US3712687A - Dual pitch track links for adjustment of cushioned tracks - Google Patents

Dual pitch track links for adjustment of cushioned tracks Download PDF

Info

Publication number
US3712687A
US3712687A US00091489A US3712687DA US3712687A US 3712687 A US3712687 A US 3712687A US 00091489 A US00091489 A US 00091489A US 3712687D A US3712687D A US 3712687DA US 3712687 A US3712687 A US 3712687A
Authority
US
United States
Prior art keywords
links
link
track assembly
pitch length
pivot means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00091489A
Inventor
G Alexander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Tractor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Tractor Co filed Critical Caterpillar Tractor Co
Application granted granted Critical
Publication of US3712687A publication Critical patent/US3712687A/en
Assigned to CATERPILLAR INC., A CORP. OF DE. reassignment CATERPILLAR INC., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CATERPILLAR TRACTOR CO., A CORP. OF CALIF.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/20Tracks of articulated type, e.g. chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C27/00Non-skid devices temporarily attachable to resilient tyres or resiliently-tyred wheels
    • B60C27/20Non-skid devices temporarily attachable to resilient tyres or resiliently-tyred wheels having ground-engaging plate-like elements

Definitions

  • An adjustable track assembly fora cushioned track system comprising a plurality of shoe-bearing links, said track assembly being mounted circumferentially around a resilient spacer means. Some of said links in the track assembly have one pitch length and the others have a second pitch length. By coupling together a selected number of links of each pitch length, a closed track chain of any given circumferential length is obtained. The particular number of links of each length is conveniently determinedby use of a nomogram.
  • Cushioned track systems'for earth-working vehicles generally comprise a track assembly made from aplurality of shoe-bearing links coupled :together and mounted for rotation upon a resilient spacerlmeans which in turn isdrivingly mounted upon an. earth-working vehicle.
  • a cushioned tracksystem is shown in U.S. Pat. application, Ser. No. 884,903, filed'Dec. I5, 1969, now U.S. Pat. No. 3,601,212, of common assignment with the present invention.
  • This system utilizes link connecting pivot pins which have eccentric cam means formed thereon. By rotatably adjusting the pivot pin cams, one may vary the effective pitchlength between any given set of links.
  • the present invention is principally directed to another system'for adjusting the composite length of a cushioned track assembly which couples a plurality of links of two differentpitch lengths in various combinations to achieve any desired composite track assembly length. Additionally, the present invention provides a method for determining the proper number of links of each length required fora particular track assembly length. r 1
  • One of the objects of this invention is to provide a cushioned track adjustment system which utilizes a plurality of track links which have the same nominal pitch length and which can be manufactured from identical forgings. 1
  • Another object of this invention is to provide a cushioned track adjustment system which utilizes track links having the same nominal pitch length but which have been machined to have two different actual pitch lengths.
  • Still another object of this invention is to provide a plurality of track links having pin and bushing bores which have been machined an incremental amount to either side of their nominal centersto provide links having two different actual pitch lengths.
  • Yet another object of this invention is to provide a method for rapidly determining the number of track links having long and short pitch lengths which are required to produce a given fit with a given spacer means.
  • Another object is provide meansjto accurately control the fit of a track assembly in relation to a resilient spacer in a cushioned track.
  • FIG. I is a side elevational view of a cushioned track system which embodies the track assembly adjustment means of the present invention
  • FIG. 2 is an enlarged side elevational view of a portion of the track assembly employed in FIG. 1;
  • FIG. 3 is a top elevation showingone form of the link means utilized in the cushioned track system shown in FIG. 1;
  • FIG. 4 is a side elevational view, similar to the one shown in FIG. 2, which shows a modified form of track shoe to be utilized in the present invention
  • FIG. Sis another top elevation, similar to the one shown in FIG. 3, which shows an alternate form of a track link means for use in the present invention.
  • FIG. 6 shows a nomogram which may be used to 3 determine the required number of short and long pitch length links required to produce a cushioned track having any given circumferential dimension.
  • FIG. 1 illustrates a cushioned track system 10 which is adapted to replace conventional tires, crawler tracks, or the like, which are employed on standard earth-moving vehicles.
  • the cushioned track system comprises an annular resilient spacer means ll which is circumnavigated by an endless track assembly, a portion of which is shown at 12.
  • the resilient spacer means 11 may comprise an air-inflated rubber tire or anair bag mounted on a'conventional rim assembly 13.
  • Other suitable types of resilient spacer means are disclosed in the above-referenced U.S. Pat/application, Ser. No. 884,903.
  • the endless track assembly 12 comprises a plurality of closely coupled shoes 14 having ground-engaging grousers 14a which shoes are suitably attached to a chain of link members 15 which completely circumnavigates said resilient spacer means 1 I.
  • the preferred embodiment of the linkchain of the present invention includes a plurality of links 16, 17, and 18 coupled together by means of pins 19 suitably received in bushings 20.
  • Each individual link is provided with bores for mounting a pin and a bushing, respectively, at each opposite end thereof.
  • the ground-engaging track shoes 14 are secured by bolts or other suitable fasteners to the link chain formed by the coupled links.
  • each of the links 16, 17, and 18 has the same nominal pitch length because each link is made from an identical forging. That is, the distance between the nominal centers of the pin and bushing bores of each link is the same. However, by properly machining the link bores, links having two different pitch lengths may be obtained.
  • link 17 in FIG. 2 will be designated as a link having a long pitch length and link 18 will be designated as a link having a short pitch length.
  • the letter N is used to designate the nominal pitch length of the link. This is the distance which would separate the centers of the pin and bushing bores on either end of the link if said bores were located uniformly on all links.
  • the actual centers of the pin and bushing bores of link 17 have been machined a small amount off center with respect to said nominal centers so that the actual distance between the centers of the pin and bushing bores of link 17 is a distance L, which is incrementally greater than the distance N.
  • the pitch length of the link 18 has been shortened by the same amount.
  • the nominal pitch length is again designated by the letter N, and the pin and bushing bores have been machined off center to the inside of the nominal centers so as to create a shorter actual pitch length S.
  • links of different actual pitch length can be created from forgings having the same nominal pitch length.
  • a link chain of any composite length, or when closed, of any circumferential dimension can be created.
  • an actual pitch length differential between the long and short links of 0.250 inches may be obtained. This is done by machining both the pin bore and the bushing bore of the link 18 to 0.062 inches off-center to the inside of the nominal length N providing the link with an actual pitch length of 7.875 inches. Conversely, link 17 has its pin bore and bushing bore each machined 0.063 inches to the outside of the nominal length N, giving it a pitch length L of 8.125 inches. This results in a pitch length differential of 0.250 inches between the two links.
  • FIG. 4 also shows a modified form ofgrouser 14b which may be utilized.
  • FIGS. 3 and show alternate forms of the link chain which may incorporate the present invention.
  • FIG. 3 shows alternate forms of the link chain which may incorporate the present invention.
  • a single-link chain is shown.
  • One of these single-link chains would be adopted for disposition on each side of the resilient spacer means shown in FIG. 1.
  • the shoes 14 would extend transversely across the peripheral surface of said spacer means and would connect the respective link chains at fastening points 30 provided in each link.
  • Each link is provided with a pin bore 31 and a bushing bore 32 at opposite ends which may be machined off-center with respect to their nominal centers to provide either a long or short pitch length, as previously described.
  • the links are provided with blade portions 45 to mate with complementing fork portions 46, as shown.
  • FIG. 5 shows a double link chain which may be utilized in lieu of the single link chain of FIG. 3.
  • This chain would be disposed in the same position as the single-link chain, and includes pins 42 and bushings 43 for coupling each set of laterally disposed rail members 44.
  • a means and method for determining the proper number of short pitch and long pitch links, sections, or the like which must be articulated to produce a track assembly of the desired circumference is provided.
  • the first scale labeled INTER- FERENCE FIT, is graduated from 0 to I0 inches.
  • interference fit is used herein to describe the desired tightness of fit between the track assembly and the spacermeans in any particular application. It refers to the difference between the circumference of the resilient spacer means 11 with and without the track assembly mounted thereupon.
  • a resilient spacer means has a circumference of 270.0 inches prior to installation of the track assembly and has a circumference of 265.0 inches when the track assembly is mounted, then the interference fit is 5.0 inches, or the difference between the two circumferential dimensions.
  • the scale at the right of the nomogram is graduated in inches and indicates the measured circumference of the resilient spacer means prior to track assembly installation.
  • the scale at the center of the nomogram indicates both the total number of links and the number of links of each pitch length required to make up a track assembly of a given circumferential dimension.
  • the utility of the nomogram is best illustrated by way of example.
  • the particular spacer used is a 24 X 35 earth-mover tire, and the tire has a measured circumference of 258.5 inches when inflated to operating pressure.
  • an interference fit of 5.0 inches is desired. That is, assume that the tire circumference will be 253.5 inches when the track assembly is mounted thereupon.
  • the line crosses the center scale at a point C. It can be seen that this point is within the confines of the area marked 30 on the total number scale. This means that a total number of 30 links will be required to produce a track chain of the desired fit.
  • the particular number of links of each pitch length is found on each of the scales marked LONG and SHORT in the nomogram. It can be seen that the point C lies on the center line at the graduation marked 25, reading upwardly from 'to 30 on the LONG scale. This means that 25 long pitch links will be required in this particular combination. Also, reading downwardly from the 0 mark on the SHORT scale, it can be seen that the point C is on the fifth graduation. This means that five short pitch links will be required in the given combination.
  • the number of short and long pitch length links can be readily determined by drawing a line between the plots on the spacer circumference scale and the interference fit scale, and that a track assembly with almost any desired length, in increments of 0.250 inches, can be assembled to produce any desired interference fit.
  • An adjustabletrack assembly comprising a plurality of closely coupled, ground-engaging shoes, at least one articulated link assembly having adjacent links closely coupled together and connected to said shoes, said link assembly comprised of substantially identical links havingpivot means connecting each pair of adjacent links together for articulated movement about the pivot means axes to define a predetermined pitch length between each pairof adjacent pivot means axes, each link having bore means disposed at opposite ends thereof for receiving said pivot means, the spacing between said oppositely disposed bore means being fixed for each respective link, the spacing between said oppositely disposed bore means for at least one of said links being different from the corresponding spacing for another .of said links so that at least one of said,
  • defined pitch lengths is different from another of said defined pitch lengths.
  • the adjustable track assembly of claim 1 including an annular resilient spacer means rotatable about the central axis thereof, said spacer means having a peripheral surface and side surfaces, and said track assembly being mounted completely around said spacer means for unitizing said spacer means therewith.
  • each of said links has a blade portion formed at one end thereof and a forked portion formed at the opposite end thereof, and the blade portion of one of said links is positioned within and pivotably connected to the forked portion of another of said links by said pivot means.
  • each of said links is formed with a plurality of laterally-spaced members which are connected together by transverse spacer means.
  • each of said links is constructed from forged link members of the same size, and wherein each of said members is provided with pivot means receiving bores in each opposite end thereof.
  • An adjustable track assembly comprising a plurality of closely coupled, ground-engaging shoes, at least one articulated link assembly having adjacent links constructed of forged link members of equal size with pivot means receiving bores in each opposite end thereof, said link members being closely coupled together, and connected to said shoes, said link assembly having pivot means comprising pin means and bushing means, said pivot means receiving'bores comprising a bushing means receiving bore at one end of each of said link members and a pin means receiving bore at the opposite end of each of said link members, said pivot meansconnecting each pair of adjacent links together for articulated movement about the pivot means axes to define a predetermined pitch length between each pair of adjacent pivot means axes, and said bores being machined into said equal-sized link members at a first distance apart in links having a first predetermined pitch length and at a second distance apart in links having a second predetermined pitch length.

Abstract

An adjustable track assembly for a cushioned track system comprising a plurality of shoe-bearing links, said track assembly being mounted circumferentially around a resilient spacer means. Some of said links in the track assembly have one pitch length and the others have a second pitch length. By coupling together a selected number of links of each pitch length, a closed track chain of any given circumferential length is obtained. The particular number of links of each length is conveniently determined by use of a nomogram.

Description

United States Patent 1191 Alexander 1 1 Jan. 23, 1973 [s41 DUAL PITCH TRACK LINKS FOR 1,278,150 9/1918 Houghton ..305/59 x ADJUSTMENT 0F CUSHIONED 2,273,950 2/1942 Galanot 1,063,493 6/1913 Allen ..305/54 Inventor: George F. Alexander, Marquette Heights, 111. Assignee: Caterpillar Tractor Co., Peoria, 111.
Filed: Nov. 20, 1970 Appl. No.: 91,489
US. Cl. ..305/19, 305/58, 152/182 Int. Cl. ..B62d 55/20 Field of Search ..305/58, 59, 19, 36, 42; 152/187, 191
- F References Cited UNITED STATES PATENTS Peterson ..152/182 Primary Examiner-Richard J. Johnson Attorney-Fryer, 'ljensvold, Feix, Phillips & Lempio [57] ABSTRACT An adjustable track assembly fora cushioned track system comprising a plurality of shoe-bearing links, said track assembly being mounted circumferentially around a resilient spacer means. Some of said links in the track assembly have one pitch length and the others have a second pitch length. By coupling together a selected number of links of each pitch length, a closed track chain of any given circumferential length is obtained. The particular number of links of each length is conveniently determinedby use of a nomogram.
l0 Claims, 6 Drawing Figures PAIENTEUJAHNIBB 3,712,687
sum 1 OF 3 INVENTOR GE ORGE F. ALEXANDER 7 BY W 2 y I ATTORNFYS PATENTEUJM23 I975 3,712,687
SHEET 2 BF 3 0 3|, 7 o r [w I I7 45 0 O O O O O l 44 1 I 44 o o O o O o I INVENTOR GEORGE F. ALEXANDER ATTORNEYS INTERFERENCE I PATENTEUJAHZB I975 3 712 687 SHEET 3 BF 3 SPACER CIRCUMFERENCE NUMBER OF LINKS OF EACH PITCH LENGTH SHORT llllllllllll lll lIl Ell TOTAL NUMBER OF LINKS IO (INCHES) (I NCHE? INVENTOR GEORGE F. ALEXANDER BACKGROUND OF THE INVENTION number of long and short pitch length links required to produce a track assembly having a particular desired circumferential dimension.
Cushioned track systems'for earth-working vehicles generally comprise a track assembly made from aplurality of shoe-bearing links coupled :together and mounted for rotation upon a resilient spacerlmeans which in turn isdrivingly mounted upon an. earth-working vehicle. Such a cushioned tracksystem is shown in U.S. Pat. application, Ser. No. 884,903, filed'Dec. I5, 1969, now U.S. Pat. No. 3,601,212, of common assignment with the present invention.
One problem encountered in cushioned track systems is the difficulty in assuring a proper fit between the track assembly and the resilient spacer means embraced thereby. Small incremental adjustments of the track assembly are often necessary because the circumference of the particular resilient spacer means utilized may vary in use. Also, the rated nominal circurnjusting thesize of the track assembly must be provided.
One means for providing the desired track assembly adjustment is described in U.S. Pat. application, Ser. No. 100,852, filed Dec. 23, 1970, entitled Adjustable Pitch Track Link, of common'assignment herewith.
This system utilizes link connecting pivot pins which have eccentric cam means formed thereon. By rotatably adjusting the pivot pin cams, one may vary the effective pitchlength between any given set of links.
The present invention is principally directed to another system'for adjusting the composite length of a cushioned track assembly which couples a plurality of links of two differentpitch lengths in various combinations to achieve any desired composite track assembly length. Additionally, the present invention provides a method for determining the proper number of links of each length required fora particular track assembly length. r 1 One of the objects of this invention is to provide a cushioned track adjustment system which utilizes a plurality of track links which have the same nominal pitch length and which can be manufactured from identical forgings. 1
Another object of this invention is to provide a cushioned track adjustment system which utilizes track links having the same nominal pitch length but which have been machined to have two different actual pitch lengths.
Still another object of this invention is to provide a plurality of track links having pin and bushing bores which have been machined an incremental amount to either side of their nominal centersto provide links having two different actual pitch lengths.
Yet another object of this invention is to provide a method for rapidly determining the number of track links having long and short pitch lengths which are required to produce a given fit with a given spacer means.
Another object is provide meansjto accurately control the fit of a track assembly in relation to a resilient spacer in a cushioned track.
Other objects and advantages of the present invention will become apparent from the following description and claims.
The accompanying'drawing shows, by way of illustration, the preferred embodiments of the present invention and the principles thereof. It is recognized that other embodiments of the invention applying the same or equivalent principles may be used and that structural changes may be made as desired by those skilled in the art without departing from the present invention an the purview of the appended claims.
BRIEF DESCRIPTION OF THE DRAWING FIG. I is a side elevational view of a cushioned track system which embodies the track assembly adjustment means of the present invention;
FIG. 2 is an enlarged side elevational view of a portion of the track assembly employed in FIG. 1;
FIG. 3 is a top elevation showingone form of the link means utilized in the cushioned track system shown in FIG. 1;
FIG. 4 is a side elevational view, similar to the one shown in FIG. 2, which shows a modified form of track shoe to be utilized in the present invention;
FIG. Sis another top elevation, similar to the one shown in FIG. 3, which shows an alternate form of a track link means for use in the present invention; and
FIG. 6 shows a nomogram which may be used to 3 determine the required number of short and long pitch length links required to produce a cushioned track having any given circumferential dimension.
DETAILED DESCRIPTION OF TI-IE INVENTION FIG. 1 illustrates a cushioned track system 10 which is adapted to replace conventional tires, crawler tracks, or the like, which are employed on standard earth-moving vehicles. The cushioned track system comprises an annular resilient spacer means ll which is circumnavigated by an endless track assembly, a portion of which is shown at 12. The resilient spacer means 11 may comprise an air-inflated rubber tire or anair bag mounted on a'conventional rim assembly 13. Other suitable types of resilient spacer means are disclosed in the above-referenced U.S. Pat/application, Ser. No. 884,903.
The endless track assembly 12 comprises a plurality of closely coupled shoes 14 having ground-engaging grousers 14a which shoes are suitably attached to a chain of link members 15 which completely circumnavigates said resilient spacer means 1 I.
As more clearly shown in FIG. 2, the preferred embodiment of the linkchain of the present invention includes a plurality of links 16, 17, and 18 coupled together by means of pins 19 suitably received in bushings 20. Each individual link is provided with bores for mounting a pin and a bushing, respectively, at each opposite end thereof. The ground-engaging track shoes 14 are secured by bolts or other suitable fasteners to the link chain formed by the coupled links.
Initially, each of the links 16, 17, and 18 has the same nominal pitch length because each link is made from an identical forging. That is, the distance between the nominal centers of the pin and bushing bores of each link is the same. However, by properly machining the link bores, links having two different pitch lengths may be obtained.
For the purpose of illustration, link 17 in FIG. 2 will be designated as a link having a long pitch length and link 18 will be designated as a link having a short pitch length. The letter N is used to designate the nominal pitch length of the link. This is the distance which would separate the centers of the pin and bushing bores on either end of the link if said bores were located uniformly on all links. However, it will be noted that the actual centers of the pin and bushing bores of link 17 have been machined a small amount off center with respect to said nominal centers so that the actual distance between the centers of the pin and bushing bores of link 17 is a distance L, which is incrementally greater than the distance N. In a similar manner, the pitch length of the link 18 has been shortened by the same amount. As can be seen, the nominal pitch length is again designated by the letter N, and the pin and bushing bores have been machined off center to the inside of the nominal centers so as to create a shorter actual pitch length S.
Thus, it is seen that, by proper machining, links of different actual pitch length can be created from forgings having the same nominal pitch length. By coupling together a selected number, including zero, of links having short pitch lengths and a selected member, including zero, of links having long pitch lengths, a link chain of any composite length, or when closed, of any circumferential dimension, can be created.
For example, if links 17 and 18 initially have the same nominal pitch length of 8.00 inches, an actual pitch length differential between the long and short links of 0.250 inches may be obtained. This is done by machining both the pin bore and the bushing bore of the link 18 to 0.062 inches off-center to the inside of the nominal length N providing the link with an actual pitch length of 7.875 inches. Conversely, link 17 has its pin bore and bushing bore each machined 0.063 inches to the outside of the nominal length N, giving it a pitch length L of 8.125 inches. This results in a pitch length differential of 0.250 inches between the two links.
It should be noted that this small difference in pitch length between the various links of the track chain is not enough to create interference problems with the shoes 14. Although all of said shoes are of uniform length, ample overlap is provided between the lugs 40, 41 of each shoe to prevent gapping or mating thereof. The modified shoes shown in the embodiment of FIG. 4 are also provided with sufficient lug overlap to avoid any problems when a limited pitch length differential such as 0.250 inches is used. FIG. 4 also shows a modified form ofgrouser 14b which may be utilized.
FIGS. 3 and show alternate forms of the link chain which may incorporate the present invention. In FIG.
3, a single-link chain is shown. One of these single-link chains would be adopted for disposition on each side of the resilient spacer means shown in FIG. 1. The shoes 14 would extend transversely across the peripheral surface of said spacer means and would connect the respective link chains at fastening points 30 provided in each link. Each link is provided with a pin bore 31 and a bushing bore 32 at opposite ends which may be machined off-center with respect to their nominal centers to provide either a long or short pitch length, as previously described. The links are provided with blade portions 45 to mate with complementing fork portions 46, as shown.
The modification of FIG. 5 shows a double link chain which may be utilized in lieu of the single link chain of FIG. 3. This chain would be disposed in the same position as the single-link chain, and includes pins 42 and bushings 43 for coupling each set of laterally disposed rail members 44.
In accordance with the present invention, a means and method for determining the proper number of short pitch and long pitch links, sections, or the like which must be articulated to produce a track assembly of the desired circumference is provided. With reference to FIG. 6, it is seen that a nomogram of three scales is provided. The first scale, labeled INTER- FERENCE FIT, is graduated from 0 to I0 inches. The term interference fit is used herein to describe the desired tightness of fit between the track assembly and the spacermeans in any particular application. It refers to the difference between the circumference of the resilient spacer means 11 with and without the track assembly mounted thereupon. In other words, if a resilient spacer means has a circumference of 270.0 inches prior to installation of the track assembly and has a circumference of 265.0 inches when the track assembly is mounted, then the interference fit is 5.0 inches, or the difference between the two circumferential dimensions. The scale at the right of the nomogram is graduated in inches and indicates the measured circumference of the resilient spacer means prior to track assembly installation. The scale at the center of the nomogram indicates both the total number of links and the number of links of each pitch length required to make up a track assembly of a given circumferential dimension.
The utility of the nomogram is best illustrated by way of example. For example, assume that the particular spacer used is a 24 X 35 earth-mover tire, and the tire has a measured circumference of 258.5 inches when inflated to operating pressure. Assume that an interference fit of 5.0 inches is desired. That is, assume that the tire circumference will be 253.5 inches when the track assembly is mounted thereupon. To determine the correct number of links of each pitch length required in this situation, one would plot the circumference on the scale at the right of the nomogram, i.e., at A, and one would plot the desired interference fit on the scale at the left of the nomogram, i.e., at B. Then, one would draw a line between the plots A and B. Where this line crosses the center line of the center scale can be found an indication of the total number of links as well as the number of links of each length required.
In this particular example, the line crosses the center scale at a point C. It can be seen that this point is within the confines of the area marked 30 on the total number scale. This means that a total number of 30 links will be required to produce a track chain of the desired fit. The particular number of links of each pitch length is found on each of the scales marked LONG and SHORT in the nomogram. It can be seen that the point C lies on the center line at the graduation marked 25, reading upwardly from 'to 30 on the LONG scale. This means that 25 long pitch links will be required in this particular combination. Also, reading downwardly from the 0 mark on the SHORT scale, it can be seen that the point C is on the fifth graduation. This means that five short pitch links will be required in the given combination.
Thus, it can be seen that the number of short and long pitch length links can be readily determined by drawing a line between the plots on the spacer circumference scale and the interference fit scale, and that a track assembly with almost any desired length, in increments of 0.250 inches, can be assembled to produce any desired interference fit.
While the preferred embodiments of. the invention have been illustrated and described, it is understood that these embodiments are capable of variation and modification and are not limited to the precise details set forth, but rather include such variations and modifications as fall within the scope of the appended claims.
I claim: i
1. An adjustabletrack assembly comprising a plurality of closely coupled, ground-engaging shoes, at least one articulated link assembly having adjacent links closely coupled together and connected to said shoes, said link assembly comprised of substantially identical links havingpivot means connecting each pair of adjacent links together for articulated movement about the pivot means axes to define a predetermined pitch length between each pairof adjacent pivot means axes, each link having bore means disposed at opposite ends thereof for receiving said pivot means, the spacing between said oppositely disposed bore means being fixed for each respective link, the spacing between said oppositely disposed bore means for at least one of said links being different from the corresponding spacing for another .of said links so that at least one of said,
defined pitch lengths is different from another of said defined pitch lengths. j
' .2. The adjustable track assembly of claim 1 including an annular resilient spacer means rotatable about the central axis thereof, said spacer means having a peripheral surface and side surfaces, and said track assembly being mounted completely around said spacer means for unitizing said spacer means therewith.
3. The invention of clairn 2 wherein one of said articulated link assemblies is adjacent to each said side surface of said resilient spacer means and extends radially inwardly toward said central axis.
4. The invention of claim 3 wherein each of said links has a blade portion formed at one end thereof and a forked portion formed at the opposite end thereof, and the blade portion of one of said links is positioned within and pivotably connected to the forked portion of another of said links by said pivot means.
5. The invention of claim 3 wherein each of said links is formed with a plurality of laterally-spaced members which are connected together by transverse spacer means.
6. The adjustable track assembly of claim 1 wherein each of said links is constructed from forged link members of the same size, and wherein each of said members is provided with pivot means receiving bores in each opposite end thereof.
7. The adjustable track assembly of claim 6 wherein said pivot means comprises pin means and bushing means and wherein said pivot means receiving bores comprise a bushing means receiving bore at one end of each of said link members and a pin means receiving bore at the opposite end of each of said link members.
8. in a cushioned track assembly wherein an adjustable track assembly surrounds an annular resilient spacer means with a predetermined interference fit, the method of adjusting said interference fit which comprises;
a. providing track links having fixed dimensions which define a first predetermined pitch length,
b. providing substantially identical track links having other fixed dimensions which define a second predetermined pitch length,
c. selecting a predetermined number of links of each of said first and second predetermined pitch lengths, and
d. coupling said links having said first and second predetermined pitch lengths together to form a closed, spacer means-surrounding track assembly.
9 In a cushioned track assembly having a resilient spacer means surrounded by a track assembly having links of two different pitch lengths, the method for determining the number of links of each pitch length required for an annular spacer having a given circumferential dimension and a given interference fit which comprises;
a. plotting the circumferential dimension of said resilient spacer means on a first scale provided for that purpose,
b. plotting the desired interference fit on a second scale provided for that purpose,
c. determining the point of intersection between a line drawn from said first plot to said second plot and a third scale, provided adjacent first and second scales, and
d. selecting the number of links of each pitch length from said third scale.
10. An adjustable track assembly comprising a plurality of closely coupled, ground-engaging shoes, at least one articulated link assembly having adjacent links constructed of forged link members of equal size with pivot means receiving bores in each opposite end thereof, said link members being closely coupled together, and connected to said shoes, said link assembly having pivot means comprising pin means and bushing means, said pivot means receiving'bores comprising a bushing means receiving bore at one end of each of said link members and a pin means receiving bore at the opposite end of each of said link members, said pivot meansconnecting each pair of adjacent links together for articulated movement about the pivot means axes to define a predetermined pitch length between each pair of adjacent pivot means axes, and said bores being machined into said equal-sized link members at a first distance apart in links having a first predetermined pitch length and at a second distance apart in links having a second predetermined pitch length.

Claims (10)

1. An adjustable track assembly comprising a plurality of closely coupled, ground-engaging shoes, at least one articulated link assembly having adjAcent links closely coupled together and connected to said shoes, said link assembly comprised of substantially identical links having pivot means connecting each pair of adjacent links together for articulated movement about the pivot means axes to define a predetermined pitch length between each pair of adjacent pivot means axes, each link having bore means disposed at opposite ends thereof for receiving said pivot means, the spacing between said oppositely disposed bore means being fixed for each respective link, the spacing between said oppositely disposed bore means for at least one of said links being different from the corresponding spacing for another of said links so that at least one of said defined pitch lengths is different from another of said defined pitch lengths.
2. The adjustable track assembly of claim 1 including an annular resilient spacer means rotatable about the central axis thereof, said spacer means having a peripheral surface and side surfaces, and said track assembly being mounted completely around said spacer means for unitizing said spacer means therewith.
3. The invention of claim 2 wherein one of said articulated link assemblies is adjacent to each said side surface of said resilient spacer means and extends radially inwardly toward said central axis.
4. The invention of claim 3 wherein each of said links has a blade portion formed at one end thereof and a forked portion formed at the opposite end thereof, and the blade portion of one of said links is positioned within and pivotably connected to the forked portion of another of said links by said pivot means.
5. The invention of claim 3 wherein each of said links is formed with a plurality of laterally-spaced members which are connected together by transverse spacer means.
6. The adjustable track assembly of claim 1 wherein each of said links is constructed from forged link members of the same size, and wherein each of said members is provided with pivot means receiving bores in each opposite end thereof.
7. The adjustable track assembly of claim 6 wherein said pivot means comprises pin means and bushing means and wherein said pivot means receiving bores comprise a bushing means receiving bore at one end of each of said link members and a pin means receiving bore at the opposite end of each of said link members.
8. In a cushioned track assembly wherein an adjustable track assembly surrounds an annular resilient spacer means with a predetermined interference fit, the method of adjusting said interference fit which comprises; a. providing track links having fixed dimensions which define a first predetermined pitch length, b. providing substantially identical track links having other fixed dimensions which define a second predetermined pitch length, c. selecting a predetermined number of links of each of said first and second predetermined pitch lengths, and d. coupling said links having said first and second predetermined pitch lengths together to form a closed, spacer means-surrounding track assembly.
9. In a cushioned track assembly having a resilient spacer means surrounded by a track assembly having links of two different pitch lengths, the method for determining the number of links of each pitch length required for an annular spacer having a given circumferential dimension and a given interference fit which comprises; a. plotting the circumferential dimension of said resilient spacer means on a first scale provided for that purpose, b. plotting the desired interference fit on a second scale provided for that purpose, c. determining the point of intersection between a line drawn from said first plot to said second plot and a third scale, provided adjacent first and second scales, and d. selecting the number of links of each pitch length from said third scale.
10. An adjustable track assembly comprising a plurality of closely coupled, ground-engaging shoes, at least one articulated link assembly having adjacent links constructeD of forged link members of equal size with pivot means receiving bores in each opposite end thereof, said link members being closely coupled together, and connected to said shoes, said link assembly having pivot means comprising pin means and bushing means, said pivot means receiving bores comprising a bushing means receiving bore at one end of each of said link members and a pin means receiving bore at the opposite end of each of said link members, said pivot means connecting each pair of adjacent links together for articulated movement about the pivot means axes to define a predetermined pitch length between each pair of adjacent pivot means axes, and said bores being machined into said equal-sized link members at a first distance apart in links having a first predetermined pitch length and at a second distance apart in links having a second predetermined pitch length.
US00091489A 1970-11-20 1970-11-20 Dual pitch track links for adjustment of cushioned tracks Expired - Lifetime US3712687A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US9148970A 1970-11-20 1970-11-20

Publications (1)

Publication Number Publication Date
US3712687A true US3712687A (en) 1973-01-23

Family

ID=22228051

Family Applications (1)

Application Number Title Priority Date Filing Date
US00091489A Expired - Lifetime US3712687A (en) 1970-11-20 1970-11-20 Dual pitch track links for adjustment of cushioned tracks

Country Status (7)

Country Link
US (1) US3712687A (en)
JP (1) JPS5641467B1 (en)
BE (1) BE775598A (en)
CA (1) CA948088A (en)
DE (1) DE2156745C3 (en)
FR (1) FR2115296B1 (en)
GB (1) GB1353214A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085691A1 (en) * 2001-04-20 2002-10-31 Camoplast Inc. Endless belt for use with heavy duty track vehicles
US20100089508A1 (en) * 2008-10-08 2010-04-15 Jeff Kolb Armored tire and wheel assembly
CN103660815A (en) * 2013-12-12 2014-03-26 陈瑜秋 Automatic antiskid device for automobile on ice snow covered pavement
USD737337S1 (en) 2014-03-19 2015-08-25 Tire Protection Solutions, Llc Tire track shoe
USD737338S1 (en) 2014-03-19 2015-08-25 Tire Protection Solutions, Llc Tire track shoe
USD737868S1 (en) 2014-03-19 2015-09-01 Tire Protection Solutions, Llc Tire track shoe
USD737867S1 (en) 2014-03-19 2015-09-01 Tire Protection Solutions, Llc Tire track shoe
USD751609S1 (en) 2012-06-29 2016-03-15 Caterpillar Inc. Undercarriage track link for mobile earthmoving machine
WO2018067287A1 (en) * 2016-10-07 2018-04-12 Caterpillar Inc. Track chain assembly of undercarriage with link having increased pitch

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598355A1 (en) * 1986-05-12 1987-11-13 Cailleau Gerard Device for getting land vehicles out of the sand
CN108297633B (en) * 2018-03-15 2023-07-14 罗富强 Wheel-wrapping type wheel anti-skid and anti-sinking crawler belt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1063493A (en) * 1911-08-07 1913-06-03 William P Allen Chain-link.
US1278150A (en) * 1917-10-13 1918-09-10 Frederick C Austin Endless track-band for motor-vehicles.
US2273950A (en) * 1940-05-14 1942-02-24 Camille P Galanot Traction device
US3601212A (en) * 1969-12-15 1971-08-24 Caterpillar Tractor Co Cushioned track

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1063493A (en) * 1911-08-07 1913-06-03 William P Allen Chain-link.
US1278150A (en) * 1917-10-13 1918-09-10 Frederick C Austin Endless track-band for motor-vehicles.
US2273950A (en) * 1940-05-14 1942-02-24 Camille P Galanot Traction device
US3601212A (en) * 1969-12-15 1971-08-24 Caterpillar Tractor Co Cushioned track

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085691A1 (en) * 2001-04-20 2002-10-31 Camoplast Inc. Endless belt for use with heavy duty track vehicles
US20100089508A1 (en) * 2008-10-08 2010-04-15 Jeff Kolb Armored tire and wheel assembly
US20130025754A1 (en) * 2008-10-08 2013-01-31 Jeff Kolb Armored tire and wheel assembly
USD751609S1 (en) 2012-06-29 2016-03-15 Caterpillar Inc. Undercarriage track link for mobile earthmoving machine
CN103660815B (en) * 2013-12-12 2016-01-20 陈瑜秋 A kind of vehicle for ice and snow road automatic anti-slip device
CN103660815A (en) * 2013-12-12 2014-03-26 陈瑜秋 Automatic antiskid device for automobile on ice snow covered pavement
USD737337S1 (en) 2014-03-19 2015-08-25 Tire Protection Solutions, Llc Tire track shoe
USD737867S1 (en) 2014-03-19 2015-09-01 Tire Protection Solutions, Llc Tire track shoe
USD737868S1 (en) 2014-03-19 2015-09-01 Tire Protection Solutions, Llc Tire track shoe
USD737338S1 (en) 2014-03-19 2015-08-25 Tire Protection Solutions, Llc Tire track shoe
WO2018067287A1 (en) * 2016-10-07 2018-04-12 Caterpillar Inc. Track chain assembly of undercarriage with link having increased pitch
US20180099709A1 (en) * 2016-10-07 2018-04-12 Caterpillar Inc. Track chain assembly of undercarriage with link having increased pitch
CN109789901A (en) * 2016-10-07 2019-05-21 卡特彼勒公司 A kind of track chain of the chassis of the chain link increased with pitch
US10457343B2 (en) * 2016-10-07 2019-10-29 Caterpillar Inc. Track chain assembly of undercarriage with link having increased pitch
CN109789901B (en) * 2016-10-07 2022-09-30 卡特彼勒公司 Track chain assembly having an undercarriage with links having increased pitch
AU2017340272B2 (en) * 2016-10-07 2022-12-15 Caterpillar Inc. Track chain assembly of undercarriage with link having increased pitch

Also Published As

Publication number Publication date
FR2115296B1 (en) 1976-09-03
DE2156745B2 (en) 1979-12-20
JPS5641467B1 (en) 1981-09-28
CA948088A (en) 1974-05-28
FR2115296A1 (en) 1972-07-07
BE775598A (en) 1972-05-19
GB1353214A (en) 1974-05-15
DE2156745C3 (en) 1980-08-28
DE2156745A1 (en) 1972-05-25

Similar Documents

Publication Publication Date Title
US3712687A (en) Dual pitch track links for adjustment of cushioned tracks
US3717389A (en) Pitch adjustment means for track assemblies
US3659112A (en) Master link for cushioned track
JPH04221201A (en) Crawler traveling device
US3249143A (en) Traction device
JPS6056672B2 (en) tracked vehicle wheels
US2091171A (en) Antiskid chain and wheel
ES472503A1 (en) Rigid axle suspension system for a vehicle.
US2553712A (en) Slip-preventing attachment for vehicle wheels
US1494849A (en) Resilient wheel
US2302658A (en) Crawler tractor driving means
GB1134109A (en) Endless track vehicle
AU649630B2 (en) Resilient tyre
US3582156A (en) Connector for track-laying chains
ATE33795T1 (en) MOTOR VEHICLE WHEEL WITH FLATS.
US2171547A (en) Traction device
US3052502A (en) Traction wheel and chain
US4178042A (en) Variable-track wheels
US2459751A (en) Molded rubber traction chain
US2194437A (en) Swivel device for tire chains
US2433545A (en) Tire chain assembly
US2237247A (en) Wheel construction
AU613947B2 (en) Wheel trim and wheel trim securing device
US2425644A (en) Traction chain
US2433367A (en) Traction device

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR INC., A CORP. OF DE.,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CATERPILLAR TRACTOR CO., A CORP. OF CALIF.;REEL/FRAME:004669/0905

Effective date: 19860515

Owner name: CATERPILLAR INC., 100 N.E. ADAMS STREET, PEORIA, I

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CATERPILLAR TRACTOR CO., A CORP. OF CALIF.;REEL/FRAME:004669/0905

Effective date: 19860515