US3710943A - Variable displacement fence for oil spill containment and recovery - Google Patents

Variable displacement fence for oil spill containment and recovery Download PDF

Info

Publication number
US3710943A
US3710943A US00016692A US3710943DA US3710943A US 3710943 A US3710943 A US 3710943A US 00016692 A US00016692 A US 00016692A US 3710943D A US3710943D A US 3710943DA US 3710943 A US3710943 A US 3710943A
Authority
US
United States
Prior art keywords
elongate
barrier
sheet
water
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00016692A
Inventor
W Davidson
H Cole
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3710943A publication Critical patent/US3710943A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/06Barriers therefor construed for applying processing agents or for collecting pollutants, e.g. absorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/918Miscellaneous specific techniques
    • Y10S210/922Oil spill cleanup, e.g. bacterial
    • Y10S210/924Oil spill cleanup, e.g. bacterial using physical agent, e.g. sponge, mop

Definitions

  • ABSTRACT A flexible, inflatable, elongated barrier useful for the containment, separation and recovery of oil spilt on water is constructed in the form of a tunnel inside of which there is a continuous passage for oil that enters the barrier beneath the waters surface on the upstream side and leaves the barrier on either end of the tunnel.
  • the barrier is weighted at the bottom by suitable ballast means and buoyed at the top by long, continuous air chambers. Lengthwise cables are attached along the top and bottom of the barrier for towing and control purposes.
  • the barrierc an be submerged during emergency conditions and is constructed for rollup on a reel either as a continuous single element of multiplicity of sections.
  • FIG. Ia is a diagrammatic representation of FIG. Ia
  • This invention relates to an air-inflatable barrier that satisfies this need and, further, serves the-dual function of both containment and recovery.
  • the concept described herein provides a barrier that is responsive to the mean wave height, rather than to each wave in a heavy sea.
  • This invention departs from the thesis that requires an oil containment barrier to conform with every contour of the water surface in order to be effective.
  • the new concept is based on the design of a barrier that will conform to the mean wave height.
  • a barrier is designed to maintain essentially a fixed vertical position with respect to mean sea level, the height of the barrier being sufficient to contain the wave crests as well as the wave troughs.
  • This is analogous to a swimming pool with stationary walls for retaining the water.
  • the same principle is achieved in the design of an oil containment barrier that is supported by a bubble of air enclosed in an air chamber made with simply constructed and arranged elongate flexible plastic sheets, each of which is at least several wavelengths long. The amount of air used to inflate the air chamber can be adjusted to change the mean height of the fence,
  • the air is free to circulate from one end of the chamber to the other maintaining essentially mean total volume and pressure.
  • the cross-sectional area will decrease near the wave crests and increase at the wave troughs.
  • this invention relates to the use of inflatable buoyancy .devices for each section of the barrier wherein the length of each section is at least twice the wavelength of the largest waves to be contained and wherein the construction of the gas-filled chamber provides for the equalization of gas pressure rapidly over the entire length of the section in response to wave action.
  • this invention relates to the use of inflatable buoyancy devices for each section of the barrier wherein the mean height of each section and its elevation in the water can be adjusted individually by varying the amount of inflation,
  • this invention relates to the use of inflatable buoyancy devices wherein the barrier is composed of sections that when connected provide a barrier having continuous, well-rounded contours projecting above the watersurface, thereby minimizing wind resistance and air turbulence
  • this invention relates to the use of the variable displacement barrier as an integral part of the oil recovery system, as well as for the containment of oil spills, such as for funneling the oil to a common weir or skimmer.
  • this invention relates to a means of controlling the position of such a fence and a means for towing it through the water by means of two cables, one cable being attached to the lower extremity of the fence that is submerged and the other cable being attached to the air chamber near the top of the fence.
  • this invention relates to a barrier design, embodying the principles set forth herein, that can be fabricated entirely, except for cables and weights, from durable plastic, rubber or other flexible sheet materials in simple, flatsandwich configuration that can be readily coiled on a reel for storage and transport.
  • this invention relates to the use of two such barriers in parallel, the inner barrier being used to contain oil and withstand wind and water forces, while the outer barrier furnishes added buoyancy and support for the inner barrier as well as offering a backup for containment of oil spilled over or under the inner barrier.
  • FIG. 1 in panoramic view illustrates typical uses of the invention for the containment and recovery of oil spills on water
  • FIG. 2 is a vertical cross-section and side view of the variable displacement barrier illustrating the method of construction and technique for containment of an oil spill
  • FIG. 3 is a vertical cross-section view of a dual barrier using two inflatable, variable displacement barriers in parallel.
  • numeral 1 indicates in its entirety a complete system for oil containment and recovery.
  • Barrier sections 2 are held in position to contain the oil slick against the wind and water currents by tugs 3.
  • Barrier sections 2 are connected at the trailing end of the loop to a common weir or skimmer 4 where the oil is collected for removal from the water.
  • Pump 5 is used to transfer oil from weir 4 to barge 6 which may contain equipment or other provisions for separation of oil from water. The oil is then transferred from barge 6 by means of pump 7 into storage pontoon 8.
  • Buoys 9, attached to barrier sections 2 by cable and air hose, are used to inflate barrier sections 2 as well as to support them when deflated and submerged for protection during storms.
  • FIG. 1b illustrates analternate use of barrier sections 2 in which oil is recovered by using tug 3 to tow barrier sections 2 in a spiral path around or through the oil slick so that oil collected inside of or'against barrier sections 2 is conducted to weir 4 and thence transferred to barge 6 and pontoon 8 by pumps 5 and 7.
  • FIG. 10 illustrates still another method of skimming by towing a shorter length of barrier sections 2 at a shallow angle through the water by proper positioning of tugs 3 to collect oil against barrier sections 2 and conduct it to weir 4 for recovery, separation and storage.
  • Barrier sections 2 can be used for any of the above systems, either static or towed. In inland waterways, where there is more protection from wind and wave, the amount of draft can be reduced by increasing the amount of inflation of barrier sections 2. i
  • FIG. 2 shows the method of construction and the principle of operation of barrier sections 2.
  • the inflatable chamber of the barrier may be simply constructed by bonding together two flexible sheets of plastic or rubber material, such as PVC, polypropylene, neoprene or other similar film material.
  • Elongate, flexible sheets 10 and 11, of equal width and length and rectangular in shape, are placed flat against each other and thenbonded together along four edges of the rectangle (seams a-a, b-b, cc and d-d of FIG. 2c to form a long, inflatable chamber.
  • Valve 12 is attached to this chamber to provide for inflation with gas, such as air.
  • Elongate, perforate, flexible sheetl4 is bonded to sheets 10 and 11 along seams a--a and b-b connecting said spaced apart seams to form a collection chamber with open ends and with elongate inlet in communication with said chamber.
  • barrier sections 2 are alternate method of construction is to extend perforate interconnected by means of flaps 16 which are flexibly extended beyond seams 0-: and d-d, thus providing a continuous passage or tunnel under the inflated chamber.
  • Air pressure inside of said air chamber causes sheets 10 and 11 to separate and assume a loosely arranged and horizontally disposed configuration, generally as shown in FIG. 2a and 2b.
  • Outer elongate sheet 10 conforms flexibly to internal air pressure and to local changes in external water pressure; its shape being alterable by adjustment of ballast l7 and cables 13 and 18.
  • Elongate sheet 11 is forced against the surface of the water and oil inside of said collection chamber, as shown at f-f, gg and h-h of FIG. 2a and 2b, its function being to complete the air chamber and thereby provide variable volume. to said air chamber responsive to wave action.
  • Each of the barrier sections 2 can be inflated separately and its pressure adjusted independently from other fence sections; al-
  • a common air supply can be connected to all barrier sections 2 simply by interconnecting the air supply lines attached to valves 12.
  • perforate sheet 14 permits water and oil to enter inside the collection chamber while excluding any heavy debris.
  • barrier sections 2 operate and respond to the mean height of the waves can be seen by further reference to FIGS. 2a and 2b.
  • the air chamber is inflated through valve 12 until the top of barrier sections 2 remains about 1 foot above the crest of a 4-foot wave, as illustrated in FIG. 2(a). Under this condition, air entrapped inside the air chamber will displace water from inside of the collection chamber, the amount of displacement varying according to the local wave condition, including wave frequency.
  • ballast 17 can be added and the gas pressure inside the air chamber will be correspondingly increased; the barrier sections 2 will elongate vertically and the additional buoyancy required will be obtained by the displacement of water from inside the collection chamber to a level such as h-h of FIG. 2a.
  • How barrier sections 2 are used to collect and remove oil is also illustrated by reference to FIG. 2a.
  • the build-up of oil against the barrier, in the manner illustrated, is accompanied by an increase in the viscosity of the oil, according to tests on oil slicks.
  • the flow of water under the barrier tends to carry oil with it, separation of oil and water occurring at a relative velocity of about 5 feet per second.
  • barrier sections 2 In some instances it will be necessary to allow the barrier to drift with the current in order not to exceed this relative velocity. Under such conditions, the oil will descend as far as a-a in FIG. 2, then pass through perforate sheet 14 and float up inside of the collection chamber displacing water from that space. If barrier sections 2 were retained only by cable 13, drag forces would overcome the buoyancy forces and oil would spill over the top of the barrier. However, by applying a restraining force at the top of barrier sections 2, by means of cable 18, harnesses l5 and perforate sheet 14, barrier sections 2 become large sea anchors having a configuration more like that shown in FIG. 3. Thus, it can be seen that the escape of oil from barrier sections 2 can be prevented by manipulation of cables 13 and 18, by controlling the drift rate of the barrier in relation to the current velocity, and by the removal of oil as it accumulates against the barrier and inside of the collection chamber.
  • FIG. 2d illustrates an alternate method of construction of barrier sections 2 wherein perforate sheet 14 is extended and enlarged to completely surround and enclose the barrier.
  • the enlarged perforate sheet 14a aids in distributing tensile loads and other forces applied to barrier sections 2 and, further, protects the air chamber from damage.
  • it is also unnecessary to use laminated or reinforced material for the air chamber itself, thereby enhancing the gastight integrity of this important element of barrier sections 2.
  • FIG. 3 illustrates another application of barrier sections 2 in which two barriers are used in parallel with each other to further insure against the escape of oil. Both barriers are of the same size and are constructed as illustrated in FIG. 2. A strong current flowing against the barrier from the oil slick side, such as would occur in the application shown in FIG. la in the area of weir 4, will force the inner barrier against the outer barrier. Should the outer barrier become fully immersed in the water, its full buoyancy will be utilized for supporting the inner barrier and thereby aid in maintaining adequate free-board on the inner barrier.
  • barrier sections 2 for the outer barrier (e.g., l wavelength or less), such that the buoyancy provided by these shorter sections will intions and substitutions are possible in the practice of this invention without departing from the spirit or the scope thereof.
  • a second elongate, flexible, sheet loosely arranged and horizontally disposed within said tunnel and constructed and arranged therein whereby a closed first air chamber is defined within said tunnel continuously along its elongate dimension and a second elongate collection chamber with open ends is defined between said elongate sheet and said spaced apart elongate edges, whereby said loosely arranged second elongate sheet provides variable volume to said firstair chamber responsive to wave action on the surface of said body of water;
  • a third elongate flexible perforate sheet connecting said spaced apart elongate edges whereby oil and water may enter said elongate collection chamber when said spaced apart elongate edges are arranged below the surface of said body of water;
  • cable means attached to said first closed air chamber and to said elongate collection chamber;
  • ballast means attached to at least one of said elongate edges of said tunnel whereby said elongate edges are maintained below the surface of said body of water.
  • said first elongate flexible sheet comprises two or more' flexible sheets bonded together to form one or more inflatable gas chambers between said sheets.
  • the apparatus of claim 2 comprising two barriers constructed and arranged whereby said elongate inlets are in parallel relationship below the surface of said body of water.

Abstract

A flexible, inflatable, elongated barrier useful for the containment, separation and recovery of oil spilt on water is constructed in the form of a tunnel inside of which there is a continuous passage for oil that enters the barrier beneath the waters surface on the upstream side and leaves the barrier on either end of the tunnel. The barrier is weighted at the bottom by suitable ballast means and buoyed at the top by long, continuous air chambers. Lengthwise cables are attached along the top and bottom of the barrier for towing and control purposes. The barrier can be submerged during emergency conditions and is constructed for roll-up on a reel either as a continuous single element of multiplicity of sections.

Description

United States Patent 1 Davidson et al.
[111 3,710,943 [451 Jan. 16, 1973 [54] VARIABLE DISPLACEMENT FENCE FOR OIL SPILL CONTAINMENT AND RECOVERY [76] Inventors: William M. Davidson, 57 Briarcliff Road; Howard W. Cole, Jr., 12 Vale Drive, both of Mountain Lakes, NJ. 07046 [22] Filed: March 5, 1970 [21] Appl. No.: 16,692
3,532,219 10/1970 Valdespino ..210/242 Primary Examiner--Reuben Friedman Assistant Examiner-T. A. Granger [57] ABSTRACT A flexible, inflatable, elongated barrier useful for the containment, separation and recovery of oil spilt on water is constructed in the form of a tunnel inside of which there is a continuous passage for oil that enters the barrier beneath the waters surface on the upstream side and leaves the barrier on either end of the tunnel. The barrier is weighted at the bottom by suitable ballast means and buoyed at the top by long, continuous air chambers. Lengthwise cables are attached along the top and bottom of the barrier for towing and control purposes. The barrierc an be submerged during emergency conditions and is constructed for rollup on a reel either as a continuous single element of multiplicity of sections.
4 Claims, 8 Drawing Figures PATENTEUJAN 16 I973 3.710.943
FIG. Ia
INVENTORS WILLIAM M. DAVIUkON HOWARD W. COLE. JR
- PATENTEDJAHB I975 3.710.943
SHEET 2 [IF 2 INVENTORS c WILLIAM M. DAVIDSON HOWARD w. COLE. JR.
VARIABLE DISPLACEMENT FENCE FOR OIL SPILL CONTAINMENT AND RECOVERY For the control of oil spills in heavy seas, such as might occur with disabled tankers or oil escaping from offshore wells, there is a need for light, portable barriers or fences that can be rushed to the scene of the spill, preferably by air transport, and deployed rapidly. Oil spills disperse quickly on the water surface by force of wind and wave, unless properly contained. Once contained, the oil should be removed promptly, otherwise rapid degradation of the oil occurs by the loss of light oil fractions into the atmosphere and by reaction with the sun and the sea.
This invention relates to an air-inflatable barrier that satisfies this need and, further, serves the-dual function of both containment and recovery. The concept described herein provides a barrier that is responsive to the mean wave height, rather than to each wave in a heavy sea.
Most of the containment systems suggested to-date employ the principle of a floating boom, or other fixed flotation elements, that support a fence or skirt, with the intent of maintaining the boom on top of the water and the bottom of the skirt a fixed distance below the surface in order to provide a barrier for the spilled oil. None of the available designs have made efficient use of the principles of buoyancy, as required for this application and, therefor, do not conform well to the surface in heavy seas. Efforts to modify such fences in order to prevent oil from escaping over the boom or under the skirt often take the form of additional height or depth of the fence which adds drag from wind or water currents and does not improve the performance of the fence.
It is possible to design a free body that will conform with the surface of the sea and maintain a relatively stable position with respect to the vertical movement of the water surface. However, when several sections are coupled together in order to form a long, continuous fence, the individual sections can no longer be regarded as free bodies. The large forces generated by wave action will cause the sections to interact and develop very substantial loads between sections of the fence. These loads added to the strains imposed by wind and water currents generally will lead to destruction of the fence and, prior to that time, will impair effective performance of the fence.
This invention departs from the thesis that requires an oil containment barrier to conform with every contour of the water surface in order to be effective. The new concept is based on the design of a barrier that will conform to the mean wave height. Such a barrier is designed to maintain essentially a fixed vertical position with respect to mean sea level, the height of the barrier being sufficient to contain the wave crests as well as the wave troughs. This is analogous to a swimming pool with stationary walls for retaining the water. The same principle is achieved in the design of an oil containment barrier that is supported by a bubble of air enclosed in an air chamber made with simply constructed and arranged elongate flexible plastic sheets, each of which is at least several wavelengths long. The amount of air used to inflate the air chamber can be adjusted to change the mean height of the fence,
but the air is free to circulate from one end of the chamber to the other maintaining essentially mean total volume and pressure. At locations along the barrier the cross-sectional area will decrease near the wave crests and increase at the wave troughs.
In accordance with one embodiment, this invention relates to the use of inflatable buoyancy .devices for each section of the barrier wherein the length of each section is at least twice the wavelength of the largest waves to be contained and wherein the construction of the gas-filled chamber provides for the equalization of gas pressure rapidly over the entire length of the section in response to wave action.
In accordance with another embodiment, this invention relates to the use of inflatable buoyancy devices for each section of the barrier wherein the mean height of each section and its elevation in the water can be adjusted individually by varying the amount of inflation,
including the provision for submerging the entire barrier for its protection during severe storms. 1
In accordance with yet another embodiment, this invention relates to the use of inflatable buoyancy devices wherein the barrier is composed of sections that when connected provide a barrier having continuous, well-rounded contours projecting above the watersurface, thereby minimizing wind resistance and air turbulence In accordance with yet another embodiment, this invention relates to the use of the variable displacement barrier as an integral part of the oil recovery system, as well as for the containment of oil spills, such as for funneling the oil to a common weir or skimmer.
ln accordance with yet another embodiment, this invention relates to a means of controlling the position of such a fence and a means for towing it through the water by means of two cables, one cable being attached to the lower extremity of the fence that is submerged and the other cable being attached to the air chamber near the top of the fence.
In accordance with yet another embodiment, this invention relates to a barrier design, embodying the principles set forth herein, that can be fabricated entirely, except for cables and weights, from durable plastic, rubber or other flexible sheet materials in simple, flatsandwich configuration that can be readily coiled on a reel for storage and transport.
In accordance with yet another embodiment, this invention relates to the use of two such barriers in parallel, the inner barrier being used to contain oil and withstand wind and water forces, while the outer barrier furnishes added buoyancy and support for the inner barrier as well as offering a backup for containment of oil spilled over or under the inner barrier.
Accordingly, it is an object of this invention to provide a simple, light-weight, adjustable, economical, readily transportable and easily deployed inflatable barrier for the containment and recovery of oil spills.
It is another object of this invention to provide an oil containment and recovery barrier that can be completely submerged in order to protect it from damage during sudden and severe storms, then subsequently re-inflated and recovered for further use.
How these and still further objects and advantages of this invention are achieved will become apparent from the following detailed specification, appended claims and attached drawings.
Referring to the drawings, which illustrate the invention, and in which like reference characters indicate like parts throughout the several views:
FIG. 1 in panoramic view illustrates typical uses of the invention for the containment and recovery of oil spills on water; pp FIG. 2 is a vertical cross-section and side view of the variable displacement barrier illustrating the method of construction and technique for containment of an oil spill;
FIG. 3 is a vertical cross-section view of a dual barrier using two inflatable, variable displacement barriers in parallel.
Referring in greater detail to FIG. la, numeral 1 indicates in its entirety a complete system for oil containment and recovery. Barrier sections 2 are held in position to contain the oil slick against the wind and water currents by tugs 3. Barrier sections 2 are connected at the trailing end of the loop to a common weir or skimmer 4 where the oil is collected for removal from the water. Pump 5 is used to transfer oil from weir 4 to barge 6 which may contain equipment or other provisions for separation of oil from water. The oil is then transferred from barge 6 by means of pump 7 into storage pontoon 8. Buoys 9, attached to barrier sections 2 by cable and air hose, are used to inflate barrier sections 2 as well as to support them when deflated and submerged for protection during storms. In the event that system 1 is used in waters where the current is in excess of several knots, it is likely that the entire system would move with the current and, thereby, prevent the escape of oil under barrier sections 2. FIG. 1b illustrates analternate use of barrier sections 2 in which oil is recovered by using tug 3 to tow barrier sections 2 in a spiral path around or through the oil slick so that oil collected inside of or'against barrier sections 2 is conducted to weir 4 and thence transferred to barge 6 and pontoon 8 by pumps 5 and 7. FIG. 10 illustrates still another method of skimming by towing a shorter length of barrier sections 2 at a shallow angle through the water by proper positioning of tugs 3 to collect oil against barrier sections 2 and conduct it to weir 4 for recovery, separation and storage. Barrier sections 2 can be used for any of the above systems, either static or towed. In inland waterways, where there is more protection from wind and wave, the amount of draft can be reduced by increasing the amount of inflation of barrier sections 2. i
FIG. 2 shows the method of construction and the principle of operation of barrier sections 2. As illustrated in FIGS. 2a and 2b, the inflatable chamber of the barrier may be simply constructed by bonding together two flexible sheets of plastic or rubber material, such as PVC, polypropylene, neoprene or other similar film material. Elongate, flexible sheets 10 and 11, of equal width and length and rectangular in shape, are placed flat against each other and thenbonded together along four edges of the rectangle (seams a-a, b-b, cc and d-d of FIG. 2c to form a long, inflatable chamber. Valve 12 is attached to this chamber to provide for inflation with gas, such as air. Elongate, perforate, flexible sheetl4 is bonded to sheets 10 and 11 along seams a--a and b-b connecting said spaced apart seams to form a collection chamber with open ends and with elongate inlet in communication with said chamber. An
. against said barrier. The ends of barrier sections 2 are alternate method of construction is to extend perforate interconnected by means of flaps 16 which are flexibly extended beyond seams 0-: and d-d, thus providing a continuous passage or tunnel under the inflated chamber. Air pressure inside of said air chamber causes sheets 10 and 11 to separate and assume a loosely arranged and horizontally disposed configuration, generally as shown in FIG. 2a and 2b. Outer elongate sheet 10 conforms flexibly to internal air pressure and to local changes in external water pressure; its shape being alterable by adjustment of ballast l7 and cables 13 and 18. Elongate sheet 11 is forced against the surface of the water and oil inside of said collection chamber, as shown at f-f, gg and h-h of FIG. 2a and 2b, its function being to complete the air chamber and thereby provide variable volume. to said air chamber responsive to wave action. Each of the barrier sections 2 can be inflated separately and its pressure adjusted independently from other fence sections; al-
ternatively, a common air supply can be connected to all barrier sections 2 simply by interconnecting the air supply lines attached to valves 12. The use of perforate sheet 14 permits water and oil to enter inside the collection chamber while excluding any heavy debris.
How barrier sections 2 operate and respond to the mean height of the waves can be seen by further reference to FIGS. 2a and 2b. For purposes of illustration; let it be assumed that the overall height of barrier sections 2 is 6 feet and that the section length is at least several wavelengths, say feet long. To adjust the barrier for proper operation with a wave height condition of4 feet, the air chamber is inflated through valve 12 until the top of barrier sections 2 remains about 1 foot above the crest of a 4-foot wave, as illustrated in FIG. 2(a). Under this condition, air entrapped inside the air chamber will displace water from inside of the collection chamber, the amount of displacement varying according to the local wave condition, including wave frequency. At a wave crest, displacement might be to a level such as shown at ff, whereas, simultaneously, near a trough, the gas volume would expand because the water level inside and outside the collection chamber had dropped to a level such as g-g (refer to FIGS. 2a and 2b). Air entrapped in the air chamber moves along the fence at a much faster rate than the water around the fence and, thus, air pressure within the air chamber is essentially equalized along the entire length of barrier sections 2. Displacement of water inside the barrier will vary with wave frequency; the shorter the wavelength, the less displacement because of the slow rate at which the water can be moved. In order to increase the amount of freeboard at the wave crests, ballast 17 can be added and the gas pressure inside the air chamber will be correspondingly increased; the barrier sections 2 will elongate vertically and the additional buoyancy required will be obtained by the displacement of water from inside the collection chamber to a level such as h-h of FIG. 2a. How barrier sections 2 are used to collect and remove oil is also illustrated by reference to FIG. 2a. The build-up of oil against the barrier, in the manner illustrated, is accompanied by an increase in the viscosity of the oil, according to tests on oil slicks. The flow of water under the barrier tends to carry oil with it, separation of oil and water occurring at a relative velocity of about 5 feet per second. In some instances it will be necessary to allow the barrier to drift with the current in order not to exceed this relative velocity. Under such conditions, the oil will descend as far as a-a in FIG. 2, then pass through perforate sheet 14 and float up inside of the collection chamber displacing water from that space. If barrier sections 2 were retained only by cable 13, drag forces would overcome the buoyancy forces and oil would spill over the top of the barrier. However, by applying a restraining force at the top of barrier sections 2, by means of cable 18, harnesses l5 and perforate sheet 14, barrier sections 2 become large sea anchors having a configuration more like that shown in FIG. 3. Thus, it can be seen that the escape of oil from barrier sections 2 can be prevented by manipulation of cables 13 and 18, by controlling the drift rate of the barrier in relation to the current velocity, and by the removal of oil as it accumulates against the barrier and inside of the collection chamber.
FIG. 2d illustrates an alternate method of construction of barrier sections 2 wherein perforate sheet 14 is extended and enlarged to completely surround and enclose the barrier. The enlarged perforate sheet 14a aids in distributing tensile loads and other forces applied to barrier sections 2 and, further, protects the air chamber from damage. Using this alternate construction, it is also unnecessary to use laminated or reinforced material for the air chamber itself, thereby enhancing the gastight integrity of this important element of barrier sections 2.
FIG. 3 illustrates another application of barrier sections 2 in which two barriers are used in parallel with each other to further insure against the escape of oil. Both barriers are of the same size and are constructed as illustrated in FIG. 2. A strong current flowing against the barrier from the oil slick side, such as would occur in the application shown in FIG. la in the area of weir 4, will force the inner barrier against the outer barrier. Should the outer barrier become fully immersed in the water, its full buoyancy will be utilized for supporting the inner barrier and thereby aid in maintaining adequate free-board on the inner barrier. It is further possible to use shorter lengths of barrier sections 2 for the outer barrier (e.g., l wavelength or less), such that the buoyancy provided by these shorter sections will intions and substitutions are possible in the practice of this invention without departing from the spirit or the scope thereof. I
We claim: 7 1. An inflatable, flexible, elongated barrier for the collection and removal of floating liquids, such as oil,
from the surface of a body of water comprising:
a. a first elongate, flexible, sheet, said sheet being folded upon itself along its long axis whereby an elongate tunnel is formed by said folded sheet and the elongate edges of said folded sheet are spaced apart to define an elongate inlet in communication with said tunnel;
. a second elongate, flexible, sheet loosely arranged and horizontally disposed within said tunnel and constructed and arranged therein whereby a closed first air chamber is defined within said tunnel continuously along its elongate dimension and a second elongate collection chamber with open ends is defined between said elongate sheet and said spaced apart elongate edges, whereby said loosely arranged second elongate sheet provides variable volume to said firstair chamber responsive to wave action on the surface of said body of water;
. a third elongate flexible perforate sheet connecting said spaced apart elongate edges whereby oil and water may enter said elongate collection chamber when said spaced apart elongate edges are arranged below the surface of said body of water;
. means for inflating said first closed air chamber;
. cable means attached to said first closed air chamber and to said elongate collection chamber;
f. ballast means attached to at least one of said elongate edges of said tunnel whereby said elongate edges are maintained below the surface of said body of water.
2. The apparatus of claim I wherein said perforate sheet is arranged continuously enveloping the exterior of said barrier.
3. The apparatus of claim 1 wherein said first elongate flexible sheet comprises two or more' flexible sheets bonded together to form one or more inflatable gas chambers between said sheets.
4. The apparatus of claim 2 comprising two barriers constructed and arranged whereby said elongate inlets are in parallel relationship below the surface of said body of water.

Claims (4)

1. An inflatable, flexible, elongated barrier for the collection and removal of floating liquids, such as oil, from the surface of a body of water comprising: a. a first elongate, flexible, sheet, said sheet being folded upon itself along its long axis whereby an elongate tunnel is formed by said folded sheet and the elongate edges of said folded sheet are spaced apart to define an elongate inlet in communication with said tunnel; b. a second elongate, flexible, sheet loosely arranged and horizontally disposed within said tunnel and constructed and arranged therein whereby a closed first air chamber is defined within said tunnel continuously along its elongate dimension and a second elongate collection chamber with open ends is defined between said elongate sheet and said spaced apart elongate edges, whereby said loosely arranged second elongate sheet provides variable volume to said first air chamber responsive to wave action on the surface of said body of water; c. a third elongate flexible perforate sheet connecting said spaced apart elongate edges whereby oil and water may enter said elongate collection chamber when said spaced apart elongate edges are arranged below the surface of said body of water; d. means for inflating said first closed air chamber; e. cable means attached to said first closed air chamber and to said elongate collection chamber; f. ballast means attached to at least one of saiD elongate edges of said tunnel whereby said elongate edges are maintained below the surface of said body of water.
2. The apparatus of claim 1 wherein said perforate sheet is arranged continuously enveloping the exterior of said barrier.
3. The apparatus of claim 1 wherein said first elongate flexible sheet comprises two or more flexible sheets bonded together to form one or more inflatable gas chambers between said sheets.
4. The apparatus of claim 2 comprising two barriers constructed and arranged whereby said elongate inlets are in parallel relationship below the surface of said body of water.
US00016692A 1970-03-05 1970-03-05 Variable displacement fence for oil spill containment and recovery Expired - Lifetime US3710943A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1669270A 1970-03-05 1970-03-05

Publications (1)

Publication Number Publication Date
US3710943A true US3710943A (en) 1973-01-16

Family

ID=21778433

Family Applications (1)

Application Number Title Priority Date Filing Date
US00016692A Expired - Lifetime US3710943A (en) 1970-03-05 1970-03-05 Variable displacement fence for oil spill containment and recovery

Country Status (1)

Country Link
US (1) US3710943A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811285A (en) * 1972-06-09 1974-05-21 Kleber Colombes Floating anti-pollution barrier device
US4052306A (en) * 1976-10-12 1977-10-04 Minnesota Mining And Manufacturing Company Oil sweep
US4056472A (en) * 1975-03-13 1977-11-01 National Research Development Corporation Oil recovery apparatus
US4244819A (en) * 1972-12-26 1981-01-13 Pneumatiques Caoutchouc Manufacture Et Plastiques Kleber-Colombes Floating anti-pollution barrier and method for using the same
US4340321A (en) * 1980-06-19 1982-07-20 Halliburton Company Oil boom for open sea skimmer barge
FR2516069A1 (en) * 1981-11-06 1983-05-13 Metais Jacques DEVICE FOR CAPTURING VARIOUS SUBSTANCES IN A LIQUID
WO1984004340A1 (en) * 1983-05-04 1984-11-08 Jacques Metais Device for the collection of various substances present in a liquid
US4752393A (en) * 1984-11-14 1988-06-21 Frank Meyers Contamination control boom arrangement
US5165821A (en) * 1991-08-21 1992-11-24 Minnesota Mining And Manufacturing Co. Oil-sorbing boom
US5387055A (en) * 1990-10-12 1995-02-07 Oil Recovery Systems International Oil recovery apparatus and method
US5645373A (en) * 1995-07-11 1997-07-08 Maca/Orsi, L.L.C. Flood control barrier system and method
WO2001083891A1 (en) * 2000-05-02 2001-11-08 American Marine, Inc. Contaminant slick dispersal apparatus and methods
WO2013052007A1 (en) * 2011-10-04 2013-04-11 Ng Tai San Macondo oil recovery system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3245539A (en) * 1962-09-18 1966-04-12 Surface Separator Systems Inc Fluid separation system
US3476246A (en) * 1967-12-22 1969-11-04 Mobil Oil Corp Apparatus and process for confining floating liquid products
US3503512A (en) * 1967-06-22 1970-03-31 British Petroleum Co Barrier for oil spilt on water
US3508652A (en) * 1967-01-11 1970-04-28 Dunlop Co Ltd Method of and apparatus for separating oil from water
US3532219A (en) * 1969-04-22 1970-10-06 Water Pollution Controls Inc Apparatus for collecting and containing oil on the surface of water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3245539A (en) * 1962-09-18 1966-04-12 Surface Separator Systems Inc Fluid separation system
US3508652A (en) * 1967-01-11 1970-04-28 Dunlop Co Ltd Method of and apparatus for separating oil from water
US3503512A (en) * 1967-06-22 1970-03-31 British Petroleum Co Barrier for oil spilt on water
US3476246A (en) * 1967-12-22 1969-11-04 Mobil Oil Corp Apparatus and process for confining floating liquid products
US3532219A (en) * 1969-04-22 1970-10-06 Water Pollution Controls Inc Apparatus for collecting and containing oil on the surface of water

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811285A (en) * 1972-06-09 1974-05-21 Kleber Colombes Floating anti-pollution barrier device
US4244819A (en) * 1972-12-26 1981-01-13 Pneumatiques Caoutchouc Manufacture Et Plastiques Kleber-Colombes Floating anti-pollution barrier and method for using the same
US4056472A (en) * 1975-03-13 1977-11-01 National Research Development Corporation Oil recovery apparatus
US4052306A (en) * 1976-10-12 1977-10-04 Minnesota Mining And Manufacturing Company Oil sweep
US4340321A (en) * 1980-06-19 1982-07-20 Halliburton Company Oil boom for open sea skimmer barge
FR2516069A1 (en) * 1981-11-06 1983-05-13 Metais Jacques DEVICE FOR CAPTURING VARIOUS SUBSTANCES IN A LIQUID
WO1984004340A1 (en) * 1983-05-04 1984-11-08 Jacques Metais Device for the collection of various substances present in a liquid
US4752393A (en) * 1984-11-14 1988-06-21 Frank Meyers Contamination control boom arrangement
US5387055A (en) * 1990-10-12 1995-02-07 Oil Recovery Systems International Oil recovery apparatus and method
US5165821A (en) * 1991-08-21 1992-11-24 Minnesota Mining And Manufacturing Co. Oil-sorbing boom
US5645373A (en) * 1995-07-11 1997-07-08 Maca/Orsi, L.L.C. Flood control barrier system and method
WO2001083891A1 (en) * 2000-05-02 2001-11-08 American Marine, Inc. Contaminant slick dispersal apparatus and methods
US6517726B2 (en) 2000-05-02 2003-02-11 American Marine, Inc. Contaminant slick dispersal apparatus and methods
WO2013052007A1 (en) * 2011-10-04 2013-04-11 Ng Tai San Macondo oil recovery system

Similar Documents

Publication Publication Date Title
US3703811A (en) Oil boom with continuous conduit therethrough
US3534859A (en) Apparatus for removal of oil floating on water or the like
US3710943A (en) Variable displacement fence for oil spill containment and recovery
US3548605A (en) Submergible vehicle for emergency offshore gas leakage
US6743367B2 (en) Boom curtain with expandable pleated panels, containment boom containing the same, and use thereof
US4047390A (en) Sea tent
US5102261A (en) Floating containment boom
US5154537A (en) Barrier curtain
US3815751A (en) Oil/water separation and recovery system
US3779020A (en) Immersible oil fence assembly
US3852965A (en) Flotation type water sweep boom and methods
US3666098A (en) Method and appratus for confining and collecting an oil slick
US4057498A (en) Concentrators for recovering liquid pollutant floating on the surface of a sheet of water
US4310415A (en) Anti-pollution equipment
US3567019A (en) Oil leakage barrier
KR100786450B1 (en) Apparatus for the containment of oil spills
US3800542A (en) Floating boom
EP0120862A1 (en) A floatable boom.
US3579994A (en) Barrier for control of substances in bodies of water
EP0033238A2 (en) A boom element for a flexible floating barrier usable in shallow or tidal waters and a method of containing pollutants in such waters
US3638429A (en) Apparatus for confining material floating on water
US5139363A (en) Oil recovery apparatus and method
US3635347A (en) Apparatus for controlling the dispersion of pollutants floating on a body of water
EP3017117B1 (en) Device for the damming of a liquid in a liquid basin
US5478168A (en) Pollutant containment boom