micrograms per milliliter of composition.
7. A test composition as in claim 1 wherein the thyroid substance is triiodothyronine.
8. In a method for determining thyroid function wherein blood serum is added to a composition comprising a radioactive tagged thyroid hormone and a buffer for establishing the pH of the composition in a predetermined range, the improvement which comprises the addition of a color responsive amount of a protein error type pH indicator which changes color in response to protein at the pH of the buffer prior to the addition of the serum.
9. A method as in claim 8 wherein the indicator is selected from the group consisting of bromcresol purple, chlorphenol red, tetrabromphenol blue, bromphenol blue, bromcresol green and bromthymol blue.
10. A method as in claim 8 wherein the indicator is bromcresol purple.
11. A method as in claim 8 wherein the indicator is present in a concentration of about 60 micrograms per milliliter of composition.
12. A method as in claim 8 wherein the thyroid substance is triiodothyronine.
13. A method of inhibiting the adsorption of radioactive triiodothyronine from an aqueous solution thereof on the walls of a polyethylene container which comprises adding to said aqueous solution an adsorption inhibiting amount of a protein error type pH indicator.
M. A method as in claim 13 wherein the indicator is selected from the group consisting of bromcresol purple, chlorphenol red, tetrabromphenol blue, bromphenol blue, bromcresol green and bromthymol blue.
15. A method as in claim 13 wherein the indicator is bromthymol blue.
16. A method as in claim 13 wherein the container is prewashed with an aqueous solution of bromcresol purple at a concentration of from 50 to micrograms per milliliter of water.
Claims (15)
1. In a test composition for determining thyroid function comprising a radioactive thyroid hormone and a buffer for establishing the pH of the composition in a predetermined range, the improvement which comprises adding to the composition a color responsive amount of a protein error type pH indicator which changes color in response to protein at the pH of the said buffer.
2. A test composition as in claim 1 wherein the buffer is used to maintain the pH of the composition at about 5.
3. A test composition as in claim 1 wherein the indicator is selected from the group consisting of bromcresol purple, chlorphenol red, tetrabromphenol blue, bromphenol blue, bromcresol green and bromthymol blue.
4. A test composition as in claim 1 wherein the indicator is bromcresol purple.
5. A test composition as in claim 1 wherein the indicator is bromthymol blue.
6. A test composition as in claim 1 wherein the indicator is present in a concentration of about 60 micrograms per milliliter of composition.
7. A test composition as in claim 1 wherein the thyroid substance is triiodothyronine.
8. In a method for determining thyroid function wherein blood serum is Added to a composition comprising a radioactive tagged thyroid hormone and a buffer for establishing the pH of the composition in a predetermined range, the improvement which comprises the addition of a color responsive amount of a protein error type pH indicator which changes color in response to protein at the pH of the buffer prior to the addition of the serum.
9. A method as in claim 8 wherein the indicator is selected from the group consisting of bromcresol purple, chlorphenol red, tetrabromphenol blue, bromphenol blue, bromcresol green and bromthymol blue.
10. A method as in claim 8 wherein the indicator is bromcresol purple.
11. A method as in claim 8 wherein the indicator is present in a concentration of about 60 micrograms per milliliter of composition.
12. A method as in claim 8 wherein the thyroid substance is triiodothyronine.
13. A method of inhibiting the adsorption of radioactive triiodothyronine from an aqueous solution thereof on the walls of a polyethylene container which comprises adding to said aqueous solution an adsorption inhibiting amount of a protein error type pH indicator.
14. A method as in claim 13 wherein the indicator is selected from the group consisting of bromcresol purple, chlorphenol red, tetrabromphenol blue, bromphenol blue, bromcresol green and bromthymol blue.
15. A method as in claim 13 wherein the indicator is bromthymol blue.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US3239670A | 1970-04-27 | 1970-04-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3716632A true US3716632A (en) | 1973-02-13 |
Family
ID=21864745
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00032396A Expired - Lifetime US3716632A (en) | 1970-04-27 | 1970-04-27 | Test composition and method for the in vitro determination of thyroid function |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US3716632A (en) |
| CA (1) | CA956097A (en) |
| DE (1) | DE2120442B2 (en) |
| FR (1) | FR2090714A5 (en) |
| GB (1) | GB1347498A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3960492A (en) * | 1974-05-31 | 1976-06-01 | Nuclear Diagnostics, Inc. | Method for determining an index of binding protein content of blood |
| US3985867A (en) * | 1974-01-02 | 1976-10-12 | The Radiochemical Centre Limited | Immunoassays employing a colored second antibody |
| US4108974A (en) * | 1976-08-27 | 1978-08-22 | Bio-Rad Laboratories, Inc. | Radioimmunoassay for thyroid hormone |
| US4278653A (en) * | 1979-02-01 | 1981-07-14 | New England Nuclear Corporation | Methods and kits for double antibody immunoassay providing a colored pellet for easy visualization |
| US4299812A (en) * | 1978-11-29 | 1981-11-10 | Diagnostic Products Corp. | Immunoassay of thyroxine in neonates using dried blood samples |
| US4311690A (en) * | 1978-06-20 | 1982-01-19 | Damon Corporation | Test set and method for the determination of free hormones |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3485587A (en) * | 1956-02-29 | 1969-12-23 | Miles Lab | Protein indicator |
| US3507618A (en) * | 1964-11-27 | 1970-04-21 | Squibb & Sons Inc | Apparatus and method for determining thyroid function |
| US3516794A (en) * | 1964-12-14 | 1970-06-23 | Squibb & Sons Inc | Apparatus and method for determining thyroid function |
-
1970
- 1970-04-27 US US00032396A patent/US3716632A/en not_active Expired - Lifetime
-
1971
- 1971-03-24 CA CA108,577A patent/CA956097A/en not_active Expired
- 1971-04-26 DE DE19712120442 patent/DE2120442B2/en active Granted
- 1971-04-26 GB GB1141971*[A patent/GB1347498A/en not_active Expired
- 1971-04-26 FR FR7114752A patent/FR2090714A5/fr not_active Expired
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3485587A (en) * | 1956-02-29 | 1969-12-23 | Miles Lab | Protein indicator |
| US3507618A (en) * | 1964-11-27 | 1970-04-21 | Squibb & Sons Inc | Apparatus and method for determining thyroid function |
| US3516794A (en) * | 1964-12-14 | 1970-06-23 | Squibb & Sons Inc | Apparatus and method for determining thyroid function |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3985867A (en) * | 1974-01-02 | 1976-10-12 | The Radiochemical Centre Limited | Immunoassays employing a colored second antibody |
| US3960492A (en) * | 1974-05-31 | 1976-06-01 | Nuclear Diagnostics, Inc. | Method for determining an index of binding protein content of blood |
| US4108974A (en) * | 1976-08-27 | 1978-08-22 | Bio-Rad Laboratories, Inc. | Radioimmunoassay for thyroid hormone |
| US4311690A (en) * | 1978-06-20 | 1982-01-19 | Damon Corporation | Test set and method for the determination of free hormones |
| US4299812A (en) * | 1978-11-29 | 1981-11-10 | Diagnostic Products Corp. | Immunoassay of thyroxine in neonates using dried blood samples |
| US4278653A (en) * | 1979-02-01 | 1981-07-14 | New England Nuclear Corporation | Methods and kits for double antibody immunoassay providing a colored pellet for easy visualization |
Also Published As
| Publication number | Publication date |
|---|---|
| DE2120442A1 (en) | 1971-11-11 |
| CA956097A (en) | 1974-10-15 |
| GB1347498A (en) | 1974-02-27 |
| DE2120442C3 (en) | 1973-11-29 |
| FR2090714A5 (en) | 1972-01-14 |
| DE2120442B2 (en) | 1973-05-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Horwitz et al. | Separation and preconcentration of actinides from acidic media by extraction chromatography | |
| Guthans et al. | The interaction of zinc, nickel and cadmium with serum albumin and histidine-rich glycoprotein assessed by equilibrium dialysis and immunoadsorbent chromatography | |
| US3938953A (en) | Process and device for blood examination using substances labelled with radioactive nuclides | |
| CA1212624A (en) | Immunoassay for antigens employing supported binder | |
| WRIGHT et al. | Assay of partially neutralized guinea pig anti-insulin serum | |
| US3659104A (en) | Method of measuring serum thyroxine | |
| US3716632A (en) | Test composition and method for the in vitro determination of thyroid function | |
| NAKAJIMA et al. | A new and simple method for the determination of thyroxine in serum | |
| US3714344A (en) | Method for determining thyroxine in blood serum and reagent therefor | |
| US3887332A (en) | Method of determining unsaturated iron binding capacity in serum | |
| US3925020A (en) | Method for determining the total iron-binding capacity of blood serum | |
| SU576976A3 (en) | Method of determining effective thyroxin ratio in blood sample | |
| Cooper et al. | The binding of americium and curium to human serum proteins | |
| US3516794A (en) | Apparatus and method for determining thyroid function | |
| Herber et al. | Anion-Exchange Studies. I. Bromide Complexes of Co (II), Cu (II), Zn (II) and Ga (III) | |
| Pitt-Rivers et al. | The separation of iodinated tyrosines and tyroxine from serum | |
| Chaminade et al. | Efficient determination of the pKa values of six chlorinated phenols by reversed-phase liquid chromatography | |
| US3745211A (en) | Method for determining thyroxine in blood serum and reagent therefor | |
| Tabachnick et al. | Thyroxine-protein interactions: II. The binding of thyroxine and its analogues to human serum albumin | |
| ANNE GALTON | Binding of thyroid hormones in serum and liver cytosol of Rana catesbeiana tadpoles | |
| Keane et al. | Dextran-coated charcoal immunoassay of insulin | |
| Hill et al. | A simplified method for the preparation of indium-DTPA brain scanning agent | |
| Russell et al. | Determination of pertechnetate in radiopharmaceuticals by high-pressure liquid thin-layer and paper chromatography | |
| US3709985A (en) | Method for determining total blood serum iron-binding capacity | |
| Dienst et al. | Plasma ammonia determination by ion exchange |