US3710285A - Filter pin connector haivng low ground return impedance - Google Patents
Filter pin connector haivng low ground return impedance Download PDFInfo
- Publication number
- US3710285A US3710285A US00109423A US3710285DA US3710285A US 3710285 A US3710285 A US 3710285A US 00109423 A US00109423 A US 00109423A US 3710285D A US3710285D A US 3710285DA US 3710285 A US3710285 A US 3710285A
- Authority
- US
- United States
- Prior art keywords
- filter
- connector
- ground
- housing
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012212 insulator Substances 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 230000013011 mating Effects 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 5
- 230000001965 increasing effect Effects 0.000 claims description 5
- 239000003989 dielectric material Substances 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/66—Structural association with built-in electrical component
- H01R13/719—Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters
- H01R13/7197—Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters with filters integral with or fitted onto contacts, e.g. tubular filters
Definitions
- ABSTRACT A plurality of ground planes establish a low impedance ground return circuit for a filter pin connector comprising a connector pin, a tubular filter, and a housing.
- the ground planes comprising thin metal sheets in electrical contact with the outer surface of the tubular filter are sandwiched between various insulators of the housing.
- the present invention relates to electrical connectors wherein one or more contact terminals are carried by one connector member and complementary contact terminals are carried on a mating connector member to provide one or more electrical circuits upon mating of the connector members. More particularly, the invention relates to such a connector wherein R.F. filter assemblies comprising capacitive, inductive and/or lossy circuit elements are electrically connected to the contact terminals of one of the connector members so asto attenuate undesired R.F. signals.
- Connector pins which form the contact terminals are inserted into the R.F. filter making electrical contact with the filter, usually at the inner surface, by soldering or through the use of a spring contact device.
- the filter is also connected to ground, usually at the outer surface and oftentimes through the metal shell of the connector housing. When the filter is installed in electrical equipment, this metal shell is conductively attached to the equipment ground. In this manner, a low resistance path to ground is provided for undesired RF. signals which may have frequencies above 1.0 GI-Iz (gigahertz) and extending up to GI-Iz or higher.
- the effectiveness of a connector filter depends upon the filter internal shunt impedance and also upon the impedance of the ground return circuit associated with the filter.
- the equivalent shunt impedance of the filter becomes very small, usually less than a milliohm.
- the impedance of the ground returncircuit which includes a very small inductance in series with a i resistance, increases with increasing frequency. This is due to the increased reactance of ground return circuit .intrinsic inductance and also due to the skin effect of the conducting surface.
- the filtering effectiveness depends as much upon the ground return circuit as it does upon the filter itself.
- the outer surface or ground circuit of a filter In addition to the series inductance. and resistance contained in the ground plane, the outer surface or ground circuit of a filter also contains some residual impedance in the form of inductance and series resistance which add to those of the return circuitand become particularly manifest at frequencies above 3.0 GHZ.
- the ideal grounding method would involve a coaxial mount for a filter pin.
- the coaxial mount is impractical and expensive particularly in a multi-pin connector since the conductors are normally single conductor non-shielded wire.
- the usual method of providing ground return has involved the use of a sheet metal ground plane at a right angle to the axis of the connector pins, or in the alternative, a ground plane comprising conductive rubber.
- a grounding method provides acceptable performance for some applications, high frequency performance leaves much to be desired.
- the impedance of a ground return circuit utilizing a single conductive ground plane is too large at high frequencies to achieve the optimum in performance.
- the series inductance and resistance of the filter ground circuit itself usually the outer surface of the filter, becomes troublesome at high may be minimized by utilizing a thickness at least equal to two skin depths at the lowest frequency of interest.
- some mechanical stability may be achieved by utilizing a ground plane of greater thickness, the impedance of the ground circuit is not reduced and there is therefore no improvement in electrical performance associated with this increase in thickness.
- One object of this invention is to provide a low impedance ground'return circuit for filters in a filter connector and thus improve the filter performance.
- Another object of the invention is to minimize the effect of the residual impedance in the filter ground circuit'and thus improve filterperformance.
- a further object of the invention is to provide redundancy in the ground return circuit and thus improve the filter reliability factor under adverse environmental conditions such asshock, vibrations, temperature extremes and corrosive atmospheres.
- a still further object of the invention is to provide rigid mechanical support for filters which tends to maintain the correct filter position and reduces filter breakage which otherwise would occur if the protruding contact pins are accidentally bent out of alignment in handling the filter connector. 7
- a still'further object of the invention is to reduce assembly costs for filter connectors by assuring easy assembly.
- the'filter connector assembly may comprise a connector pin, a substantially tubular filter-having an axial opening for receiving the connector pin, and a housing including an insulator means and ground returnmeans.
- the ground return means may comprise a plurality of conductive planes separated by the insulatormeans of the housing.
- FIG. 1 is a sectional view of a prior art filter connector assembly
- FIG. 2 is a sectional view of a filter connector assembly embodying the invention
- FIG. 3 is an enlarged view of a portion of the connector assembly of FIG. 2;
- FIG. 4 is an electrical schematic diagram of the connector assembly of FIG. 1;
- FIG. 5 is a similar schematic diagram of the connector assembly of FIG. 2;
- FIG. 6 is a diagram showing filter performance curves including the filter performance curves of the connector assemblies of FIGS. 1 and 2;
- FIG. 7 is a sectional view of another connector assembly embodying the invention.
- the connector pins 10 and tubular filter elements 12 are retained within a housing 14 comprising a conductive shell 15 adapted to be connected to a grounded support thereby establishing ground for the assembly, a front insulator 16, a rear insulator 18, a
- the single ground plane 20 is sandwiched between the front insulator 16 and the rear insulator 18 with perforations in the ground plane 20 aligned with the openings through the front insulator 16, the rear insulator l8, and the grommet 22.
- a filter circuit is established having input and output terminals formed by the ends of the connector pins 10 and a ground connection provided by the metal shell 15 and the ground plane 20.
- the ground plane includes integral tines 24 in contact with the metal shell 15 and similar tines 26 at the perforations in the ground plane 20 to establish contact with the outer or ground surfaces of the filter elements 12.
- the insulator means of the housing 14 comprises an intermediate insulator 28 separating a mutually insulated pair of parallel ground planes 30 providing a pair of ground return paths.
- the impedances of the ground return circuits for the filter elements 12 can be reduced and the effect of the residual impedances of the filter ground circuits at the outer surfaces of the filter elements 12 is minimized.
- the reliability and mechanical strength of the filter assembly can be maximized as may be seen by reference to FIG. 3.
- the use of two ground planes 30 provides longitudinally spaced support along each filter element 12 at the tines 26.
- the two ground planes 30 assist in holding the filter rigidly in position thereby greatly reducing the radial stress on the filter 12 if the connector pin 10 is accidentally bent, as sometimes happens during handling or use of the device. As a result of this reduction of stress, filter breakage is minimized.
- a certain redundancy in the ground connection is provided so as to increase the reliability factor of the filter assembly.
- the assembly of the front insulator 16 and the rear insulator 18 is facilitated with the use of the two ground planes 30.
- FIG. 3 also discloses the nature of each filter element 12 which comprises a tubular dielectric 32, an outer conductive layer 34 at the outer or ground surface of the dielectric 32, and a relatively conductive ferrite sleeve 40 having an axial opening receiving the connector pin 10 and establishing electrical contact between the pin 10 and the filter.
- the filter element 12 in its preferred form is disclosed more fully in patent application Ser. No. 883,501, filed Dec. 9, 1969, now abancloned, in the name of William B. Fritz, and assigned to the assignee of the present invention.
- F IG. 4 is a schematic circuit diagram representing the single ground plane filter connector of FIG. 1.
- the circuit includes an input terminal 41, an output terminal 42, ground 44, a filter 46, and a ground return circuit 48.
- the inductive-resistive path between the input terminal 41 and the output terminal 42 comprises an inductor 50 and a resistor 52 which corresponds with and is established by the pin 12 and the ferrite sleeve 40.
- the capacitors 54 and 56 represent the capacitive paths between the terminals 41 and 42 and the outer conductive layer 34.
- Inductors 58 and 60 in series with resistors 62 and 64 represent the filter ground circuit or inductive-resistive path along the outer conductive layer 34 with the inductor 58 and the resistor 62 representing the inductive-resistive path on the one side of the single ground plane 20 and the inductor 60 and the resistor 64 representing the inductive-resistive path on the other side of the ground plane 20.
- the ground return circuit 48 comprising a series inductive-resistive path including an inductor 66 and a resistor 68 is shown as connected between the junction of the inductor-resistor combinations 58-62 and 60-64 and ground 44.
- the residual impedance of the outer layer 34 has been subdivided into three different series inductive-paths including inductors 70, 72, 74 and resistors 76, 78 and 80. Since the ground return circuit comprises two separate ground planes 30, the ground return circuit 82 comprises a first series inductive-resistive path comprising an inductor 84 and a resistor 86 and a second inductive-resistive path comprising an inductor 88 and a resistor 90.
- the impedance of the inductor 72 and the resistor 78 will be substantial and the impedances of the inductors and 74 and the resistors 76 and 80 will be correspondingly diminished so as to minimize the effect of the residual impedance of the filter ground circuit.
- the ground return circuit 82 comprises two branches as shown by FIG. 5, its resultant impedance will be substantially reduced and the performance of the filter is enhanced accordingly. This is to be contrasted with the substantial effect of the residual impedance of the filter ground circuit 34 as represented by the inductors 58 and 60 and the resistors 62 and 64 of the prior art arrangement depicted in FIG. 4 and the large impedance of the ground return circuit 48 therein which has a single branch comprising the inductor 66 and the resistor 68.
- the use of two ground planes instead of one reduces the impedance of the ground return circuit by at least 50 percent. This in itself can account for an approximate 6dB improvement in filter performance if the filter shunt impedance is small compared to the ground plane impedance. Furthermore, the effect of the residual impedance due to the filter ground circuit in the form of the outer layer 34 may be substantially reduced since the voltage appearing across the inductor 84 and the resistor 86 must divide between the inductors 72 and 88 and the resistors 78 and 90.
- the spacing between the ground planes 30 and the connection to theouter conductive layer at different and mutually spaced regions is very important since it affects the magnitude of the impedance represented by the inductor 72 and the resistor 78. It has been found that increasing the distance between the ground planes by one-sixteenth of an inch may increase the insertion loss of the filter by 3dB in the very high frequency range. It has also been found that the use of two ground planes in mutual electrical contact provides a filter performance substantially identical to that provided by a filter assembly utilizing a single ground plane. It will be understood that further improvements in the performance of the filter may be effected by more than two ground planes as shown in FIG. 7.
- FIG. 6 a number of performance curves corresponding to various filter connectors are shown.
- the single metal ground plane curve represents the performance of the filter connector FIG. 1 when a 3 mil, 6 tine silver-plated beryllium copper ground plane is utilized.
- the insertion loss never reaches 70dB even at low frequencies.
- the curve characteristic of a filter connector wherein a one-sixteenth inch conductive rubber ground plane is utilized represents a somewhat improved performance.
- the maximum insertion loss is only 80dB and this is achieved only at frequencies in the vicinity of 0.7 GI-Iz.
- the last curve shown is a curve of a filter connector mounted in a coaxial fixture. This curve represents a near optimum in performance with an insertion loss greater than 85dB from 0.3 to 10.0 GHz.
- the double metal ground plane connector approaches near optimum performance over a substantial frequency range.
- the performance of the double metal ground plane may be improved by the use of further or additional ground planes beyond the two shown in FIG. 2.
- only the most critical high frequency application would require the use of additional ground planes since the insertion loss of a double metal ground plane is nearly 60dB at 10.0 GHz.
- a filter connector assembly comprising:
- a substantially tubular filter element having an axial opening receiving and electrically contacting said connector pin
- a housing comprising front, rear, and intermediate insulator means having aligned openings for receiving said connector pin within said tubular filter, and a pair of conductive ground planes, one
- ground planes located between said front insulator means and said intermediate insulator means and the other of said ground planes located between said rear insulator means and said intermediate insulator means, said ground planes providing a low impedance ground return path for said filter.
- ground planes comprise thin sheets of metal having perforations aligned with the openings of said insulator means.
- a connector comprising a tubular housing means for connection to ground
- At least one end portion of said housing means being filled with dielectric material
- filter means comprising a dielectric element exhibiting increasing resistance with frequency mounted on the contact terminal means within the housing for attenuating high frequencies
- a conductive member coextensive with and capacitively coupled to the dielectric element, and a plurality of axially spaced conductive elements intermediate the ends of the conductive member extending transversely of said axial direction and connecting the housing to said conductive member.
- a connector according to claim 4 wherein the conductive elements comprise substantially planar discs.
- each of the contacting devices being provided with a said filter means and a said 'capacitively coupled conductive member,
- a connector according to claim 6 wherein the conductive elements comprise substantially planar discs.
Landscapes
- Details Of Connecting Devices For Male And Female Coupling (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Coupling Device And Connection With Printed Circuit (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10942371A | 1971-01-25 | 1971-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3710285A true US3710285A (en) | 1973-01-09 |
Family
ID=22327559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00109423A Expired - Lifetime US3710285A (en) | 1971-01-25 | 1971-01-25 | Filter pin connector haivng low ground return impedance |
Country Status (12)
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4126370A (en) * | 1977-06-17 | 1978-11-21 | Bunker Ramo Corporation | Filter connector with radial mounting means |
US4212510A (en) * | 1978-11-14 | 1980-07-15 | Amp Incorporated | Filtered header |
US4260966A (en) * | 1977-12-23 | 1981-04-07 | Bunker Ramo Corporation | High current filter connector with removable contact members |
US4275945A (en) * | 1979-08-31 | 1981-06-30 | The Bendix Corporation | Filter connector with compound filter elements |
US4371226A (en) * | 1980-10-20 | 1983-02-01 | International Telephone And Telegraph Corporation | Filter connector and method of assembly thereof |
US4458220A (en) * | 1981-07-17 | 1984-07-03 | Automation Industries, Inc. | Electrical connector and filter circuit |
EP0085816A3 (en) * | 1982-02-05 | 1985-01-09 | G & H Technology, Inc. | Electromagnetic shield for an electrical connector |
FR2557382A2 (fr) * | 1983-12-23 | 1985-06-28 | Eurofarad | Boitier de filtrage capacitif modulaire amovible pour dispositif de connexion electrique |
US4674815A (en) * | 1984-08-09 | 1987-06-23 | Jeffrey Chambers | Electrical connectors |
US4682129A (en) * | 1983-03-30 | 1987-07-21 | E. I. Du Pont De Nemours And Company | Thick film planar filter connector having separate ground plane shield |
US4791391A (en) * | 1983-03-30 | 1988-12-13 | E. I. Du Pont De Nemours And Company | Planar filter connector having thick film capacitors |
US4830621A (en) * | 1986-04-04 | 1989-05-16 | United Technologies Automotive, Inc. | Selective multiconnector block |
US5023577A (en) * | 1990-05-17 | 1991-06-11 | The United States Of America As Represented By The Secretary Of The Navy | Feedthrough radio frequency filter |
US5147224A (en) * | 1991-05-29 | 1992-09-15 | Foxconn International, Inc. | Electrical connector with conductive member electrically coupling contacts and filter components |
US5158482A (en) * | 1990-09-28 | 1992-10-27 | Foxconn International, Inc. | User configurable integrated electrical connector assembly |
US5221215A (en) * | 1990-06-26 | 1993-06-22 | Foxconn International, Inc. | User configurable integrated electrical connector assembly with improved means for preventing axial movement |
US5236376A (en) * | 1991-03-04 | 1993-08-17 | Amir Cohen | Connector |
US5257949A (en) * | 1991-10-17 | 1993-11-02 | Itt Corporation | Connector with interchangeable contacts |
US5286224A (en) * | 1993-05-10 | 1994-02-15 | Itt Corporation | Interchangeable contact connector |
US6080020A (en) * | 1998-05-28 | 2000-06-27 | The Whitaker Corporation | Ground plane for a filtered electrical connector |
EP1077514A3 (de) * | 1999-08-19 | 2001-10-24 | FILTEC FILTERTECHNOLOGIE FUR DIE ELEKTRONIKINDUSTRIE GmbH | Mehrfachfilter |
US6375507B1 (en) * | 1998-06-30 | 2002-04-23 | Framatome Connectors International | Connector and method for manufacturing a connector |
EP1441420A3 (en) * | 1998-12-07 | 2004-09-22 | Fci | Electrical filter connector assembly |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4215326A (en) * | 1978-01-16 | 1980-07-29 | Amp Incorporated | Filtered adapter |
JPS5699908U (enrdf_load_stackoverflow) * | 1979-12-28 | 1981-08-06 | ||
US4516815A (en) * | 1982-06-07 | 1985-05-14 | Spectrum Control, Inc. | RF filter connector |
JPS60140380U (ja) * | 1984-02-01 | 1985-09-17 | 日本電信電話株式会社 | シ−ルドコネクタ |
JPS6177409A (ja) * | 1984-09-21 | 1986-04-21 | Sharp Corp | ノイズフイルタ |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2877433A (en) * | 1954-11-01 | 1959-03-10 | Tobe Deutschmann Corp | Coaxial filter |
US3023383A (en) * | 1956-05-28 | 1962-02-27 | Allen Bradley Co | Feed-through capacitor |
US3035237A (en) * | 1958-03-10 | 1962-05-15 | Allen Bradley Co | Feed-through capacitor |
US3185944A (en) * | 1961-10-24 | 1965-05-25 | Melpar Inc | Coaxial filter |
US3267396A (en) * | 1963-02-28 | 1966-08-16 | Bird Electronic Corp | High power filter |
US3541478A (en) * | 1968-05-02 | 1970-11-17 | Allen Bradley Co | Electrical filter body construction having deposited outer surface |
US3568109A (en) * | 1968-05-02 | 1971-03-02 | Allen Bradley Co | Variable or low pass filter |
-
1971
- 1971-01-25 US US00109423A patent/US3710285A/en not_active Expired - Lifetime
- 1971-01-25 JP JP879771A patent/JPS4715696A/ja active Pending
-
1972
- 1972-01-12 IT IT7219271A patent/IT946494B/it active
- 1972-01-12 AU AU37808/72A patent/AU3780872A/en not_active Expired
- 1972-01-14 DE DE19722201814 patent/DE2201814A1/de active Pending
- 1972-01-19 GB GB250572A patent/GB1338755A/en not_active Expired
- 1972-01-20 AT AT46672A patent/AT319370B/de not_active IP Right Cessation
- 1972-01-21 BE BE778375A patent/BE778375A/xx unknown
- 1972-01-22 ES ES399102A patent/ES399102A1/es not_active Expired
- 1972-01-24 NL NL7200933A patent/NL7200933A/xx unknown
- 1972-01-24 FR FR7202213A patent/FR2123364A1/fr not_active Withdrawn
- 1972-01-24 BR BR000382/72A patent/BR7200382D0/pt unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2877433A (en) * | 1954-11-01 | 1959-03-10 | Tobe Deutschmann Corp | Coaxial filter |
US3023383A (en) * | 1956-05-28 | 1962-02-27 | Allen Bradley Co | Feed-through capacitor |
US3035237A (en) * | 1958-03-10 | 1962-05-15 | Allen Bradley Co | Feed-through capacitor |
US3185944A (en) * | 1961-10-24 | 1965-05-25 | Melpar Inc | Coaxial filter |
US3267396A (en) * | 1963-02-28 | 1966-08-16 | Bird Electronic Corp | High power filter |
US3541478A (en) * | 1968-05-02 | 1970-11-17 | Allen Bradley Co | Electrical filter body construction having deposited outer surface |
US3568109A (en) * | 1968-05-02 | 1971-03-02 | Allen Bradley Co | Variable or low pass filter |
Non-Patent Citations (1)
Title |
---|
Susskind, The Enchclopedia of Electronics Reinhold New York, 1962 TK 7804 S8; Title page & pp. 293 295 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4126370A (en) * | 1977-06-17 | 1978-11-21 | Bunker Ramo Corporation | Filter connector with radial mounting means |
US4260966A (en) * | 1977-12-23 | 1981-04-07 | Bunker Ramo Corporation | High current filter connector with removable contact members |
US4212510A (en) * | 1978-11-14 | 1980-07-15 | Amp Incorporated | Filtered header |
US4275945A (en) * | 1979-08-31 | 1981-06-30 | The Bendix Corporation | Filter connector with compound filter elements |
US4371226A (en) * | 1980-10-20 | 1983-02-01 | International Telephone And Telegraph Corporation | Filter connector and method of assembly thereof |
US4458220A (en) * | 1981-07-17 | 1984-07-03 | Automation Industries, Inc. | Electrical connector and filter circuit |
EP0085816A3 (en) * | 1982-02-05 | 1985-01-09 | G & H Technology, Inc. | Electromagnetic shield for an electrical connector |
US4791391A (en) * | 1983-03-30 | 1988-12-13 | E. I. Du Pont De Nemours And Company | Planar filter connector having thick film capacitors |
US4682129A (en) * | 1983-03-30 | 1987-07-21 | E. I. Du Pont De Nemours And Company | Thick film planar filter connector having separate ground plane shield |
FR2557382A2 (fr) * | 1983-12-23 | 1985-06-28 | Eurofarad | Boitier de filtrage capacitif modulaire amovible pour dispositif de connexion electrique |
US4674815A (en) * | 1984-08-09 | 1987-06-23 | Jeffrey Chambers | Electrical connectors |
US4830621A (en) * | 1986-04-04 | 1989-05-16 | United Technologies Automotive, Inc. | Selective multiconnector block |
US5023577A (en) * | 1990-05-17 | 1991-06-11 | The United States Of America As Represented By The Secretary Of The Navy | Feedthrough radio frequency filter |
US5221215A (en) * | 1990-06-26 | 1993-06-22 | Foxconn International, Inc. | User configurable integrated electrical connector assembly with improved means for preventing axial movement |
US5158482A (en) * | 1990-09-28 | 1992-10-27 | Foxconn International, Inc. | User configurable integrated electrical connector assembly |
US5236376A (en) * | 1991-03-04 | 1993-08-17 | Amir Cohen | Connector |
US5147224A (en) * | 1991-05-29 | 1992-09-15 | Foxconn International, Inc. | Electrical connector with conductive member electrically coupling contacts and filter components |
US5257949A (en) * | 1991-10-17 | 1993-11-02 | Itt Corporation | Connector with interchangeable contacts |
US5286224A (en) * | 1993-05-10 | 1994-02-15 | Itt Corporation | Interchangeable contact connector |
US6080020A (en) * | 1998-05-28 | 2000-06-27 | The Whitaker Corporation | Ground plane for a filtered electrical connector |
US6375507B1 (en) * | 1998-06-30 | 2002-04-23 | Framatome Connectors International | Connector and method for manufacturing a connector |
EP1441420A3 (en) * | 1998-12-07 | 2004-09-22 | Fci | Electrical filter connector assembly |
EP1077514A3 (de) * | 1999-08-19 | 2001-10-24 | FILTEC FILTERTECHNOLOGIE FUR DIE ELEKTRONIKINDUSTRIE GmbH | Mehrfachfilter |
Also Published As
Publication number | Publication date |
---|---|
NL7200933A (enrdf_load_stackoverflow) | 1972-07-27 |
ES399102A1 (es) | 1974-11-16 |
AT319370B (de) | 1974-12-27 |
IT946494B (it) | 1973-05-21 |
DE2201814A1 (de) | 1972-08-17 |
JPS4715696A (enrdf_load_stackoverflow) | 1972-08-24 |
BR7200382D0 (pt) | 1973-05-10 |
GB1338755A (en) | 1973-11-28 |
FR2123364A1 (enrdf_load_stackoverflow) | 1972-09-08 |
BE778375A (fr) | 1972-07-24 |
AU3780872A (en) | 1973-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3710285A (en) | Filter pin connector haivng low ground return impedance | |
US4401355A (en) | Filtered connector | |
US5839910A (en) | Coaxial connector with impedance control | |
US3002162A (en) | Multiple terminal filter connector | |
US6754060B2 (en) | Protective device | |
US3980382A (en) | Matched impedance coaxial cable to printed circuit board terminator | |
US3573677A (en) | Connector with provision for minimizing electromagnetic interference | |
US8035466B2 (en) | High frequency electrical connector | |
EP0025367A1 (en) | Filter connector | |
US2958054A (en) | Impedance terminated coaxial line switch apparatus | |
US4987391A (en) | Antenna cable ground isolator | |
US4800347A (en) | Dielectric filter | |
EP0392969A1 (de) | Scheibenantennensystem mit Antennenverstärker | |
CN1930737B (zh) | 带有空气增强接触销的电缆端子 | |
JPH05283126A (ja) | コネクタ | |
US5812039A (en) | Apparatus for providing a ground for circuits on carriers | |
US3447104A (en) | Electrical connector filter comprising at least one electrically conductive coated dielectric disc and a ferromagnetic disc | |
US3588758A (en) | Electrical connector filter having dielectric and ferromagnetic tubes bonded together with conductive electrode layers and having nonintegral connecting spring | |
US3597711A (en) | Removable electrical connector filter | |
JP3354641B2 (ja) | 相互接続用アセンブリ | |
US4867704A (en) | Fixture for coupling coaxial connectors to stripline circuits | |
US7180392B2 (en) | Coaxial DC block | |
JPS638641B2 (enrdf_load_stackoverflow) | ||
US5668557A (en) | Surface-mount antenna and communication device using same | |
US6547593B1 (en) | Sub-miniature, high speed coaxial pin interconnection system |